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RESEARCH ARTICLE Open Access

Bacterial syntenies: an exact approach with gene
quorum
Yves-Pol Deniélou1*, Marie-France Sagot1,2, Frédéric Boyer3 and Alain Viari1*

Abstract

Background: The automatic identification of syntenies across multiple species is a key step in comparative
genomics that helps biologists shed light both on evolutionary and functional problems.

Results: In this paper, we present a versatile tool to extract all syntenies from multiple bacterial species based on a
clear-cut and very flexible definition of the synteny blocks that allows for gene quorum, partial gene
correspondence, gaps, and a partial or total conservation of the gene order.

Conclusions: We apply this tool to two different kinds of studies. The first one is a search for functional gene
associations. In this context, we compare our tool to a widely used heuristic - I-ADHORE - and show that at least up
to ten genomes, the problem remains tractable with our exact definition and algorithm. The second application is
linked to evolutionary studies: we verify in a multiple alignment setting that pairs of orthologs in synteny are more
conserved than pairs outside, thus extending a previous pairwise study. We then show that this observation is in fact
a function of the size of the synteny: the larger the block of synteny is, the more conserved the genes are.

Background
The increasing number of fully sequenced microbial gen-
omes (more than 1200 genomes are now completed and
available) is fuelling our knowledge on the architecture
and dynamics of these bacterial genomes [1]. In this con-
text, the identification of conserved genomic regions
across several species is of prime importance. These con-
served blocks of genes are referred to in the literature as
(micro-)syntenies, (conserved) synteny blocks, (conserved)
gene clusters, or gene teams. From an evolutionary stand-
point, they are important for understanding how, as spe-
cies diverge, their gene order is progressively shuffled
[2,3]. From a more practical genome annotation perspec-
tive, it is also important to identify which regions are
resisting this continuous shuffling because these regions
are likely to be subjected to stronger functional con-
straints. In prokaryotic genomes these constraints are of
course related to the operon structure. Operons, although
subjected as well to gene shuffling [4] appear to be more
robust, especially in the case of physically interacting gene
products [5].

In recent years, various computational methods have
been proposed to identify syntenies by comparison of
two or more genomes. In the following, we shall focus on
methods working at the gene level, i.e. excluding
approaches based on other genetic markers. Even with
this restriction, the approaches vary greatly from one
study to the other. However, they could be roughly classi-
fied into several categories according to their ultimate
goal, the algorithmic technique used to solve the problem
and the type of constraints they can handle. Among these
constraints, the most discriminant ones are i) whether
the gene-to-gene (homology) relationship is one-to-one,
many-to-many or is an equivalence relation; ii) whether
the model accounts for inversions or iii) insertion/dele-
tion events (duplication events are already covered by cri-
terion i), iv) whether the approach is pairwise or is
applicable to multiple genomes. Table 1 summarises
some important cases found in the literature that can be
classified in three main categories.
The first category contains methods that aim at recon-

structing evolutionary scenarios using sorting by reversal
to recover the minimal number of permutations needed
to transform one genome (modelled as a signed or
unsigned permutation of integers) into the other. In such
approaches, of which the two main ones are GRIMM [6]
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and CINTENY[7], the identification of blocks of synte-
nies is, in some way, a by-product of the algorithm, not
its main goal. Some authors also formalise the problem
of genome alignment as an exact search for common
intervals between permutations. The first article using
this formalism was Uno et al. [8]. Two important exten-
sions were proposed later on, an extension to multiple
alignment by Hebert and Stoye [9] and another extension
to a many-to-many relation by Didier et al. [10].
A second, different, formalism used by several authors is

well illustrated by the concept of GENETEAMS[11], pro-
posed originally by Bergeron et al. This defines syntenies as
sets of genes such that on each genome no pair of genes
from the team are separated by more than delta genes, the
main limitation being that, in the original formulation, the
homology relation is supposed to be one-to-one.
This idea was developed in several papers, He and Gold-

wasser [12] proposed the notion of HOMOLOGYTEAMS,
which allows duplications on a genome; Pasek et al. [13]
chose to cut the genes into protein domains to force an
equivalence relation. Some other extensions of the model
were suggested by Kim et al. (relaxing the proximity con-
straint on several genomes [14]), and Ling et al. (allowing
for overlapping units, for example sequence anchors:
[15,16]). More generally these approaches consider the

question of finding syntenies as a problem of combinator-
ial optimisation and often rely on graph theory both to
formalise and to solve it. The main difficulty is to limit the
combinatorial explosion when the gene-to-gene relation-
ship is not one-to-one. The common components
approach proposed by Boyer et al. [17] in a more general
biological context belongs to the same family. The
approach developed in this paper is an extension of this
latter method and will therefore be detailed later on.
In a third category of methods, the problem of genome

alignment is treated in a similar way as what is done more
classically for pairwise or multiple sequence alignments
and relies on a dynamic programming approach to solve
it. Three typical examples of such an approach are FISH
[18], DAGCHAINER[19] and COLINEARSCAN[20]. The
two strong advantages brought by these approaches are i)
they do not require an explicit gene-to-gene relationship
and can cope with an arbitrary similarity (i.e. substitution)
score between genes; ii) as score-based techniques they are
more amenable to a statistical evaluation of the signifi-
cance of the predicted regions. On the other hand, the
most important difficulty is to handle inversions in the
dynamic programming framework.
Of course, this classification is not perfect and several

hybrid methods have already been proposed that belong

Table 1 Whole genomes alignement methods in the literature

edition operations

Name nb genomes correspondence INV/TRANS DUPL DEL algorithm reference

GRIMM pairwise one-to-one yes yes yes minimise evolutionary distance [6]

CINTENY pairwise many-to-many yes yes yes minimise evolutionary distance [7]

UNOAND TAGIURA pairwise one-to-one yes no no find common intervals [8]

HEBERAND STOYE multiple one-to-one yes no no find common intervals [9]

DIDIER pairwise many-to-many yes yes no find common intervals [10]

GENE TEAMS multiple equivalence yes no yes divide and conquer [11]

HOMOLOGY TEAMS pairwise equivalence yes yes yes divide and conquer [12]

DOMAIN TEAMS multiple equivalence yes yes yes divide and conquer [13]

MCGS multiple equivalence yes yes yes divide and conquer [14]

MCPAGE pairwise equivalence yes yes yes divide and conquer [15]

MCMUSEC multiple equivalence yes yes yes divide and conquer [16]

C3PART multiple many-to-many yes yes yes partition the NAM [17]

FISH pairwise many-to-many local no yes dynamic programming [18]

DAGCHAINER pairwise many-to-many no no yes dynamic programming [19]

