
HAL Id: hal-00746545
https://inria.hal.science/hal-00746545

Submitted on 29 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error-Driven Refinement of Multi-scale Gaussian Maps
Application to 3-D Multi-scale map building,

compression and merging
Manuel Yguel, Dizan Alejandro Vasquez, Olivier Aycard, Roland Y. Siegwart,

Christian Laugier

To cite this version:
Manuel Yguel, Dizan Alejandro Vasquez, Olivier Aycard, Roland Y. Siegwart, Christian Laugier.
Error-Driven Refinement of Multi-scale Gaussian Maps Application to 3-D Multi-scale map build-
ing, compression and merging. International Symposium on Robotics Research, Oct 2009, Lucerne,
Switzerland. �hal-00746545�

https://inria.hal.science/hal-00746545
https://hal.archives-ouvertes.fr


Error-Driven Refinement of Multi-scale

Gaussian Maps

Application to 3-D Multi-scale map building, compression and

merging

Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

Abstract The accuracy of Grid-based maps can be enhanced by putting a Gaussian

in every cell of the map. However, this solution works poorly for coarse discretiza-

tions in multi-scale maps. This paper proposes a method to overcome the problem

by allowing several Gaussians per cell at coarse scales. We introduce a multi-scale

approach to compute an error measure for each scale with respect to the finer one.

This measure constitutes the basis of an incremental refinement algorithm where

the error is used to select the cells in which the number of Gaussians should be in-

creased. As a result, the accuracy of the map can be selectively enhanced by making

efficient use of computational resources. Moreover, the error measure can also be

applied to compress a map by deleting the finer scale clusters when the error in the

coarse ones is low.

The approach is based on a recent clustering algorithm that models input data as

Gaussians rather than points, as is the case for conventional algorithms. In addition

to mapping, this clustering paradigm makes it possible to perform map merging and

to represent feature hierarchies under a sound theoretical framework. Our approach

has been validated with both real and simulated 3-D data.

1 INTRODUCTION

The idea of producing multi-scale grids has been present since the very first works

on grid-based representations, [1]. Coarse maps are used in path planning [2, 3] or

localization [4] algorithms in order to obtain a rough trajectory or position estimate

Yguel, Laugier

INRIA Rhône-Alpes, Grenoble e-mail: firstname.lastname@inrialpes.fr

Vasquez, Siegwart

ETHZ, Zürich e-mail: name@mavt.ethz.ch

Aycard,

UJF, Grenoble e-mail: firstname.lastname@inrialpes.fr

1

firstname.lastname@inrialpes.fr
name@mavt.ethz.ch
firstname.lastname@inrialpes.fr


2 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

Fig. 1 Top left: simulated scene. Top right: fine scale of the map. Bottom left: coarse scale of the

map, one Gaussian per cell. Bottom right: coarse scale of the refined map

at a low computational cost. Then, at a second stage, this estimate is used to initialize

the fine scale search algorithms, thus accelerating convergence. For localization,

this procedure also enlarges – in most cases – the convergence region. Examples

of algorithms that benefit from such an approach include sampling-based, gradient-

based and line-to-point or plane-to-point ICP-based algorithms.

However, as the resolution becomes coarser, the aliasing effect of the geometry of

the cells becomes more evident and it can no longer be neglected. When considering

a cell as a full block, all the information concerning the shape of the cell contents

is lost. A way to alleviate this problem is to attach some sort of statistical shape

description to every occupied cell. Two seminal works in this direction are tensor

maps [5] and the Normal Distribution Approach (NDT) [6], these approaches sig-

nificantly improve accuracy by approximating the shape of the cell contents with

ellipsoids that are encoded as symmetric semi-definite positive (SSDP) matrices.

The accuracy of these approaches, together with their relative simplicity has con-

tributed to making them very popular in the map building community [7, 4].

That being said, a single ellipsoid is still a poor representation when there are sev-

eral objects with different orientations in the cell, which is the case –for instance–

of a pole standing on the ground (see fig. 1). In this paper, we present a method to

overcome this problem by allowing a coarse resolution cell to contain multiple ellip-



Error Driven Refinement of Gaussian Maps 3

soids – more specifically, Gaussian clusters. The idea is to start with a single cluster

per cell, and then to refine it by inserting additional clusters in order to achieve a

balance between representational complexity and accuracy. In particular, from now

on, we will assume that there is a given budget of Gaussians per coarse scale that

needs to be allocated in an optimal way through a refinement process.

