
HAL Id: hal-00746260
https://hal.inria.fr/hal-00746260

Submitted on 28 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proposals for the Reborn Pharo Developer
Simon Denier, Damien Pollet, Stéphane Ducasse

To cite this version:
Simon Denier, Damien Pollet, Stéphane Ducasse. Proposals for the Reborn Pharo Developer. Pro-
ceedings of ESUG International Workshop on Smalltalk Technologies (IWST’09), 2009, Brest, France.
2009. <hal-00746260>

https://hal.inria.fr/hal-00746260
https://hal.archives-ouvertes.fr


Proposals for the Reborn Pharo Developer
Accepted to IWST09

Simon Denier Damien Pollet Stéphane Ducasse

RMoD Project-Team, INRIA Lille-Nord Europe

{simon.denier, damien.pollet, stephane.ducasse}@inria.fr

Abstract

Smalltalk was at the birth of current IDEs. Current Smalltalk

IDEs, however, lost their abilities to adapt to developer needs

(edit and jump, back button, auto-completion,...). Therefore

while offering a powerful sets of tools current Smalltalk

IDEs looks clunky and often lacks the application of a con-

sistent set of guidelines. In this paper we sketch some possi-

ble IDEs future features or reorganization.

General Terms IDEs, User interfaces, code browser

1. Motivations

Pharo wants to vivify the Smalltalk experience. Hence, the

development experience with Pharo needs to be vivified.

Although Smalltalk has supported from the beginning the

use of visual interfaces to browse and program systems, it

now suffers from the age of its visual tools, which have

basically not changed since their inception. This appears in

particular in Pharo, in which development tools have seen

few improvements.

We think that the Pharo experience needs to be enhanced

not only with new tools, but also with new guidelines and

principles around which the development should be cen-

tered. In nowadays systems where methods, classes, and

packages grow everyday, we think that two capabilities are

of primal importance for the developer: the ability to focus

on a small set of relevant items and the ability to navigate

and discover the system at different scopes and through dif-

ferent views.

2. Guidelines for Pharo Tools

Guidelines are simple keywords which drive the specifica-

tions and design of Pharo tools. This set allows one to assess

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

IWST’09 2009/08/??, Brest.
Copyright c© 2009 ACM [to be supplied]. . . $10.00

which guideline a tool targets in priority and how well it

fares with the others.

focus the developer only needs a small subset of the system

at one time;

context context is tailored to not disturb the developer yet

provide opportunities to expand the focus;

feedback the system should provide proper feedback in

space and time;

ubiquity seamless interaction everywhere;

discoverability the developer can easily discover new as-

pects of code;

incrementality support incremental development;

consistency and efficiency system interaction is consistent

and efficient.

3. Existing Tools for Development

Seeveral attemps have been performed to enhance the default

set of tools. Here we give a non-exhaustive list with some

key comments.

• Package Browser: it integrates the notion of packages

and provides some start at supporting better navigation.

Smart groups are provided for focus but deserve a deeper

integration. A good work has been done to support traits

and inheritance/package navigation. Emergence of im-

portant items been placed to the top of a list is interest-

ing because they help developer focus by distinguishing

changes.

• Enhanced Explorer/Inspector [Plua]: it merges and im-

proves two tools, the inspector and the explorer. Basic

Inspector should only be used per se in the debugger, oth-

erwise this better version should be invoked.

• Chasing browser: the basic implementation lacks visual

support to show the navigation context (“what is dis-

played in one pane?”) and to follow the flow of slid-

ing panes, failing feedback. An extended version with

smooth animation solves the problem of navigation feed-

back with the sliding panes [Plub].



• Whisker [Way]: it offered a really efficient way to display

and contextualize inside a single browser multiple code

panes, showing different methods from one or multiple

classes. Whisker is currently unmaintained.

• Starbrowser [Wuy]: it proposed an extensible browser

based on smart groups, leveraging focus for the devel-

oper.

• OmniBrowser [BDPW07]: it is an extensible framework

for browsers, which represents navigation and pluggable

components in a metagraph. However, flow of control is

often limited. It should be noted that the OmniBrowser

framework has targeted the development of such new

tools, but did not try to reinvent the browser, rather offer-

ing a new implementation of the same principles which

was easier to enhance.

• Browser Booster [Rob]: it is a package that supports

better navigation using double-click, history navigation

and the possibility to have multiple unsaved code panes

in the browser.

Other development tools, such as Shout, eCompletion, or

OCompletion, leverages the developer experience. However,

they are more concerned with the syntax and semantics of

the language and we do not discuss them. Their tight in-

tegration with the graphical tools is a key element in their

acceptance though.

4. Principles and Proposals

Principles define some general functions of the environment,

such as code navigation or system interaction. Principles

combine multiple guidelines to achieve good user experi-

ence. Each of the following subsections presents and dis-

cusses one principle, relates it to our core guidelines, and

make new proposals to embody the principle in Pharo.