COLINEARSCAN pairwise many-to-many no no yes dynamic programming [20]

SYNTENATOR multiple many-to-many no yes yes dynamic programming on POG [21]

CYNTENATOR multiple many-to-many no yes yes same + phylogeny [22]

ADHORE pairwise many-to-many no tandem yes clustering [30]

I-ADHORE multiple many-to-many no tandem yes greedy heuristic [26]

Principal approaches for whole genomes alignment and the search for syntenies. Note that the real goal of GRIMM and CINTENY is to reconstruct evolutionary
scenarios, the extraction of syntenies is only a by-product of those algorithms. Note also that DOMAIN TEAMS uses a protein domain granularity, whereas all
other methods operate at the gene level. Among the multiple comparison tools, MCGS (and its extension MCMUSEC), SYNTENATOR (and its extension
CYNTENATOR) and I-ADHORE can handle (directly or indirectly) a gene quorum.
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to several classes. For instance, SYNTENATOR[21] (and
its most recent version CYNTENATOR[22]) uses both
dynamic programming and a partial order graph repre-
sentation to detect conserved gene orders in multiple
genomes.
In this paper, we introduce an extension of the general

graph alignment algorithm presented in [17] and [23]
successively. In [17] we introduced the idea of a merged
representation of a graph alignment as a multigraph
(termed Network Alignment Multigraph (NAM)). This
corresponds to an idea that was previously more infor-
mally stated in [24] and was also developed in [25]. The
definition of blocks of synteny (allowing for gene gaps
and permutations) then follows from simple properties
of this multigraph. This first approach however suffered
from two limitations: i) it required the explicit construc-
tion of the NAM, therefore facing the problem of com-
binatorial explosion in case of multiple genomes or of a
very degenerated gene-to-gene relationship and ii) it
assumed that genes are in correspondence when they
form a clique (i.e. are all pairwise related). In [23] we
proposed, in the context of protein-protein-interaction
(PPI) networks, to address the first issue by a more care-
ful exploration of the search space, using a depth-first
search and “on-the-fly” construction of the NAM. We
also introduced alternative ways of grouping genes such
as stars or, simply, as connected components instead of
as complete cliques. In this paper, we increase the flex-
ibility even more by introducing a quorum i.e., when
dealing with multiple (n >2) genomes, we do not require
genes to be present on all but only on at least q (≤ n) of
them. Notice that the algorithm presented in [23] is not
restricted to genomes but applies to any kind of graphs.
Our extension will apply as well in the general case. In
this paper, we shall therefore keep all definitions as gen-
eral as possible but restrict the illustrations and inter-
pretations to the case of linear graphs representing
genomes.
This paper is organised as follows. First, we describe

the approach, starting with an informal presentation
before going through the definitions, stating precisely
what objects we are going to look for, and then what
algorithm we are going to use. In the next section, we
describe our results, a comparison to an existing method
called I-ADHORE[26], and an illustration of the interest
of the approach for studies on bacterial evolution.

Description of the approach
Informal presentation of the approach
In this section, we first give a brief summary of the
approach without quorum, then explain informally how
to introduce it.
Given n chromosomes represented as interval graphs

(i.e. vertices are genes and two genes are connected

when they are adjacent on the chromosome, or, more
generally, when there are less than δgap intervening
genes between them), the first step is to define a pair-
wise correspondence relation (noted S) between genes
from different chromosomes. Ideally S could be homol-
ogy (i.e. having a common ancestor) or isofunctionality
(i.e. having the same function). In practice, both are tra-
ditionally approximated by sequence similarity, for
instance by thresholding a BLASTP score or using more
sophisticated orthologs detection techniques [27,28].
Note that, by contrast to homology and isofunctionality
that are both transitive, thresholded sequence similarity
and orthology are not necessarily transitive relations.
With this pairwise gene-to-gene correspondence at

hand, the next step is to extend it to a multiple (n-way)
correspondence. This is done by specifying a topology
constraint on S. The strongest constraint is that genes
connected by S form a clique [17] and the loosest con-
straint is that they merely form a connected component.
Intermediate constraints, such as quasi-cliques are also
possible [23]. Whatever the choice of this constraint, we
end up with n-tuples of genes representing the n-way
gene correspondence between the n genomes.
These n-tuples - also called “spines” [25] - constitute

the vertices of a graph representation called Network
Alignment Multigraph (NAM). These vertices are con-
nected by n sets of edges - also called “colours” - corre-
sponding each to the connectivity in a primary interval
graph. Figure 1 gives an example of a NAM for three gen-
omes where the spines are defined as cliques of the cor-
respondence relation S.
In this NAM, we then simply define blocks of synte-

nies -called syntons- as the maximal subgraphs that are
connected on each of the n colours.
This definition of syntenies matches the intuition that

they are made of corresponding neighbourhoods: the
selection of spines ensures the gene-to-gene correspon-
dence, and the connectivity condition on each colour
ensures that on every genome a synton involves connected
genes. Also notice that this definition allows for any per-
mutation in the gene order along the chromosomes.
An important property that follows from this defini-

tion is that syntons form a partition of the vertices of
the NAM. This means that efficient partitioning algo-
rithms can be put into play, provided that the NAM has
been already built.
But therein lies the rub: in the general case, the NAM

itself may grow exponentially with the number of gen-
omes, both in terms of vertices and of edges.
In Deniélou et al. [23] we proposed to avoid the expli-

cit construction of the NAM by building “on the fly”
only the parts of the multigraph we need. The idea is to
add the genomes progressively in a depth-first search
(and construction) of the multigraph. To do this, we
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basically alternate two procedures: Split and Expand.
Split partitions the current multigraph on the previously
treated genomes and Expands adds a new genome.
In this paper, we show that the same kind of strategy

also works when allowing for missing genes on several
genomes.
The basic idea is that instead of n-tuples we now

allow for k-tuples, with 2 ≤ q ≤ k ≤ n, where q is a
quorum fixed by the user. With these k-tuples, we can
define a Partial Network Alignment Multigraph (PNAM)
in a similar way as we defined the NAM before, and
syntons are maximal subsets of k-tuples that are con-
nected on the k colours.
Intuitively, this means that a synton concerns exactly k

genomes (with q ≤ k ≤ n). On these genomes, a synton
is made of corresponding neighbourhoods as with the
previous definition and the n - k remaining genomes are
simply ignored.
The next sections explain the formalisation and algo-

rithm in more detail.