This paper is structured as follows: In the following section, we review related

works in robotics and computer graphics. Section 3 provides an overview of our

mapping framework. In section 4, we explain how to update a Gaussian map from a

range image and how occupancy may be used as a learning rate. Section 5 presents

our error-driven refinement algorithm for coarse scales. Section 6 discusses map-

ping results on simulated and real data sets. Finally, we present our conclusions and

outline possible directions for future work.

2 RELATED WORKS

2.1 Related mapping approaches in robotics

An interesting approach to grid refinement are multi-level surface maps (MLS) [8],

which can be considered as a refinement of an elevation map. An MLS map is a

2-D grid where, for each cell, several planes are stored at different heights, together

with the associated thickness. Their structure makes them particularly well suited to

represent traversability information, as shown by their impressive results on real data

sets. However, they share the aliasing related problems of 2-D grids particularly in

the horizontal plane. Moreover, due to their lack of merging mechanisms they often

fail to represent tall vertical structures as a single element if those structures were

partially occluded during early observations.

A different approach to cope with cell aliasing is to use a multi-scale grid map

which is refined where features are denser. Tree-based representations, such as

quadtrees and octrees [9, 10] are the most popular data structures of this kind for

two and three dimensional input spaces, respectively. Nevertheless, these structures

also suffer from the aliasing problem because of their cubic cell shape, which makes

them inappropriate to represent curves or surfaces.

Tensor voting and NDT aim at improving geometric accuracy by representing

all the points that fall into a given cell by an ellipsoid, whose orientation and shape

are such that the representation error is minimized. In both cases, the ellipsoid is

encoded as an SSDP matrix (Fig. 2).



4 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

Fig. 2 Decomposition of an SSDP matrix ellipsoid into elementary shapes called tensors in [5].

In both tensor voting and NDT, having one cluster per cell produces large ellip-

soids (called junctions in the tensor voting framework) as soon as the resolution is

too coarse and the cell encompasses several distinct objects or the object geometry

is not linear. This problem has been addressed in the original NDT paper [6] by

storing four overlapping maps shifted by half a cell. However this approach is ex-

pensive in terms of the number of Gaussians added and the advantages are unclear

when compared to a map with twice the resolution.

2.2 Related approaches in computer graphics

In the computer graphics community the problem of 3-D model simplification has

received a lot of attention. The objective in this case is to obtain simpler models to

streamline manipulation and speed up rendering when high accuracy is not required

– e.g. when objects are far from the virtual camera or moving rapidly. This is deeply

related to refinement as it is, essentially, the inverse problem.

The seminal work in this field is the paper of Garland et al. [11] where edge

contraction is performed on the mesh edges that introduce the smallest amount of

quadric error in the model. As indicated by its name, this metric is defined by cal-

culating a special type of quadric on the vertices, described by SSPD matrices. The

simplification algorithm uses a priority queue. At every iteration, the edge having

the lowest error is contracted, the error of all the affected edges is recomputed and

they are reinserted in the queue. The process continues until the target budget of

edges is reached.

A second class of effective simplification approaches is based on clustering. They

can operate either on meshes or on point clouds. Probably the most relevant example

of mesh clustering is [12] where clustering is performed on the triangles of the mesh

to be simplified. An essential component of this approach is a shape metric that

makes it possible to assign each triangle to its closest cluster and to compute the

parameters of the cluster. Cohen and Steiner [12] consider two metrics: Garland’s

quadric error metric [11] and the Euclidean distance between the normals of the

triangles and their cluster normals.

In [13], Pauly et al. have studied the simplification of point clouds of the same

kind than those obtained with a laser range finder. They describe several agglomer-

ative and partitional approaches, applying techniques proposed in [11].



Error Driven Refinement of Gaussian Maps 5

Our approach is largely inspired by the work of Cohen and Steiner [12] and by the

partitional algorithm of Pauly [13]. The main difference lies in the fact that we do not

restrict our main representation to surfaces, because at coarse scales many impor-

tant features such as poles, trees trunks and towers may appear as one-dimensional

curves rather than surfaces.