4.1 Focus of Attention

Focus of Attention is the principle which should require top

priority in new development environment. The rationale for

this principle is that development is task-driven and that any

developer works on a small subset of system at one time.

Even when browsing a system, the developer has to be able

to come back to the few items which are at the center of his

interest.

Focus of attention of course directly embodied the focus

guideline but it also needs support from context, discover-

ability, and incrementality: the developer should be able to

discover related items to expand its focus if necessary. More-

over, this can be done incrementally as the developer refines

its task.

Working Set. We propose the concept of working set to

enable this principle. Any item (class, or method) deemed

of interest for the current task goes in the working set at

the request of the developer. Such pinned items stay in the

working set until intentionally removed.

The working set can be enhanced with a degree-of-

interest model to access recent items in navigation his-

tory. Indeed, items recently browsed and moreover recently

edited imply some interest of the developer. Contrary to

pinned items, they may disappear automatically when inter-

est vanishes. To keep its efficiency, the working set must stay

reasonably small and may be automatically cleaned after a

while (for example of recent history items).

Dedicated Code Browser. The code browser also needs to

be rethought around the working set to enable full focus

for the developer. We propose to evolve the current browser

design in a dedicated working set browser so that brows-

ing panes at top do not show the whole system but only

the working set. Showing the working set at any time pro-

vides better context and interaction, as one should be able

to switch between any items of interest in as few clicks as

possible.

4.2 Incremental Refinement

Incremental Refinement should enable and support the in-

cremental nature of nowadays development, especially in a

dynamic environment such as Smalltalk.

Good incremental refinement guarantees that code tools

can support, or at least not clog up, the cognitive process

of the developer. Such a process implies multiple simulta-

neous modifications when the developer needs to work out

some collaborations between items, or simply when fixing a

related item while coding a method.

We propose that code browser should support multiple

code panes in the same browser, to save space and enhance

side-by-side relations of code. It should also provide a better

support for unsaved code panes. Code panes can be left un-

saved while browsing a related item, enabling the developer

to quickly update or check its understanding of the system

while refining the code. Unsaved panes have automatically

top priority in the working set, as they point to the current

items of interest.

4.3 Context and Feedback

Context and Feedback are general concerns of any UI. It

states that the environment should provide the user with

information about its current state and location in the system

(class, method). Any reactions to user inputs must be done in

a spatially and timely fashion, i.e. the UI must be responsive

and display result where the user expect it or can take a

glimpse at it. Context also complements Focus by providing

the developer with opportunities to expand its focus.

Currently, some aspects of Pharo UI fail to provide proper

context and feedback. For example, the display system in

Pharo uses sophisticated algorithms to choose the location

for new windows, based in general on the empty space. How-

ever, such algorithms makes it hard for the user to predict

where new windows pop up and even harder to track win-

dows popping up everywhere. Other tools fail to provide the



right information or the right feedback to tell the developer

what is happening. This is for example the case of the basic

chasing browser, where it is difficult to follow the flow of

new panes and where the search panes can sometimes dis-

play heterogeneous information (such mixing method lists

and method implementors).

This matter can only be addressed by many small choices

in UI design, relevant to each tool. However, we propose to

address the lack of predictability in new windows by mak-

ing them appear with their title bar right under the mouse

pointer, so that clicking will allow to drag and drop the

window wherever the user wants it. New extension Object

Finder [Plub] remediates the problem with smooth sliding,

providing a visual clue for changing context.

4.4 Ubiquitous Interaction

Squeak and Pharo both manifest some Ubiquitous Interac-

tion capabilities with the ability to interpret any text selec-

tion in the environment as small snippets of code which can

be executed or browsed. This enables a seamless experience

between the different tools of the environment, mixing code

and objects —a feature rarely seen in other environments.

However, not all interaction modes are so seamless in

Pharo. For example, menus are the main mode of interaction

to perform a wide range of operations, such as opening

a browser, saving the image, refactoring some codes. The

classic drop-down menu is less accessible than a toolbar; it is

cumbersome for most-used items as one easily bypassed an

item in the menu list. Besides menu organization can become

messy with lots of addition if left uncontrolled.

Ubiquitous interaction should be enforced for tools as it

is for code. We also propose that multiple means of interac-

tion be included. Key bindings must be consistent across the

environment. A keyboard launcher such as Algernon [HH]

complements bindings with discoverability.

Pie Menus can replace contextual menus for most used

actions. A pie menu is usually divided into six to eight slices,

each slice launching a command. It offers discoverability as

one can easily see the available options, and consistency as

each action can be memorized to be in a particular slice,

speeding the lookup in the menu.

Hyperlink navigation also favors ubiquity as one follows

its interest by clicking the items. The idea is that each lan-

guage element in a code pane can become an hyperlink. Hy-

perlink navigation should be semi-modal, i.e. only happens

when the user presses a combination of keys. For example,

Control+click can browse implementors and definitions

while Control+Alt+click can browse senders and refer-

ences.