Layered data graph
The layered data graph (also called layered alignment
graph in [25]) provides the simplest representation of
the primary data at hand.
Definition. (adapted from [25]) Given a set of n

primary graphs Gi = (Vi, Ei), i Î [|1, n|] and a cor-
respondence relation S between the elements of dis-
tinct sets Vi, the layered data graph is the graph D =
(V, E) with

• V =
⋃

i Vi

• E = EP ∪ ES = (
⋃

i
Ei) ∪ {(u, v) ∈ Vi × Vj�=i| u S v}

Observe that there are two kinds of edges in E: edges
in EP correspond to the original sets Ei (here-after called
intra-layer edges) and the other ones (ES) connect ver-
tices from different layers (here-after called inter-layer
edges) (see Figure 1).
In the specific case of genomes, Vi represents the set

of genes in the ith genome and Ei represents gene

Figure 1 Example of Network Alignment Multigraph. A simple example of layered data graph (top) and network alignment multigraph NAM
(bottom). The layered data graph represents three genomes (blue, red and green). Vertices represent genes and coloured edges represent strict
gene adjacency along each genome (no gaps edges in this example). The inter-genomic gene-to-gene correspondence relation S is represented
by black dotted edges (notice that S is neither one-to-one nor transitive). If we choose to associate genes that form cliques of S (other choices
are possible, see text), then the corresponding network alignment multigraph (NAM) is displayed on the bottom. The vertices of the NAM are 3 -
uples (cliques) of genes, also called spines. The coloured edges between spines correspond to the original edges in the layered data graph. For
instance, (a1, a2, a3) is red-connected to (b1, b2, b3) because a2 is connected to b2 in the red layer of the layered data graph. The same is true for
(b1, b2, b3) and (c1, c2, c3) since b2 and c2 are connected in the red layer. Conversely, (a1, a2, a3) is not blue-connected to (b1, b2, b3) since there is
one gap gene (d1) on the blue genome separating a1 from b1 (see text on how to introduce gaps). Syntons are the sets of spines that are
connected for all colours. They form a partition of the PNAM vertices. In this case there are 2 syntons: {(a1, a2, a3)} and {(b1, a2, a3), (b1, b2, b3),
(c1, c2, c3)}.
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contiguity: (ui, vi) Î Ei ⇔ |rank(ui) - rank(vi)| ≤ δgap
where rank is the rank of the gene on the chromosome
and δgap is a gap parameter (the formula can easily be
adapted to circular genomes as well).

n-way partial correspondence and don’t care element
As mentioned earlier, dealing with n ≥ 2 genomes
requires to define formerly how genes from different
genomes are aggregated.
The definition of an n-correspondence without a

quorum (i.e. for q = n) is the following:
Definition (without quorum). An n-way correspon-

dence between elements of V1, V2,..., Vn is defined as a
restriction Rof the cartesian product, denoted by
R(V1 × V2 × . . . × Vn).
Several practical cases of such an aggregation are dis-

cussed in [23].
For instance, a clique aggregation requires that all ele-

ments of an n-tuple are pairwise related:
(v1, . . . vn) ∈ R(V1 × V2 × . . . × Vn) ⇔ ∀i, j ∈ [|1, n|],
vi S vj.
Conceptually the introduction of a quorum q consists

of working with k-tuples of genes (with q ≤ k ≤ n)
instead of n-tuples. However for the sake of simplicity,
we shall continue to work with n-tuples by introducing
a don’t care element, *.
Given V∗

i = Vi ∪ {∗}, we introduce a function called
cover which for a given n-tuple v returns the set of
nodes in v that are not don’t care elements. Formally,
∀v = (v1, v2, . . . , vn) ∈ V∗

1 × V∗
2 × . . . × V∗

n, cover(v) = {vi
≠ *, i Î [|1, n|]}.
One can now define an n-way partial correspondence.
Definition (with quorum). An n-way partial corre-

spondence between elements of V1, V2,..., Vn for a
quorum q is defined as an n-way correspondence
R(V∗

1 × V∗
2 × ... × V∗

n )such that
∀v ∈ R(V∗

1 × V∗
2 × . . . × V∗

n), |cover(v)| ≥ q.
We shall in the following use the notation

Rq(V∗
1 × V∗

2 × . . . × V∗
n ).

As before, this restriction is computed by using the S
relation. For instance a clique aggregation for a
quorum q would be expressed as follows
v = (v1, . . . vn) ∈ Rq(V∗

1 × . . . × V∗
n) ⇔ (|cover(v)| ≥ q)

and ∀i, j, (vi S vj) or (vi = *) or (vj = *).

Partial Network Alignment MultiGraph
The PNAM (Partial Network Alignment Multigraph) is
an extension of the NAM (Network Alignment Multi-
graph) presented in [23]. It summarises both the n-way
partial correspondence and the connectivity in the gen-
omes (i.e. gene neighbourhood).

Definition (with quorum). A partial network align-
ment multigraph (PNAM) for n primary graphs Gi = (Vi,
Ei) is a graph M = (V ,E1, . . . ,En)such that:

• V = Rq(V∗
1 × V∗

2 × . . . × V∗
n ) for q ≤ n,

• ∀u = (u1, u2, . . . , un) ∈ Vand
(u, v) ∈ Ei ⇔ (ui, vi) ∈ Ei ∨ (vi = ui �= ∗),
(u, v) ∈ Ei ⇔ (ui, vi) ∈ Ei ∨ (vi = ui �= ∗)

In other words, the vertices of the multigraph are n-
tuples of genes and don’t care elements and there is an
edge e Î ℰi (that is, an edge of colour i) between two
vertices if they have genes at the ith position that are
neighbours in the genome Gi. In the following, we refer
to such an edge as an edge of colour i.
Figure 2 gives an example of layered data graph for

three genomes and the corresponding PNAM for a cli-
que aggregator with q = 2.