3 APPROACH OVERVIEW

Our approach processes every scale in parallel, adjusting the field of view of finer

scales in order to have a similar number of cells to update for each scale. As shown

in Fig. 3, the approach is composed of three main components:

.

Fig. 3 Framework components. Light gray boxes are processed less than once per range image.

1. Occupancy computation: the occupancy is a measure of how often a particular

cluster has been observed. In our framework is has two uses. First, it determines

the plasticity of a cluster, allowing it to adapt faster in regions that have not

been observed often. Second, it is used as a criterion to delete clusters, making it

possible to remove dynamic objects from the map.

2. Map updating: it adapts existing clusters in order to minimize the representation

error. It is similar to the standard update of conventional Gaussian maps, except

that it takes into account the fact that a cell may contain several Gaussians.

3. Map refinement: this step is our main contribution, at every refinement step new

Gaussian clusters are added to the cells where the representation error is maxi-

mum. It is worth noting that no refinement is performed on the finest scale.

4 MAP UPDATING

This section presents the procedure to update an existing map from sensor data. At

this point, we assume that the number k of Gaussian clusters per cell is known. The

actual estimation of k is handled by the refinement algorithm that we will discuss in

§ 5.



6 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

Our goal here is to update the Gaussians’ mean value µ and covariance Σ in order

to minimize the representation error with respect to the input data. Every point in

the range image is used to incrementally update the different scales independently.

As we will explain in § 4.3, the basic idea is to find the cell where the input point

falls and then updating the cluster in that cell that is ”closest” to the input point.

As in most incremental approaches, an important question is how much to adapt

the clusters – i.e. finding the ’right’ learning rate. In the following subsection we

describe the use of the cluster’s occupancy to control the adaptation. It can be in-

tiuitively explained as follows: the more a cluster has been observed, the more is

known about it and the less reasonable it is to modify it. As we will see in § 5,

occupancy is also used as a criterion to filter out dynamic objects from the map.

4.1 Computing cluster occupancy

Occupancy can be seen as a counter associated to every object. Its value gets in-

creased when the object is visible in the range image, and decreased when the object

is supposed to be visible but is in fact not. Fig. 4 illustrates the idea: if point C, is

visible – i.e. the dashed red line is free from obstacles between I and C – then the

value of the range image at cell I will correspond to the distance rC. If, on the other

hand, the value of cell I is greater than rC, this can be considered as evidence that C

is not there anymore and its occupancy should be decreased.

For visible cells, we compute occupancy in a per point basis. The occupancy of

a point, C, in the map is given by comparing the range measured in the pixel of

its projection, I, in the range image with its actual range, δ . For a Gaussian, the

occupancy is obtained by averaging the occupancy of n points sampled from the

Gaussian distribution (rejecting those that fall outside the cell).

We only need to guarantee that there are enough samples to provide a good esti-

mate. To define n, we compute an upper bound of the number of points in the range

image that can be contained in the cell. This is done using the projected bounding

sphere of the cell. Let δmin and δ be the distance to the image plane in the camera

coordinate system and the distance to the center of c (fig. 4), respectively. Then the

projection of the bounding sphere of c occupies an area of 3π
4

Ä

δmin
δ

a
ä2

(orange disc

in Fig. 4), where a is the length of the side of c. Knowing the area of one pixel of

the range image p, an upper bound for the number of pixels that may be projected

back into the original cluster is:

B , ⌈
3π

4p

Å

δmin

δ
a

ã2

⌉ (1)

which is the number of samples we are looking for. So, making n = B gives us a good

chance to cover every range image cell that effectively contains an observation from

the cluster.



Error Driven Refinement of Gaussian Maps 7

Fig. 4 Computation of occupancy in the range image of the bounding sphere of a cell.

4.2 Hierarchical culling

In order to minimize computation, we perform hierarchical visibility culling. Con-

sider the cell c centered in C in (fig. 4). If the projection of the bounding sphere of c

is outside the range image (camera field of view, blue lines in fig. 4), the finer chil-

dren cells of c are not further explored. The search is also finished if all the ranges

observed in the disc of the projected bounding sphere (orange disc in the image

plane) are smaller than the smallest possible range for the cell, meaning that all the

cell content is occluded by closer objects.

