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Abstract— The AXES project participated in the interactive
instance search task (INS), the known-item search task (KIS), and
the multimedia event detection task (MED) for TRECVid 2012.
As in our TRECVid 2011 system, we used nearly identical search
systems and user interfaces for both INS and KIS. Our interactive
INS and KIS systems focused this year on using classifiers trained
at query time with positive examples collected from external
search engines. Participants in our KIS experiments were media
professionals from the BBC; our INS experiments were carried
out by students and researchers at Dublin City University. We
performed comparatively well in both experiments. Our best
KIS run found 13 of the 25 topics, and our best INS runs
outperformed all other submitted runs in terms of P@100. For
MED, the system presented was based on a minimal number
of low-level descriptors, which we chose to be as large as
computationally feasible. These descriptors are aggregated to
produce high-dimensional video-level signatures, which are used
to train a set of linear classifiers. Our MED system achieved the
second-best score of all submitted runs in the main track, and best
score in the ad-hoc track, suggesting that a simple system based
on state-of-the-art low-level descriptors can give relatively high
performance. This paper describes in detail our KIS, INS, and
MED systems and the results and findings of our experiments.

I. INTRODUCTION

This paper describes the second participation of the EU
Project AXES at TRECVid [28]. The AXES project aims
to connect users and content from large multimedia archives
by means of technology. The project partners involved in this
year’s participation (with references to earlier participations)
were: 1) Dublin City University (CLARITY: Center for Sensor
Web Technologies) [11], [32]; 2) University of Twente [1],
[2]; 3) Oxford University [30]; 4) KU Leuven [17]; 5) INRIA
Lear [13], [5]

Since AXES is about bringing users, technology, and con-
tent together, we conducted interactive user experiments in
the instance search (INS) and the known-item search (KIS)
tasks. Additionally, because users often search for events in
multimedia content, we participated in the multimedia event
detection task (MED). For INS and KIS, the collaboration with
the BBC, as an industry partner in AXES, gave us a unique
opportunity to conduct experiments in a realistic environment
with professional users. We refer the reader to [19] for a
description of these tasks.

For the Multimedia Event Detection task we developed
an approach based on four low-level descriptors: SIFT fea-
tures [?] for image content, trajectories+MBH features [31]
for motion, MFCC for audio and optical character recognition

with MSER regions [14] for text. The local low-level audio-
visual descriptors were aggregated into high dimensional
video-level signatures using Fisher vectors [23]. A combina-
tion of low-level specific linear classifiers allows to obtain
event scores.

This paper is structured as follows: Section II describes the
methods and the system we developed for this year’s INS and
KIS participation, including the system architecture and the
user interface. Section III describes our participation in the
MED task. Section IV describes the experiments and discusses
the results and findings. Section V summarizes this paper.

II. INS AND KIS PARTICIPATION

In this section we describe the system we developed for
this year’s INS and KIS participation. We used a service
oriented architecture for this year’s TRECVid participation,
see [15] for details. The central component of the system is
our LIMAS service that merges search results from several
retrieval services that each produce a confidence score for
each shot whether it is relevant. The scores are then fused
(combined) according to a single confidence score, producing
a list of retrieval units (videos or shots). This list is then send
back to the user interface. In the following, we first describe
the individual retrieval services, the fusion scheme we used,
and the employed user interface.

A. Speech and Metadata

We stored the available text for each shot in a text index.
Both our KIS and INS search engines used ASR data; we
used the provided ASR for KIS and extracted custom ASR
for the INS task. We also used five metadata fields from
the provided metadata XML files for the KIS task: title,
description, keywords, subject, and uploader. At query time,
the standard Lucene retrieval function was used to calculate a
confidence retrieval score for each retrieval unit if the query
contained any text terms. We used Lucene version 3.1.2 [29]
in our experiments.

B. On the fly Object/Image Category Retrieval

The aim of the category recognition system is to quickly
retrieve key-frames which contain queried general classes of
objects (e.g. all cars in a dataset, or all examples of gothic
architecture). The query is specified by entering a text term
which is used to train a model for the query on-the-fly.



The system is based on the on the fly training of a discrimi-
native classifier, and so in addition to the feature vectors for the
dataset itself, features for negative and positive training data
related to the target query are required. The negative training
data is also sourced during the offline stage, and is fixed
for all queries. Features are computed for ∼ 1, 000 images
downloaded from Google Image search using the publicly
available API and the search term ‘things’ and ‘photos’.