Defining syntons in the PNAM
With the previous definition of a PNAM at hand, several
definitions of synteny are possible, depending on the
properties one is looking for (see Table 1).
For instance, without quorum (i.e. q = n) and if strict

gene order has to be conserved, syntons are simply the
connected components of the PNAM in which all edges
that do not have all of the n colours are removed. Note
that it is also possible to specify a partial gene order
conservation, stating that, in a given synton, two spines
consecutive for a colour should not be separated by
more than δshuffle spines for the other colours. This idea
will not be developed in the present paper.
Since we want to allow all gene permutations, we shall

use the most general definition, which is the following.
Definition (without quorum). A synton is a maximal

subgraph (V ′,E ′
1, . . . ,E ′

n)of the PNAM such that ∀i Î [|1,
n|], V ′is connected for E ′

i .
To introduce a quorum, one has to modify the pre-

vious definition in order to cope with the presence of
don’t care elements in the PNAM vertices.
Definition (with quorum). A synton is a maximal

subgraph (V ′,E ′
1, . . . ,E ′

n)of the PNAM such that ∃I ⊆ [|
1, n|], |I| ≥ q such that ∀i Î I, V ′is connected for E ′

iand
∀v ∈ V ′, cover(v) = I.
Informally, the first part of the definition ensures that

the result will be a synton when restricted to the colours
I, and the second part makes sure that for the colours i
∉ I, all the vertices of V ′ correspond to a don’t care ele-
ment. In the previous definition, the term “maximal”
naturally means that no other vertex of the PNAM can
be added without breaking the connectivity conditions.
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With this definition, it is easy to show that syntons form
a partition of the PNAM vertices.
The PNAM given in Figure 2 is thus partitioned into 4

syntons: {(a1, a2, a3)} (I = {1, 2, 3}), {(a1, *, a3)} (I = {1, 3}),
{(*, a2, a3)} (I = {2, 3}) and {(a1, a2, *), (b1, b2, *)} (I = {1, 2}).
However, one can notice that although each class of

this partition is maximal in the previous sense, it may
not be maximal in terms of the genes involved. When
projecting a synton onto the layered data graph, it may
occur that the set of genes obtained is included into
another projection (this occurs for instance when a syn-
ton on k genomes has the same boundaries as a synton
on k + 1 genomes). It is therefore advisable to add
another constraint to syntons in order to remove some
redundancy in the results in terms of genes.
Definition of ⊑. Let us denote by ⊑ the relation defined

as follows: for u, v ∈ Vu ⊑ v ⇔ cover(u) ⊆ cover(v).
This means that all vertices in the spine u that are not

“don’t care” elements are also elements of the spine v.

This definition can be extended to subgraphs of the
PNAM.
Definition of ⊑. For two subgraphs of the PNAM C1 =

(U1, F1,... Fn) and C2 = (U2, F′
1, . . . F′

n), C1 ⊑ C2 ⇔ ∀u1 Î
U1, ∃u2 Î U2, such that u1 ⊑ u2.
We call then a maximal synton a synton that is maxi-

mal for the relation ⊑.
On the example of Figure 2, we have for instance {(a1, *,

a3)} ⊑ {(a1, a2, a3)} which means {(a1, *, a3)} is not maxi-
mal. The only two maximal syntons in that example are
{(a1, a2, a3)} and {(a1, a2, * ), (b1, b2, *)}.
Note that this constraint is not embedded into the

algorithm but is added as a final filter on the results.

Algorithm
The most natural approach to compute syntons with
quorum would be to build the PNAM, and then to use
one of the graph partitioning algorithms at our disposal
[17,29].

Figure 2 Example of Partial Network Alignment Multigraph. A simple example of layered data graph (top) and partial network alignment
multigraph PNAM (bottom). As in Figure 1, the S gene-to-gene relation is represented by dotted edges. Vertices of the PNAM (spines)
correspond to cliques of the S relation. The difference with a NAM (Figure 1) is that “don’t care“ genes (represented as *) are now allowed in
spines (here we have a quorum q = 2 which means we cannot have more than one * in a spine). The set of vertices of this PNAM can be
partitioned into four syntons, three of them are singletons: {(a1, a2, a3)}, {(a1, *, a3)} and {(*, a2, a3)}, the fourth is of size 2: {(a1, a2, *), (b1, b2, *)}.
Only two of them ({(a1, a2, a3)} and {(a1, a2, *), (b1, b2, *)}) are maximal.
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However, we already showed in [23] that when the
correspondence relation is not one-to-one, the size of
the NAM may grow exponentially with the number of
graphs. The situation for PNAM is even worse since for
each vertex of the NAM we now have Cq

n additional ver-
tices in the PNAM. This means that avoiding the expli-
cit construction of the PNAM is an even bigger priority.
In this paper, we choose to extend the graph parti-

tioning algorithm described in [23]. The idea is to con-
duct a depth first search (DFS) of the classes starting
with the connected components of the first colour (gen-
ome), and to add colours incrementally. Therefore the
multigraph is not computed explicitly but instead smal-
ler parts of it (classes) are computed on the fly in each
branch of the DFS.
The basic algorithm is fully described in [23] and a

summary pseudo-code is given below. The two main
operations are:

• SPLIT1...i that splits a class on colours 1 to i;
• EXPANDi+1 that adds the (i + 1)th colour to the
current network alignment multigraph.

Algorithm 1: OTF.
Global: Layered Data Graph D = (V, E)
for the primary graphs Gi = (Vi, Ei), i Î [|1, n|]
Input: Multigraph C
/* current class: initialised with (V1,E1)*/
Integer i/* current layer: initialised with 1 */
Variables: Partition P
/* current partition on the i first layers */
(1) begin /* partition on the i first layers */
(2) P ¬ SPLIT1...i(C),
(3) if (|P| ≠ 1) then /* C is split */
(4) for NewC Î P do
(5) OTF(NewC, i)
(6) end for
(7) else if (i <n) then /* C is stable */
(8) NC ¬ EXPANDi+1(C),
(9) OTF(NC, i + 1),
(10) else /* C is stable for all colours */
(11) PRINT(C)
(12) end if
(13) end

Initialisation
As in [23], the algorithm is initialised with all connected
components on the first genome. In order to cope with
missing genes on the first genome, one has only to add
an initial singleton class containing a don’t care vertex.
Expand
The procedure called EXPAND_V ERTICESi+1 expands
the current set C of PNAM vertices to two kinds of new
(i + 1)-tuples.

The first case is similar to the no-quorum condition
and expands each vertex v = {v1, v2,... vi} Î C by genes
vi+1 Î Vi+1. These genes are called terminals of v. Ide-
ally, a terminal vi+1 is such that there exists an n-tuple
u = (u1, . . . un) ∈ Rq(V∗

1, V∗
2 , . . . , V∗

n ) such that ∀j Î [|1,
i + 1|], uj = vj (i.e. v is a prefix of u). In practice, the
efficient computation of these terminals greatly depends
upon the chosen aggregation function. For instance, for
the clique, this is a simple task: (v1,..., vi+1) is required to
be a clique too (don’t care elements are ignored) since
this is a necessary condition for the final n-tuple to be a
clique. Using the ordering G1, G2, G3 in the example
given in Figure 2, this allows us to build the vertex (a1,
a2, a3) from the vertex (a1, a2).
The second case is to extend v = (v1,... vi) by a don’t

care element if this is allowed by the quorum condition,
i.e. the total number of don’t care elements is less than
n -q. These added are intended to introduce the missing
genes on genome i + 1. For instance, in Figure 2, with
the same ordering G1, G2, G3, the vertex (c1, c2, *) is
recovered thanks to the introduction of don’t care ele-
ments as terminals (it is an expansion of the vertex
(c1, c2)).
Split
As in [23], the SPLIT1-i operation computes the con-
nected components on each colour in turn. If, for a col-
our j, the class is split, then it returns the split parts.
The main difference is that the connected components

for a colour j are now computed on Pj(V), the restric-
tion of the set of vertices to those that do not have a
don’t care element at position j.
This is simply done by:

1. removing temporarily all tuples having a don’t
care element at position j,
2. computing the connected components of the
resulting set of vertices,
3. adding back the previously removed set in each
connected component.