4.3 Updating Gaussian clusters from data

For every input point, a single cluster per scale will be updated. The cluster is se-

lected by finding the cell that contains the input point and then finding the cluster

having the minimum distance to that point.

Once the cluster has been selected, its parameters are updated by means of a

stochastic gradient descent algorithm. The principle is to update the reference vector

by a fraction of the negative gradient with respect to each input datum. As more

and more samples are processed, the magnitude of the adaptation should decrease

(typically faster than 1/n) to ensure convergence. A good example is the on-line

computation of the sample mean:

µn = µn−1 + 1
n
(zn−µn−1)

where n represents the name of samples processed so far, and zn − µn−1 can be

understood as the negative gradient, and 1
n

the fraction of the gradient to be taken

into account. This decreasing weight is called the learning rate and is noted ε . In

our approach, the value of ε depends on the occupancy, as described in § 4.4.

In the case of points, a distance metric between a point and a Gaussian should be

used. We have chosen to use the probability measure given by (2):



8 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

d(p,w) ,
1

2

î

(p−µw)T Σw
−1(p−µw)+ log(det(Σw))

ó

, (2)

This distance is the addition of the Mahalanobis distance and a volume term. Com-

pared to the pure Mahalanobis distance, the volume term aims at compensating the

fact that the Mahalanobis distance of a big cluster tends to make every point very

close. This measure has the advantage of yielding simple map update rules, since its

derivative is:

∂ d(p,w)

∂ µw

=−Σw
−1(p−µw) (3)

and

∂ d(p,w)

∂ Σw

∝−
[

(p−µw)(p−µw)T −Σw

]

, (4)

giving the following gradient descent algorithm for point-based update:

Algorithm 1 Map update with points: pointUpdate

{w1, . . . ,wk}← the k Gaussian reference vectors of the cell

2: {ε j|i = 1, . . . ,k}← the associated learning rates

z = p← the observed point

4: n← argmini=1,...,k d(z,wi)
µwn

← µwn
+ εn(p−µwn

)

6: Σwn ←Σwn + εn

[

(p−µwn
)T (p−µwn

)−Σwn

]

4.4 Learning rate

Our idea is to define the learning rate from the occupancy: the higher the occupancy

of a cluster, the better the accuracy of its position and shape is supposed to be;

thus, a small value of ε should be used. If, on the other hand, the occupancy is low,

the current estimated state of the reference vector can be assumed to be based on

insufficient statistics and the learning rate should be high to permit the reference

vector to adapt itself.

In log-ratio the occupancy typically is bounded in [−omax,omax] and the learning

rate varies within [εmin,εmax]. For our approach we have chosen a linear mapping

between both values:



Error Driven Refinement of Gaussian Maps 9

ε(o) =
εmin− εmax

2omax
(o+omax)+ εmax (5)

In our experiments, we have set omax = 10.0, εmax = 5 ·10−2 and εmin = 5 ·10−4.

5 ERROR-DRIVEN REFINEMENT OF COARSE SCALES

The refinement process is driven by a measure of the representation error. The map

is refined by inserting a new cluster in the cell that has the maximum error. After

every insertion, the shape of the other clusters in the same cell should be modified

accordingly; this is done by running a clustering algorithm using the cells of the

finer scale as input.

We periodically refine the map by adding a fixed number p of Gaussian clusters at

a time. In order to choose the p vectors that have the maximum error without sorting

the whole set of reference vectors, we use a priority queue of size p as was done in

[11]. The following subsections provide the details of the refinement algorithm: the

error metric used to build the queue is introduced in § 5.1 and § 5.2 presents the

clustering algorithm.

During the mapping process it is often necessary to delete clusters that corre-

spond to moving obstacles; this process is described in § 5.3. Finally, the application

of our approach to map merging and simplification is discussed in § 5.4.

5.1 Error computation

We aim at adding clusters only in those regions where the Gaussian shapes have

already converged to their final shapes, which can be deduced from its occupancy.