The features for the positive training data are computed on
the fly after the user has made a query, and again are sourced
from Google Image search, which is used to translate the user’s
textual query into a set of images. We use the top-ranking
∼ 200 images from a search for the query term entered by
the user. Features are extracted from these images in the same
way, and a linear SVM is trained against the pool of negative
training features computed during the offline stage. The output
of the classifier is a w vector of the same dimensions as the
features, and the dot product between this and all features in
the target dataset is then taken to provide an output score for
each image. Finally, this score is used to rank the images in
descending order of relevance to the entered query. Figure 1
shows some sample results. The system is described in detail
in [6].

C. On the fly Face Retrieval
The aim of the face retrieval system is to retrieve key-frames

based on the faces they contain. Given a query, a discriminative
classifier is learnt using images containing faces downloaded
from Google image search for that query.

To achieve real time performance, it is essential to perform
as much of the processing in advance. In the offline processing
faces are detected in every frame of every video and faces
of same person are linked together within a shot to form
face tracks. At the same time, nine facial features such as
eyes, nose, mouth etc. are located within every face detection
using pictorial structure based method [10], [9]. These features
provide landmarks for computing facial descriptors (feature
vectors). The whole process of representing faces in the
videos by tracks results in substantial reduction in data to be
processed. On the KIS dataset, tracking and filtering results in
reduction in the granularity of the problem from 2.9 Million
face detections to 17,390 face tracks.

Negative training images needed for training of the clas-
sifiers are taken from publicly available dataset [12]. These
images are kept the same for all queries. The face detector,
facial feature detector and appearance descriptor described
above is applied to each of the negative images to produce
feature vectors.

The online processing part consists of two steps collecting
positive training images of faces from Google and training
and ranking using a classifier. Once the features for positive
training examples are computed, a linear SVM is trained, and
used to assign scores to tracks in the corpus.

The resultant face search system can be used for searching
both for specific people as well as those with specific (facial)
attributes such as gender, facial hair, eyewear, etc. Figure 2
shows example results obtained for both these cases. For
details of the method refer to [20].

D. On the fly Specific Object / Place Retrieval

The aim of the specific object / place recognition system is
to quickly retrieve key-frames which contain queried specific
objects or places based on their visual appearance. The query
can be specified in two ways: (i) by uploading one or more
images containing the object and optionally outlining regions
of interest; (ii) by entering a textual query. Two varieties
of method have been implemented: one that involves issuing
multiple queries and combining the results (late fusion); the
other is an early fusion method learns a more distinctive
image representation on-the-fly by data mining the input query
images. In both cases the final list is re-ranked using geometric
verification.

The late fusion system architecture is identical to the one
described in [3], which is based on the standard specific object
retrieval approach by Philbin et al. [25] with some recent
improvements which are discussed next. RootSIFT [4] de-
scriptors are extracted from affine-Hessian interest points [22],
[21] and quantized into 1M visual words using approximate
k-means. Given a single query, the system ranks images based
on the term frequency inverse document frequency (tf-idf)
score [27]. The ranking is computed efficiently through the
use of an inverted index. Spatial reranking is performed on
the top 200 tf-idf results using an affine transformation [25].

In the on-the-fly system, given a text query of an object or
place, example images are retrieved by textual Google image
search using the publicly available API. A visual query set
is constructed from the top 8 retrieved Google images. To
retrieve from the corpus, a visual query is issued for each
image in the query set independently and retrieved ranked lists
are combined by scoring each image by the maximum of the
individual scores obtained from each query. This is the MQ-
Max method from [3], where further details are given. Figure 3
sketches the on-the-fly process and gives examples of retrieved
key-frames.

For the version with early fusion, we first build a query
specific model of the object or place. To this end, we
mine local-bag-of words around the keypoints detected in
the query images, resulting in a more powerful mid-level
representation tuned towards the object or place we want to
retrieve. Using this query specific model we construct a new
histogram representation on the fly for each database image
and retrieve images using a tf-idf based retrieval approach,
using an inverted file system. This is again followed by spatial
verification.

E. Score Fusion

Because our main focus this year lies in incorporating dif-
ferent retrieval services, we chose a relatively simple algorithm
to fuse the scores from the above retrieval services. We first
normalized the scores of each component to the interval [0, 1]
by dividing them through the maximum score and then fused
them using a linear combination as follows (see also [26]):

score =

n∑
i=1

scorei (1)



(a) Top 10 Google Image results for the textual query “forest”

(b) Top 10 INS dataset results retrieved for the query “forest”

Fig. 1: On-The-Fly Object/Image Category Retrieval. Images downloaded from Google using a textual query (a) are used to train a
classifier and then retrieve images from the INS dataset (b).