Finally, just as in [23], when a class C is such that
SPLIT1-i(C) = C then it is stable for colours 1 to i and
needs expansion to the (i + 1)th colour.

Results and Discussion
In order to illustrate our approach in practice, we per-
formed two different experiments. The first one is a com-
parison to a popular heuristics with a similar aim
(I-ADHORE). The second one is a study of the evolution
rate of genes in synteny that generalises previous observa-
tions on this subject. In the remaining of this paper, we
shall refer to our algorithm as OTFQ (OTF was the name
of the algorithm in [23] and Q stands for quorum).
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Comparison to I-ADHORE
In this section, we compare the syntenies recovered by
our approach to those found by I-ADHORE[26], a pop-
ular program used to recover syntenies with missing
genes.

ADHOREand I-ADHORE
ADHORE[30] (Automatic Detection of Homologous
Regions) looks for genomic regions between two gen-
omes where the gene order is strictly conserved. The
gene-to-gene (homology) relation S is, as in our
approach, boolean and provided as input to the program
together with the genes location. The algorithm basically
proceeds by clustering of the homologous genes pairs
based on the linear distance of the corresponding genes
on both chromosomes (two pairs are close if they lie
close together on the same diagonal of the alignment
matrix) and a measure of the cluster linearity (how the
set of pairs fits to a diagonal). The procedure allows for
gaps (maximum number of intervening non-homologous
genes between two pairs) but not explicitly for genes
permutations although a limited amount of permuta-
tions is possible by considering them as gaps.
In 2004, the authors extended this method to the case

of multiple genomes: the new version is called I-
ADHORE[26]. I-ADHORE starts by collecting the
results of ADHORE obtained on each pair of genomes.
The results are called “multiplicons of level 2”. This ser-
ies of multiplicons initialises a set ℳ that will eventually
constitute the solution set.
The procedure starts with the largest (in terms of gene

pairs) multiplicon and represents it as a “profile” i.e. a
series of aligned positions without permutation. Next,
this profile is aligned to the whole set of chromosomes
using a variant of ADHORE. One important point is
that there is a match between a gene and a given posi-
tion in the profile when this position contains at least
one gene that matches. In other terms, in I-ADHORE,
spines are connected components of the S relation.
The results of this alignment are multiplicons of level

3 (they can be extensions of part or the totality of the
original multiplicon). These new multiplicons are then
put back in the ℳ set and the algorithm iterates. There
is no need in I-ADHORE for the quorum parameter we
previously defined, instead the results are presented in
the form of an arborescence of multiplicons (from level
2 to, possibly, level n) from which the spines involving
at least q genomes can be easily retrieved.
Finally, this algorithm was improved in 2007: in this

latest version - I-ADHORE 2.0 [31] - a new alignment
profile is recomputed for all segments of the current
multiplicon after extension. This implies that some erro-
neous decisions taken at the beginning of the execution
could be corrected later on.

Because I-ADHORE is a heuristic (basically a greedy
algorithm), its main advantage is that it is extremely
quick. The main drawback is that the definition of a
multiplicon is procedural rather than formal. This
makes the comparison to other approaches more diffi-
cult since we do not know exactly what is to be found
and what is missed. Because of this, in the following
experiment we decided to compare the results in terms
of genes involved in syntons (OTFQ) versus multipli-
cons (I-ADHORE).
Data and parameters
In order to compare the two algorithms in various phy-
logenetic situations, we constituted four groups, each
made of 5 or 10 bacterial species at variable phyloge-
netic distances (Table 2). The most heterogeneous
group is the group bacteria, made of phylogenetically
distant species. The most homogeneous is the group
entero made of Enterobacteriaceae. The precise compo-
sition of each bacterial group is given in Table 2.
The gene-to-gene relation S is provided by BLASTP

by selecting pairs of gene products with p - value ≤ 1e -
10, %identity ≥ 40 and with the alignment covering at
least 80% of the smallest protein.
OTFQ was run with the following parameters: gaps of

at most 3 genes (deltagap = 3), all gene permutations
allowed (deltashuf = ∞), minimum synton size of 3
(mineltsize = 3) and a quorum q of at least 2 genomes.
Spines are defined simply as connected components
(CC) of S. Note that OTFQ allows other definitions of
spines, as cliques or g-quasi-cliques of S (for a spine
made of n nodes, it means that for each node v we
must have degree(v) ≥ g * (n - 1)), those definitions are
not used in this test.
For I-ADHORE, we used the default parameters,

except for “gap_size”, “tandem_gap_size” et “cluster_gap”
which were all set to 3 in order to be as consistent as
possible with the deltagap parameter used in OTF. The
“anchor_points” parameter, corresponding to the mini-
mal number of genes in a cluster, was set to 3 in order
to fit with the “mineltsize” parameter of OTF. Addition-
ally, we set up the qvalue parameter very close to 0 and
the probcutoff parameter to 1, in order to disable any fil-
tering and keep as many multiplicons as possible.
Notice that the chosen parameters are not optimal