Accordingly, we choose to refine a cell c only if the average occupancy probability

of the finer cells in φ(c) is above 0.5. Furthermore, we only refine those parts of the

map that are visible for the sensor.

To find the cell to refine, we compute an error value per cell. This value is basi-

cally the sum of the Mahalanobis distance between the center of the coarse cluster

and the Gaussian cluster of the finer scale.

For the cells cs of the coarse scale, s, having reference vectors (i.e. mean val-

ues) {w1, . . . ,wk} and finer data at s− 1: {z1, . . . ,zN} ∈ G(φ(cs)), we compute the

average distance of each datum to its closest reference vector:

E (cs) =
1

N

k
∑

i=1

N
∑

j=1

(1− εz j
)δ (wi,z j) (µwi

−µz j
)T Σ−1

z j
(µwi

−µz j
) , (6)



10 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

← 81870

← 496363

← 1137630

← 1634160

← 5231

← 31736

← 79464

← 101959

Fig. 5 Up: fine scale is colored with the magnitude of the contribution to the error at the coarser

scale. Down: coarse scale, mean error. Error palettes are on the right.

where δ (wi,z j) is one if wi is the closest reference vector to z j using the Maha-

lanobis distance defined by z j and zero otherwise. The occupancy is used through

the learning rate to assign higher error weights to occupied clusters, disregarding

those whose occupancy is low and, in consequence, whose accuracy may still im-

prove without the need of adding extra clusters.

5.2 Clustering for map refinement

Algorithm 2 describes our clustering approach for map refinement. This method

solves a hard clustering problem: we are looking for a partition C∗ = {C∗1 , . . . ,C∗k}
of the G(φ(cs)) into k classes represented by k reference vectors that minimizes the

clustering distortion:

E(C∗,{w∗
1
,...,w∗

k
}) = argmin

{C1,...,Ck},{w1,...,wk}

k
∑

i=1

ECi
(wi) (7)

This is done by using the well known k-means clustering algorithm [14].The

optimal clusters are computed iteratively from the set of reference vectors : each

datum is associated to its closest reference vector; then, the minimizer of each clus-

ter energy is computed. In the basic Lloyd algorithm, both input data and reference



Error Driven Refinement of Gaussian Maps 11

vectors are simply points in feature space (3-D space in our case) Z = F = R
3 and

the distance function, dZ ×F(z,w) = ‖wi− z‖2 is the square Euclidean distance.

Algorithm 2 Map refinement using hard clustering

Z = {z j| j = 1, . . . ,N}← the N Gaussians of the fine scale s

2: A = {α j| j = 1, . . . ,N}← the non negative weights of the fine Gaussians

W = {w0
1, . . . ,w

0
k
}[k−1]← the k−1 Gaussians of the coarse scale s+1

4: dZ ×F(·, ·)← the distance function

W 0←{w0
1, . . . ,w

0
k
}[k−1]

⋃

{z0
max} // Init. with the data of maximum distortion

6: {(C0
i ,w0

i )|i = 1, . . . ,k}, EW 0 ← kMeans(Z,A,W 0,dZ ×F) // clustering partition and distortion

// Simulate a swap

repeat

8: for all Ct
i do

zmax(i)← argmaxz j∈Ct
i
dZ ×F(z j,wi)

10: di← dZ ×F(zmax(i),wi)
end for

12: cmax← argmaxi=1,...,k di

dmax← dcmax

14: (umin,vmin)← argmin(u,v), u 6=v dZ ×F(wu,wv)

dmin← dZ ×F(wumin
,wvmin

)

16: if dmax < dmin then

cmin← the cluster, Ct
umin

or Ct
vmin

, with the smallest number of elements.

18: W t+1← (W t \{wcmin
})

⋃

{zmax(cmax)}
else

20: c←∼U ([[1;k]]\{cmax})// Draw a random candidate

W t+1← (W t \{wc})
⋃

{zmax(cmax)}
22: end if

{(Ct+1
i ,wt+1

i )|i = 1, . . . ,k}, EW t+1 ← kMeans(Z,A,W t+1,dZ ×F)

24: t← t +1

until EW t > EW t−1 // Accept the swap if the clustering distortion decreases

26: return {(Ct−1
i ,wt−1

i )|i = 1, . . . ,k}, EW t−1

An important drawback of k-means is that is highly dependent on initialization.