(a) Top 20 INS retrieved results for specific person query “George Bush”

(b) Top 20 INS retrieved results for attribute query “Eyeglasses”

Fig. 2: On-The-Fly Person Retrieval. Retrived results from the INS dataset.

where score is the final score, and scorei is the confidence
score of the ith retrieval service. Note that a retrieval function
of weighted confidences scores is likely to perform better [33].
However, because our main focus this year was on the interac-
tive use of the on-the-detectors we plan non-uniform weighting
schemes for future work.

F. User Interface

The user interface used for both the KIS and INS tasks
was based on a version of the AXES Professional search
system interface that was developed by the AXES consortium
based on professional user requirements and feedback from
TRECVid 2011. Figure 4 shows a screenshot of the AXES
professional user interface. As with our 2011 TRECVid inter-
face, the AXES professional interface is a browser-based user
interface targeted at traditional desktop-based interaction. The

client-side interface uses HTML5, CSS3, and Javascript, and
AJAX to communicate asynchronously with the server side.

The interface is composed of two panels: the search archive
panel and the retrieved results panel. The search archive panel
allows user to formulate text-based, concept-based, or image-
based queries. It supports predefined visual concept selection,
visual similarity search, and video saving and download. The
retrieved results panel shows the results of a query in various
ways. There are four areas contained in search archive panel:
Search, Concept Classifiers, Similarity Search, and Saved
Videos. To ensure that there is always enough space on the
users display, even for different resolutions and window sizes,
each of these panels is collapsible.

Text-based queries can be entered via the search panel in the
top-left of the interface. If the user checks the metadata or spo-
ken words options, the relevance score will be calculated based



(a) Top 8 Google Image results for the textual query “Saint Peter’s Basilica”

(b) Top retrieved INS results for the query “Saint Peter’s Basilica”

(c) Top 8 Google Image results for the textual query “Eiffel tower”

(d) Top retrieved INS results for the query “Eiffel tower”

Fig. 3: On-The-Fly Specific Object/Place Retrieval. Images downloaded from Google using a textual query (a,c) are used
to retrieve images from the INS dataset (b,d). Note the diversity of retrieved key-frames: (c) contains key-frames from the
interior and exterior of Saint Peter’s Basilica, while (d) shows key-frames of the Eiffel tower at day and night.

Fig. 4: The AXES professional user interface showing a
detailed view of the search results.

on textual metadata (author, title, short description) or audio
transcripts generated using automatic speech recognition. The
visual search check box enables the on the fly visual concept
classification, which uses images from an external source
to build a visual model of the specified text. When enable
feedback is selected, the intermediate results from the external
search engine are presented to the user in a popup overlay.
This overlay allows the user to exclude specific images from
the model before training the on the fly classifier. The search
options in this panel can be combined, in which case the
results are compiled by fusing the output of the selected search
components.

The concept classifier panel allows the user to specify a
number of pre-defined high-level concepts be used in the
search. The available concept list is dynamic and retrieved
from the link management and structured search system on
initialization. Each concept is a tri-state toggle that can be
marked as positive, negative, or off. Clicking on the individual
concepts in the list cycles the selection between these options.
Marking a concept as positive will boost results containing that



Fig. 5: The AXES user interface adapted for KIS showing two
different result views.

concept so that they appear higher in the result list. Marking
a concept as negative has the opposite effect: it indicates that
the user wishes to see fewer results containing the concept and
so demotes videos that are likely to contain the concept.

The similarity search panel is drag-and-drop based: upon
retrieving a set of results, the user can drag any thumbnails
to the similarity search panel to use them as query images.
By default, the entire image is used as the query, but the user
may also specify a region of interest by double clicking on the
thumbnail and dragging a rectangle around the relevant region.
Images from external websites and search engines, as well as
images from the users local machine can also be added to
the similarity search panel by clicking on the add external
image button on the bottom right of the similarity search
area. Clicking on this button displayed a selection overlay
that allows the user to upload local images or specify external
images by pasting in the URL for the image. Images can be
removed from the similarity search panel simply by dragging
them back into the results area.

The saved videos panel, located at the lower-left of interface,
allows users to save video shots for subsequent use. As with
the similarity search area, videos can be saved using drag-and-
drop. Users can review saved videos by double clicking their
thumbnails to play back corresponding video.

The retrieved results area on the right of the interface
displays all videos retrieved that match the user’s query. The
results area allows the user to view the result list using
three different views: thumbnails, compact, and detailed. In
the thumbnail view (Figure 5, left), each retrieved video is
represented as a single thumbnail. User can double-click any
thumbnail to quickly preview the entire content of correspond-
ing video in a popup overlay. If the retrieved result is a segment
from the video, then the preview overlay will automatically
jump to the relevant location in the video. Users can drag
thumbnails to and from this view into the saved videos panel
or similarity search panel. The advantage of this panel is that
it provides a global overview of a large number of retrieved
videos on a single screen; the disadvantage is the lack of
detailed information on the videos.