(both for I-ADHORE and OTF) but were selected in
order to make the comparison as consistent as possible.
In particular, a quorum of 2 out of 10 genomes is
usually too low for OTF since it potentially leads to an
exponential growth of the solution size. However, we
keep this value since I-ADHORE naturally reports these
multiplicons too.
Execution times
The execution times of I-ADHORE and OTF for the
different groups are given in Table 3.
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Table 2 The four groups of bacterial species used in this study

bacteria Bacteria

Acnum Species Mb NbGenes

AE000512_GR Thermotoga maritima (strain JCM 10099/DSM 3109) 1.9 1853

AE009951_GR Fusobacterium nucleatum nucleatum (strain JCM 8532) 2.2 2069

AL009126_GR Bacillus subtilis (strain 168) 4.2 4237

BA000022_GR Synechocystis sp. (strain PCC 6803) 3.6 3166

U00096_GR Escherichia coli (strain K12) 4.6 4320

AE000520_GR Treponema pallidum (strain Nichols) 1.1 1028

AE001273_GR Chlamydia trachomatis (strain D/UW-3/Cx) 1.0 895

AM398681_GR Flavobacterium psychrophilum (strain JIP02/86) 2.8 2432

BX248353_GR Corynebacterium diphtheriae (strain NCTC 13129) 2.5 2317

CP000359_GR Deinococcus geothermalis (strain DSM 11300) 2.5 2330

proteo Bacteria; Proteobacteria

acnum Species Mb NbGenes

AE005673_GR Caulobacter crescentus (strain CB15/ATCC 19089) 4.0 3738

AE016825_GR Chromobacterium violaceum (strain IFO 12614) 4.7 4407

AE017282_GR Methylococcus capsulatus (strain Bath/NCIMB 11132) 3.3 2960

CP000661_GR Rhodobacter sphaeroides (strain ATCC 17025) 3.2 3111

U00096_GR Escherichia coli (strain K12) 4.6 4320

CP000112_GR Desulfovibrio desulfuricans (strain G20) 3.7 3775

AE001439_GR Helicobacter pylori (strain J99) 1.6 1491

CP000251_GR Anaeromyxobacter dehalogenans (strain 2CP-C) 5.0 4346

CP000744_GR Pseudomonas aeruginosa (strain PA7) 6.6 6286

CP000814_GR Campylobacter jejuni (subsp. jejuni, serovar O:6) 1.6 1626

gamma Bacteria; Proteobacteria; Gammaproteobacteria

acnum Species Mb NbGenes

AE017282_GR Methylococcus capsulatus (strain Bath/NCIMB 11132) 3.3 2960

CP000127_GR Nitrosococcus oceani (strain ATCC 19707/NCIMB 11848) 3.5 2976

CP000462_GR Aeromonas hydrophila (subsp. hydrophila, ATCC 7966) 4.7 4122

CP000744_GR Pseudomonas aeruginosa (strain PA7) 6.6 6286

U00096_GR Escherichia coli (strain K12) 4.6 4320

CP000675_GR Legionella pneumophila (strain Corby) 3.6 3204

CP000681_GR Shewanella putrefaciens (strain CN-32/ATCC BAA-453) 4.7 3972

CP001091_GR Actinobacillus pleuropneumoniae (serovar 7, AP6/AP76) 2.3 2131

CP001132_GR Acidithiobacillus ferrooxidans (strain ATCC 53993) 2.9 2826

AM920689_GR Xanthomonas campestris (pathovar campestris) 5.1 4510

enterob Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae

acnum Species Mb NbGenes

AE006468_GR Salmonella typhimurium (strain ATCC 700720) 4.9 4455

AE009952_GR Yersinia pestis (biovar Mediaevalis, strain KIM5) 4.6 4104

CP000822_GR Citrobacter koseri (strain ATCC BAA-895) 4.7 5003

CP000964_GR Klebsiella pneumoniae (strain 342) 5.6 5425

U00096_GR Escherichia coli (strain K12) 4.6 4320

AE005674_GR Shigella flexneri (serovar 2a, strain 301) 4.6 4395

AP008232_GR Sodalis glossinidius (strain morsitans) 4.2 2432

BX470251_GR Photorhabdus luminescens laumondii (strain TT01) 5.7 4897

BX950851_GR Erwinia carotovora (subsp. atroseptica, ATCC BAA-672) 5.1 4491

CP000653_GR Enterobacter sp. (strain 638) 4.5 4115

Detail of the four groups of bacterial species at various phylogenetic distances used in this study. Each group is composed of 5 (first 5 lines) or 10 species.
acnum: accession number in the EMBL/Genome Reviews databank; Mb: size of the genome in Mb; NbGenes: number of protein-encoding genes in the genome.
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We notice that for the more heterogeneous groups
(bacteria, proteo, gamma), the OTFQ execution times
are short, and indeed, shorter than for I-ADHORE. Both
are anyway shorter than the time needed to perform the
initial all-against-all BLASTP comparisons needed to
compute the S relation. However, this situation is
inverted when working with close species and a larger
number of genomes. For 10 enterobacteria, OTFQ runs
out of memory (the limit was 2 Gb). Indeed a closer
examination of running times shows that I-ADHORE
behaves roughly quadratically with the number of gen-
omes (as expected if the computation time is dominated
by the initial pairwise comparison and not by the fol-
lowing greedy search) whereas the OTFQ runtime
grows exponentially with this number. However, Table 3
shows that for up to 10 genomes, the problem remains
amenable to an exact algorithm and there is therefore
no need to resort to heuristics. We should observe how-
ever that I-ADHORE was specifically designed to deal
with large eukaryotic genomes, whereas our definitions
and algorithm are better suited to the alignment of bac-
terial genomes (one of the differences, for instance, is
that we do not look for intra-genomic syntenies).
Comparison of results
As mentioned before, in order to compare more easily
the results of I-ADHORE (multiplicons) and OTFQ
(syntons), we choose to project them back onto the

layered data graph (i.e. genomes) and, therefore, to com-
pare sets of genes involved in multiplicons versus syn-
tons. In this comparison, “gap” genes (i.e. genes not
involved in any spine for OTFQ and non “anchor” genes
for I-ADHORE) are ignored. This is shown in Table 3.
We first observe that the number of genes found in
multiplicons and syntons are very close, they range from
3% of the total number of genes for distant species (bac-
teria group), and to up to 66% for very close species
(entero group). Moreover, OTFQ constantly finds
slightly more genes than I-ADHORE (from 10 to 20%
irrespective of the phylogenetic group) and, except for
the 10-bacteria group where the overlap is 91%, the set
of genes found in multiplicons are almost totally
included in the sets found in syntons (from 99 to 100%).
A closer examination of these results shows that missed
genes come from three main reasons, all of them being
related to the linearity and collinearity constraint in I-
ADHORE. The first, and more important, reason comes
from the definition of “gap” genes. In OTFQ “gaps” are
simply genes that do not belong to a spine within the
considered synton (they may have no homologous genes
or they may be involved in a spine from another syn-
ton). In I-ADHORE the definition is similar but multi-
plicons have an additional linearity constraint that may
be broken when the number of “gaps” on one genome is
not counterbalanced by an equivalent number of “gaps”
on the other one. With 3 “gaps” for instance, a synteny
can be missed when two genes are adjacent on one
chromosome and their homologous genes are separated
by more than 2 gaps on the other chromosome. This
linearity condition makes the interpretation of the
“gaps” parameter more delicate. Unfortunately, we did
not find any I-ADHORE parameter to change this beha-
viour but we believe this could be fixed easily. The sec-
ond reason is due to the existence of gene order
permutations and is therefore more fundamentally
related to the I-ADHORE algorithm, that enforces strict
collinearity of genes. Finally, a third case marginally
arises from an inversion of the orientation of one gene.
This comes from the fact that I-ADHORE considers
gene orientation in its definition whereas OTFQ ignores
it.
Figure 3 is an illustration of gene order permutation

in the case of the glycogen metabolism. Glycogen is the
major reserve of polysaccharide in bacteria, its biosynth-
esis from glucose-1-phosphate is performed in three
steps by GlgC (ADP-glucose pyrophosphorylase), GlgA
(glycogen synthase) and GlgB (branching enzyme) in
that order [32]. Two additional enzymes, GlgX (glycogen
debranching enzyme) and GlgP (gycogen phosphory-
lase), are involved in the reverse process, i.e. in glycogen
degradation. All of the corresponding genes are often
found clustered together in single or adjacent operons