Moreover, even if the algorithm is guaranteed to converge, it often gets stuck in

local minima of EW ∗ . To get out of the local minima a so called “swap” procedure

is used (line 7 to 25, alg. 2). One cluster is chosen, either randomly or because

of its short distance to a different cluster with more elements. Then, a simulation

is done by reallocating that reference vector to the region of space with maximum

error. If the resulting partition has a lower clustering distortion, the result is accepted

and a new simulation is done. Otherwise, the result is rejected and the procedure

stops. A reference vector metric is used to evaluate the similarity between clusters:



12 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

dF : (F×F)→ R
+. If Z = F it is possible to use dF = dZ ×F, to compute both the

distance between clusters and the distortion between a datum and its corresponding

cluster (line 16, alg. 2).

It is worth noting that this clustering framework naturally defines a hierarchy: a

cluster is the parent of all the clusters of the finer scale that are closer to it than to

any other cluster (see fig. 6).

5.2.1 K-Means extension for Gaussian inputs

In order for the covariance matrices of the clusters at the coarse scale to be as accu-

rate as possible, we need to use the information provided by the covariance matrices

at the finer scale. Therefore, we need a clustering algorithm that is able to properly

handle Gaussian input data Z = F = G 3 , {(µ,Σ)|µ ∈R
3 and Σ is SDP} 1. Davis

[15] has proposed such an algorithm, proving that it converges. The algorithm uses

the Kullback-Leibler divergence (Eq. 8) as a distance function dZ ×F for Gaussians:

DKL(z‖w) =
1

2

ï

(µz−µw)T Σ−1
w (µz−µw)+ log

Å

detΣw

detΣz

ã

+Tr
Ä

ΣzΣ
−1
w

ä

−d

ò

(8)

where d is the dimension. The metric is composed of three terms corresponding to

the Mahalanobis distance, the volume and the orientation, respectively.

The use of this metric in clustering means that the decision of grouping fine scale

clusters together does not only depend on their positions, but also on their sizes and

orientations. This property is particularly important for mapping, since it will tend to

preserve sharp features such as corners and edges because the distance between the

linear components of such features will increase with the angle difference between

them.

As explained in [15] the computation of the optimal reference vectors from a set

of Gaussians {z j = (µz j
,Σz j

)| j = 1, . . .} weighted by positive reals (αz j
), is done in

two steps:

First the optimal mean is computed using (9):

µ∗ =
1

∑

j αz j

∑

j

αz j
µzj

, (9)

then the covariance matrix is given by (10):

Σ∗ =





1
∑

j αz j

∑

j

αz j
(Σzj

+ µzj

T µzj
)



− (µ∗)T µ∗ . (10)

1 SDP matrices are a subset of SSDP matrices, meaning that analysis tools such as those proposed

for NDT [6], tensor voting [5] and quadric error [11] approaches, may be applied to them.



Error Driven Refinement of Gaussian Maps 13

It is interesting to remark that, if the weights are defined as the number of samples

used to compute the Gaussians at the fine scales, then the optimal Gaussian is given

by the sample mean and covariance of the fine samples that compose the cluster.

5.3 Cluster deletion

In order to account for dynamic objects that have been detected once and that are

not there anymore, we delete those clusters whose occupation has fallen below a

given threshold. As for cluster insertion, the remaining Gaussians are adjusted by

running the clustering algorithm. It should be stressed that, for the sake of consis-

tency, cluster deletion at a given scale should only happen when no corresponding

clusters exist at the finer scales.

5.4 Map merging and simplification

Now, we explain how to merge two maps whose cells contain multiple Gaussian

clusters. This is a form of map simplification since the goal is to delete redundant

cluster centers after the union of maps.

Merging is performed through straightforward application of the clustering algo-

rithm to every cell that appears as occupied in both maps. In order to fix the number

of clusters for a given cell, we select the maximum number in the two maps. This,

of course, can be later refined as described above. Thus, the main problem is the

initialization of the clustering algorithm.