4.5 Focusable Navigation

Current navigation in Pharo is as powerful as it is ubiquitous.

Any text snippet anywhere can be browsed if it happens

to be a class, looked up for implementors or senders for

message. However, such search are performed system-wide,

lacking the focus the developer often needs. In a few cases,

some scoped requests are defined such as hierarchy senders

but even this request performs a system-wide search before

filtering results with the scope.

Refactoring Environment circumvents the problem by

building almost arbitrary set of classes and methods, re-

stricting search and refactoring to the selected set. However,

it lacks the ubiquity of the standard framework as it is cum-

bersome to launch from contextual menu.

Focusable Navigation mixes focus, context, and discover-

ability to allow the developer to discover new aspects of the

system yet restrict the information retrieved to only pieces

which are explicitly in the scope required by the developer.

Navigation Framework. We propose a new search/navigation

framework where any request can be expressed with the fol-

lowing principle: Look for target with aspect in scope. Three

parameters define the request:

Target the text snippet (selected item in pane, under mouse,

text selection) which the user wants to look for (for ex-

ample, a class name, a message, any string);

Aspect the kind of lookup to be performed, for example

definition of the target (class definition, method imple-

mentors) or dependencies to the target (class references,

method senders, variable accessors);

Scope scope of the lookup, restricting the search space.

This framework postulates that “looking for String defini-

tion in the system” is not conceptually different than “look-

ing for #add: senders in the package enclosing OrderedCol-

lection” or even “looking for Collection methods in hierar-

chy of Collection (including inherited methods)”. However,

the implementation of each of those request may largely dif-

fer for optimization. The purpose of the framework is to pro-

vide a uniform interface to search and navigate in the system

while providing focus.

A target is virtually any text selected by the developer and

can be a message, package name, class name, variable name,

symbol, string. . . Aspects come as a list of operators while

scopes have their own range. Aspects can be:

definition implementors, class definition,

instance variable definition

dependencies senders, references, variable accessors

readers instance variable readers

writers instance variable writers

container items (class, package) containing the target

comment method comment or class comment

message list list of messages sent in method body,

method dictionary of a class

substring in a string of method body

source part of method source



Scope ranges in decreasing order of magnitude from Sys-

tem to method scope:

system all system

working set packages enclosing items in working set

class hierarchy can be refined in all hierarchy,

only superclasses, or only subclasses

package

merged class instance-side and class-side

instance-side only instance-side

class-side only class-side

method method body

Not all combinations of target, aspect, and scope are rel-

evant. For example, looking for definition of a target which

is neither a class, a method, or an instance variable should

yield no result. Looking for writers to a target which is not

an instance variable makes no sense.

Navigation Browser. To support such a framework, the UI

must be adapted accordingly. We propose to create a new

navigation browser merging the capabilities of the system

browser and the chasing browser. Such a browser should al-

low to navigate seamlessly from packages to classes, meth-

ods, senders using toolbars to configure aspects and scopes

at each level of exploration.

The navigation browser can be integrated with the code

browser through working sets (Section 4.1). For example,

double-clicking an item in the navigation browser would add

the item to the current working set.

5. Conclusion

We have developed a set of guidelines to assess the quality

of UI and tools in Pharo. From these guidelines we devise

some principles which represent nowadays expectations for

the developer experience in Pharo. We make some proposals

to embody those principles, hoping they will spark some

discussions or even some contributions.

Two proposals seem particularly important to our eyes.

First, the capability of focusing work on a few items with

working set in the code browser. Second, the capability to

browse the code at different scope and through different as-

pects with the navigation framework. Both proposals should

help the developer to manage the ever growing complexity

of nowadays project.

References

[BDPW07] Alexandre Bergel, Stéphane Ducasse, Colin Putney,

and Roel Wuyts. Meta-driven browsers. In Ad-

vances in Smalltalk — Proceedings of 14th Interna-

tional Smalltalk Conference (ISC 2006), volume 4406

of LNCS, pages 134–156. Springer, 2007.

[HH] Joey Hagedorn and Erik Hinterbichler. Algernon.

http://www.squeaksource.com/Algernon.html.

[Plua] Frédéric Pluquet. NewInspector.

http://www.squeaksource.com/NewInspector.html.

[Plub] Frédéric Pluquet. Object Finder.

http://www.squeaksource.com/ObjectFinder.html.

[Rob] Romain Robbes. Browser Booster.

http://www.squeaksource.com/BrowserBooster.html.

[Way] Doug Way. Whisker: The O-O Stacking Browser.

http://www.mindspring.com/ dway/smalltalk/whisker.html.

[Wuy] Roel Wuyts. Star Browser.

http://wiki.squeak.org/squeak/2935.