Table 3 Comparison of execution times and results of I-
ADHORE and OTFQ

I-ADHORE OTFQ

Set execution time (s)

bacteria 5 36 20

10 122 55

proteo 5 110 28

10 428 197

gamma 5 232 42

10 825 373

entero 5 632 273

10 2881 NA

number of genes found size of ∩

bacteria 5 460 (3%)1 572 457 (99%)2

10 831 (3%) 919 756 (91%)

proteo 5 2012 (11%) 2449 1991 (99%)

10 4117 (11%) 4935 4088 (99%)

gamma 5 4266 (21%) 4777 4246 (100%)

10 8005 (22%) 9039 7977 (100%)

entero 5 15376 (66%) 15792 15355 (100%)

10 29306 (66%) NA NA

Comparison of execution times (top) and results (bottom) of I-ADHORE and
OTFQ for the four groups of 5 and 10 species in Table 1.
1 number of genes found/total number of genes
2 size of ∩ /number of genes found by I-ADHORE
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[32,33] but in various orders. The most frequent order
for the glgA/B/C triplet is BCA (e.g. in E. coli on Figure
3) but the order CBA is also observed (e.g. in M. capsu-
latus in Figure 3, that also displays an inversion of glgC.
Finally the order BAC, although rare, is observed too (in
Clostridium perfringens for instance (data not shown)).
The genes glgP and glgX are not always present close to
the glgA/B/C triplet but, when they are, their order is
very variable. For instance, glpP lies before glgB in F.
nucleatum and R. sphaeroides but after glgA in B. subti-
lis and E. coli. The same situation holds for glgX in E.
coli and R. sphaeroides (Figure 3). Finally, it is important
to notice that the GlgA sequence is not well conserved
across bacterial species but is actually split in two
groups [32], one is characteristic of Bacilli, Fusobacteria
and Clostridia, the second one is characteristic of Alpha
and Gamma proteobacteria. This is the reason why, at a
reasonable BLASTP threshold, the GlgA group (red
lines in Figure 3) does not form a single connected
component but two disjoint components. When these
five species are subjected to analysis by the two pro-
grams, they give rise to different multiplicons/syntons,
reflecting the different ways permutations are handled.
I-ADHORE gives rise to 3 multiplicons of level 2 (i.e.
involving only pairs of genomes). Each of them is com-
posed of 3 genes: F. nucleatum/E. coli {B, C, P }, F.
nucleatum/B. subtilis {A, C, B} and E.coli/R. sphaeroides
{A, C, B}. Let us notice that the E.coli/B. subtilis {B, C, P
} is missed because the two gaps in B. subtilis break the
multiplicon collinearity condition. By contrast, OTFQ
finds 4 syntons of larger size. The E.coli/R. sphaeroides
synton now involves all of the 5 genes: {A, B, C, P, X}.
Similarly the F. nucleatum/B. subtilis now involves 4
genes {A, B, C, P }. The E.coli/R. sphaeroides synton

includes M. capsulatus as well: {A, B, C}. And finally,
OTFQ also finds a synton, {B, C, P }, with 4 species: F.
nucleatum/B. subtilis/E. coli/R. sphaeroides. Notice that,
because of the broken connection on glgA, no multipli-
con nor synton of size at least 3 genes can be found on
all of the five species depicted here.
Another example of conserved gene neighbourhood

with gene permutation is provided by the biotin (vita-
min H) biosynthetic pathway. Although biotin is an
essential enzyme cofactor in all forms of life, its detailed
biosynthetic pathway is not yet fully understood [34].
Indeed, the well documented part of the pathway com-
prises the four late steps, leading to biotin from pime-
loyl-CoA and catalyzed by BioF, BioA, BioD and BioB
[35]. In bacteria, the four corresponding genes usually
form an operon (or regulon) cluster [35]. This cluster
sometimes includes additional bio genes involved in the
earlier steps leading to pimeloyl-CoA. For instance
BioW synthesizes pimeloyl-CoA from pimelic acid and
BioC and BioH have recently been suggested to partici-
pate in the synthesis of pimeloyl-CoA from malonyl-
CoA [34]. Figure 4 displays the gene layout of the bioF/
A/D/B core cluster in five bacterial species. As shown,
each species displays a specific gene order: BFDA (A.
tumefaciens), AFDB (B. licheniformis), ADFB (B. thurin-
giensis), ABFD (E. coli) and DABF (S. aureus). Because
of this high level of gene shuffling, i - ADHoRe was only
able to retrieve a single multiplicon involving two spe-
cies (A. tumefaciens - E. coli) and three genes (bioB/F/
D). The bioA/B/F cluster between E. coli and S. aureus
was missed because of the opposite gene orientation of
bioA. By contrast, OTFQ could retrieve three different
syntons, of much larger sizes. The first synton involves
the four bioF/A/D/B genes in all species but S. aureus.

Figure 3 First Example of Operon with Permutations. The glycogen biosynthesis/degradation operon in 5 bacterial genomes. Connected
components of the S relation are represented by coloured lines.
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This comes from the fact that bioD is not well con-
served in S. aureus and was therefore not connected to
any other bioD gene at the selected BLASTP threshold.
The second synton is therefore composed of the three
bioF/A/B genes, in all of the five species. Finally, the
third synton is composed of the four bioW/A/F/B genes
in B. licheniformis and S. aureus. Again, bioD is missing
from this latter synton because of a lack of sequence
similarity. The same is true for bioC between B. thurin-
giensis and E. coli.