The idea is to take all the clusters of both maps, then to compute the inter-cluster

divergences as in line 14 of Alg. 2. From there, the algorithm proceeds by replacing

by a single cluster, the pair of clusters that are separated by the smallest distance, and

then starting over until the target number of clusters is reached. This is done using

equations 9 and 10. The procedure is very efficient because no access to the finer

scales is required. After finishing the merging step, a run of the clustering algorithm

is executed to smooth out the result.

It is worth noting that the same process can be used to simplify the map when a

reduction in the number of clusters is required.

6 RESULTS

We use the Hausdorff distance to evaluate the results. This metric may be seen as

the worst-case distance. For two sets of points, it is obtained by computing, for ev-

ery point in one set, the distance to closest point in the other set, and then taking

the maximum of these distances. In our case, we compute this distance by sampling



14 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

Fig. 6 Cluster hierarchy. Up: coarse clusters are translated for better display.

Gaussians and rejecting points that fall outside the cells. The samples are directly

measured against point clouds in the case of real data. In the case of simulated data,

the ground truth is available in the form of the original mesh; the corresponding

points are obtained by representing each triangle with a number of samples. In all

cases, the number of samples is proportional to the size of the object being consid-

ered: the volume of the ellipsoids in the case of Gaussians and the area in the case

of triangles.

Fig. 7 Real 2-D dataset from [16]. The coarsest (blue ellipsoids) and finest (red ellipsoids) maps

are displayed. Black squares represent the coarse cells. All ellipsoids correspond to the covariance

matrices plotted with three times the square of the eigenvalues.

For each data set we use 3 scales; at each scale the cell side is ten times larger

than the finer one. For the 2-D data set (fig. 7) the finest side is 5 cm and for the

3-D data set the finest side is 10 cm. Regarding the algorithm approach modules

(Fig. 3) we set the occupancy computation to take place at acquisition rate for two

dimensional data and every three acquisitions for the three dimensional case. As for



Error Driven Refinement of Gaussian Maps 15

refinement, the algorithm has been configured to insert 4 clusters of the remaining

Gaussian budget, every 10 acquisitions.

The results we have obtained on real and simulated data sets exhibit similar ad-

vantages and drawbacks:

• Advantages:

– Accuracy vs map size: the method is able to significantly improve accuracy

with a relatively small increase in the size of the model. In our experiments

increasing the number of clusters by four leads to a factor of three reduction

of the Hausdorff distance.

– Multi-scale error reduction: the huge size reduction ratio (104 to 1 in 2-D

and 108 to 1 in 3-D) between the finest and the coarsest scales is kept by

the refinement process, while considerably improving accuracy. For instance,

when refining the coarsest map in the 3-D data set, we increase the number of

clusters from 53 to 181 and reduce the error by 3. Note that large flat clusters

remain (in particular on the ground and on the walls ) while a lot of detail

clusters are added at poles and corners (fig. 1). This could not have been done

by simply adding an intermediate scale.

• Drawbacks: the main problem we have detected is that, sometimes, the Hausdorff

distance does not have a significant decrease when a cluster is added. We believe

that there are two reasons for this: first, an aliasing phenomenon that arises from

the fact that the underlying cells force the algorithm to artificially cut a big object

in pieces, some of which can be very small with respect to other Gaussians in the

same cell, leading to big error contributions because of the small size of the

covariance. The second reason is that, when the ’right’ number of clusters is not

yet reached, the resulting Gaussian may represent two separate clusters, yielding

a smaller but still important value for the Hausdorff distance.

7 Conclusions and Future Work

In this paper we have proposed a comprehensive framework to build two and three-

dimensional maps from range data. The proposed representation enhances the accu-

racy of previous approaches by enabling the presence of several Gaussians per cell.

These Gaussians are added by means of a refinement algorithm which inserts them

where the representation error is maximum. The algorithm makes use of a recent

Gaussian clustering approach that uses the Kullback-Leibler divergence as a dis-

tance function, thanks to this, our algorithm is able to preserve important features of

the environment (e.g. corners) that are usually smoothed out by other approaches.