Synteny and gene evolutionary rates
As mentioned in the introduction, bacterial syntenies
can provide useful information about evolutionary pro-
cesses. For instance, Lemoine et al. have shown [36]
that genes in synteny groups are subjected to stronger
evolutionary pressure than genes outside of synteny
groups. They started by identifying pairs of orthologous
genes between two bacterial genomes. A given pair is
then classified as a POG (Positional Ortholog Group) if
it is strictly adjacent to (at least) another pair of ortholo-
gous genes. Finally, the PAM distances (as computed
with the DARWIN package [37]) between the elements
of a pair are computed for the POG and non-POG
groups and their distribution are compared.
Using this approach on several pairs of bacterial spe-

cies, from closely related enterobacteria (E. coli and S.
enterica) to more distant species (E. coli and B. subtilis),
they showed that the mean dPAM in POGs is signifi-
cantly lower than the mean dPAM in non-POG, thus
indicating that genes within synteny groups are gener-
ally more conserved than genes outside of synteny
groups.
In this section, we attempt to generalise this result in

two ways: first by working with more than two genomes,
and second by investigating if the same evolutionary

trends is observed as a function of the size of the syn-
teny group.
To this purpose, we use the same four sets of five spe-

cies (bacteria, proteo, gamma and entero) as defined
before. In the context of an evolutionary study, we need
to modify our previous definition of the gene-to-gene
correspondence since we want to enforce a true orthol-
ogy relationship and not simply a sequence similarity
relationship. To this purpose, we make use of the
INPARANOID program [27]. Two genes from different
genomes are related by S if they belong to the same
group of co-orthologs provided by INPARANOID.
Moreover, in order to enforce a more stringent defini-
tion of synteny, we use a gap parameter of 0, a quorum
of 3 genomes and we force spines to be cliques of the S
relation. This means that a spine is composed of at least
three genes that should be all pairwise related by S. We
then run OTFQ on the four sets separately (with a mini-
mum synton size of 1, in order to recover isolated
spines as well) and we further process the result in the
following way. For a given pair of S related genes, we
record the size of the largest synton to which it belongs
(let us denote it by maxsize), we compute its PAM dis-
tance using the same procedure as in [36] (denoted by
dPAM ) and we then analyse the distribution of dPAM
within each group of maxsize. The results are presented,
for each of the four species group, in Figure 5 where the
black curve displays the median of dPAM as a function of
the synteny size (maxsize). In order to get sufficient sta-
tistics (we requested a minimum of 500 pairs in each
bin), values of maxsize greater than a certain limit are
pooled within the same bin (indicated by the “+” postfix
in the figure). A first point to observe is the value of the
median for maxsize = 1 (i.e. for pairs of orthologs only
present in isolated spines) versus the values for maxsize
>1. The median values (this is true also for the mean)

Figure 4 Second Example of Operon with Permutations. The biotin biosynthesis operon in 5 bacterial genomes. Connected components of
the S relation are represented by coloured lines.
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are always higher for these isolated orthologs than for
orthologs involved in larger blocks of synteny. This con-
firms the results already obtained by Lemoine et al. To
be exhaustive, one should note that there is a (quantita-
tively smaller) category of pairs that are not displayed
on this plot: namely orthologs that are not involved in
any clique-spine of at least 3 genomes. For all of the 4
groups, their dPAM median values are always higher than
for the first group. We choose not to plot them because
the co-orthology relationship may be considered as
dubious in these cases. The second point to observe is
that there is a clear tendency for dPAM to decrease when
the synteny size increases. This effect is more pro-
nounced for distant species (bacteria, proteo and
gamma) than for closely related species (entero). In
order to make sure that this effect is not related to
some phylogenetic heterogeneity in the data sets, we
also split the analysis by pairs of species. This is repre-
sented by the 10 = (5

2) coloured curves in Figure 5 This
clearly shows that the same trend holds whatever the

pair of species considered (although some species pairs
have globally lower or higher values). In order to
remove a possible bias arising from false positive ortho-
logs in INPARANOID, we additionally performed the
same analysis restricted to one-to-one orthologs (i.e.
ignoring all groups of co-orthologs of size greater than
2 genes). The curves are then slightly shifted towards
lower values of dPAM but keep the same shape as pre-
sented here. As a conclusion we can extend the results
presented by Lemoine et al. in the following way: for a
given pair of orthologous genes, the larger the size of
the synteny in which it is involved, the more conserved
the pair is.

Conclusions
In this paper, we presented an extension of the graph
alignment algorithm proposed in [23] based on a clear-
cut definition of bacterial syntenies, as well as an exact
algorithm to find them. The main purpose of this new
extension is to allow for missing genes. More precisely,

Figure 5 Distribution of dPAM. Distribution of dPAM within each group of maxsize (size of the maximal synton in which a given pair of orthologs
appears). The black curve corresponds to the median of dPAM on the whole set, whereas the coloured curves correspond to the analysis split by
pairs of species. We observe in all cases a clear tendency for dPAM to decrease when the synteny size increases.
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we now require genes to be present only on a quorum q
≤ n of the genomes under study. Together with a very
flexible definition of block of synteny (n-way genes
aggregation in spines, presence of gap genes, partial or
total conservation of the gene order), this resulted in a
versatile tool to study syntenies in bacteria, that may be
adapted to various kinds of studies. We presented two
typical applications. The first one is related to the search
of functional gene associations (for instance to the pur-
pose of genome annotation). In this context, one should
choose a quite loose gene-to-gene relationship based on
sequence similarity and relaxed synteny parameters. We
compared our approach to the widely used heuristics
I-ADHORE. Execution times and results are very simi-
lar, showing that, at least up to ten genomes, the pro-
blem is still tractable with an exact definition and
algorithm. The second application is related to evolu-
tionary studies. In this context, it is better to work with
a tighter definition of syntenies (orthology relation, cli-
que association of genes, absence of gaps). We showed
that the syntons retrieved by the algorithm presented an
already documented feature: isolated pairs of orthologs
are less conserved than the ones involved in larger
blocks of synteny. However, we could extend this obser-
vation in two ways: first by working with multiple com-
parisons (i.e. by focusing on syntenies occurring on at
least 3 genomes) and, second, by showing that the larger
the block is, the more conserved the genes are.
Finally, we would like to stress that, although this paper

and its illustrations focus on the question of syntenies,
the definitions and the algorithm presented herein are
applicable as well to the more general context of graphs
alignments. For biological data, other possible applica-
tions could therefore concern the alignment of metabolic
graphs, of PPI graphs or even of mixed data (e.g. meta-
bolic versus genomic data [17]).

Availability
The algorithm has been implemented in Java, is plat-
form independent and is distributed as open-source
(GPL). Source code, user’s documentation and samples
files are available for download at: http://www.inrialpes.
fr/helix/people/viari/lxgraph
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