The framework provides a theoretically sound foundation for map merging. In order

to deal with moving objects and noise, our approach makes use of occupancy to de-

termine when to delete parts of the map that have become empty, as well as to adjust

the plasticity of the map. Experiments with real and simulated data show that, for



16 Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier

coarse scales, significant accuracy gains may be obtaining by a small augmentation

in the number of clusters. Moreover, when compared with existing approaches, the

additional computational cost that is required to insert these clusters is marginal.

Further work includes working towards real time mapping of huge streams of

3-D points by exploiting parallelization and hierarchical multi-scale update. Middle

term research will be directed to exploring the application of our approach to higher

dimensional spaces that include point properties such as color.

References

1. Alberto Elfes. Occupancy grids: a probabilistic framework for robot perception and naviga-

tion. PhD thesis, Carnegie Mellon University, 1989. 1
2. Alex Yahja, Anthony (Tony) Stentz, Sanjiv Singh, and Barry Brummit. Framed-quadtree path

planning for mobile robots operating in sparse environments. In IEEE Conference on Robotics

and Automation, Leuven, Belgium, May 1998. 1
3. D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion planning. In IEEE Trans-

actions on Robotics and Automation, volume 1, pages 19–33, February 1998. 1
4. Nora Ripperda and Claus Brenner. Marker-free registration of terrestrial laser scans using the

normal distribution transform. Technical report, Institute of Cartography and Geoinformatics,

University of Hannover, Germany, 2005. 1, 2
5. Gérard Medioni, Mi-Suen Lee, and Chi-Keung Tang. A Computational Framework for Seg-

mentation and Grouping. Elsevier Science Inc., New York, NY, USA, 2000. 2, 4, 12
6. Peter Biber and Wolfgang Straßer. The normal distributions transform: A new approach to

laser scan matching. In IEEE/RJS International Conference on Intelligent Robots and Systems,

2003. 2, 4, 12
7. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam with

rao-blackwellized particle filters by adaptive proposals and selective resampling. In Proc. of

the IEEE International Conference on Robotics and Automation, pages 2443–2448, 2005. 2
8. Rüdolf Triebel, Patrick Pfaff, and Wolfram Burgard. Multi-level surface maps for outdoor

terrain mapping and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), Beijing, China, 2006. 3
9. Pierre Payeur, Patrick Hébert, Denis Laurendeau, and Clément Gosselin. Probabilistic oc-

tree modeling of a 3-d dynamic environment. In Proc. IEEE ICRA 97, pages 1289–1296,

Albuquerque, NM, Apr. 20-25 1997. 3
10. M. Yguel, C. Tay Meng Keat, C. Braillon, C. Laugier, and O. Aycard. Dense mapping for

range sensors: Efficient algorithms and sparse representations. In Proceedings of Robotics:

Science and Systems, Atlanta, GA, USA, June 2007. 3
11. Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.

Computer Graphics, 31(Annual Conference Series):209–216, 1997. 4, 9, 12
12. David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation.

In ACM SIGGRAPH 2004 Papers, pages 905–914, 2004. 4, 5
13. Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification of point-sampled

surfaces. In VIS ’02: Proceedings of the conference on Visualization ’02, pages 163–170,

Washington, DC, USA, 2002. IEEE Computer Society. 4, 5
14. S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,

28(2):129–137, Mar 1982. 10
15. Jason V. Davis and Inderjit Dhillon. Differential entropic clustering of multivariate gaussians.

In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing

Systems 19, pages 337–344. MIT Press, Cambridge, MA, 2007. 12
16. Cyrill Stachniss. Corrected robotic log-files. http://www.informatik.uni-freiburg.de/ stach-

nis/datasets.html. 14


	Error-Driven Refinement of Multi-scale Gaussian Maps Application to 3-D Multi-scale map building, compression and merging
	Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart, Christian Laugier
	INTRODUCTION
	RELATED WORKS
	Related mapping approaches in robotics
	Related approaches in computer graphics

	APPROACH OVERVIEW
	MAP UPDATING
	Computing cluster occupancy
	Hierarchical culling
	Updating Gaussian clusters from data
	Learning rate

	ERROR-DRIVEN REFINEMENT OF COARSE SCALES
	Error computation
	Clustering for map refinement
	Cluster deletion
	Map merging and simplification

	RESULTS
	Conclusions and Future Work
	References