The compact view (Figure 5, right) shows each retrieved
result as a thumbnail along with some very brief accompany-
ing metadata and match information. The displayed metadata
includes the video title, publication date, producer, language,
description, license, and clip duration. If any of these fields
are too long to fit in the available screen space, the fields
are truncated. Information is also shown to help the user to
understand the reason that the system retrieved this particular

Fig. 6: The asset view showing detailed information about a
single video.

result. This information is shown in a matched on field. This
is particularly helpful when a query is specified using multiple
modalities. For example, consider a text-based query in which
the user has selected both spoken words and visual (on the
fly concept) search. In this case, a particular match may not
look visually similar to the concept specified by the query text,
but may be retrieved because a person in the video spoke the
words specified in the query text. The matched on field shows
the user that the video was matched based on spoken words,
thus helping the user to understand the system’s behaviour and
increasing confidence in the results. As with the thumbnail
view, results can be freely dragged to and from the compact
view and the similarity search and saved videos panels.

In the detailed view (Figure 4), each row contains one
retrieved video with more detailed information than what is
presented in compact panel. As with the compact view, each
video is displayed as a thumbnail with associated metadata,
and the thumbnail may be double-clicked to start a preview
playback. The metadata and matching information is located
besides the thumbnails. The information presented is much
the same as with the compact view, the difference being
that there is more screen space dedicated to this information,
so that less information needs to be truncated. A coloured
segment location bar is also shown in this view. It describes the
temporal location of the retrieved video segment with respect
to the overall video. The length of the grey bar indicates video
duration, while the length of orange bar describes the duration
of video segment and the position where it is located. The
duration of segment is displayed textually over the segment
location bar. Below it, there are two buttons: preview and show
details. Clicking on preview button shows the standard preview
overlay. The show details button slides out the retrieved results
and displays a detailed asset view (Figure 6) for the selected
video.

Two forks of the AXES Professional user interface were
created to facilitate AXES participation in the 2012 TRECVid
benchmarking activity: one for the instance search task and
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Fig. 7: Overview of the AXES event detection system.

one for the known-item search task. These interfaces added
the extra features required for the experiments. Both of these
interfaces contained extra functionality for topic assignment,
topic specification, and task timing. The instance search in-
terface also delivered the necessary topic sample images to
the user. The known item search interface (Figure 4) added
functionality to validate saved videos with the KIS oracle and
inform the user if they had found the correct video.

III. MULTIMEDIA EVENT DETECTION

In this section we describe the AXES submission to the
Multimedia Event Detection (MED) track. Figure 7 gives an
overview of the system which we describe in more detail
below. In Section III-A we describe the three low-level features
we used, and in Section III-B how we encode them to
obtain a video-level signature. Section III-C gives more detail
on finding a balance between the computational cost and
discriminative power of the MBH motion feature. Section III-
D describes the fourth feature that is based on text detected
by OCR. Details on classifier training and feature fusion are
provided in III-E.

A. Low-level audio-visual features

For the audio channel we down-sample the original audio
track to 16 kHz with 16 bit resolution and then compute
Mel-frequency cepstral coefficients (MFCC) with a window
size of 25 ms and a step-size of 10 ms, keeping the first 12
coefficients of the final cosine transformation plus the energy
of the signal. We enhance the MFCCs with their first and
second order derivatives.

The visual content is described by static appearance and
motion features. For static visual appearances we use SIFT
features [?] extracted for one frame out of 60 frames. We
compute SIFT descriptors at multiple scales at points on a
spatially dense sampling grid (21×21 patches at 4 pixel steps).
Motion information is captured using the recently trajectory
+ Motion Boundary Histogram (MBH) features [31], which

have shown to obtain state-of-the-art results for human action
recognition.

The MBH feature is similar to SIFT, but based on motion
information derived from optical flow fields. Where SIFT
computes gradient orientation histograms over pixel gray value
intensities, MBH computes these over both the vertical and
horizontal spatial derivatives of the optic flow field. A second
difference is that SIFT descriptors are computed around small
patches in the image plane, where MBH descriptors are com-
puted along feature tracks. This ensures that each descriptor
is computed from the spatio-temporal volume which follows
the motion. Just like in SIFT, gradient orientation histograms
are computed in several regular cells along each trajectory,
and then concatenated. The procedure is illustrated in Figure
8. The top row of the figure shows (left) a video frame,
together with (center) its flow field (direction indicated by hue,
and magnitude coded by saturation), and (right) the gradients
computed in the horizontal component of the flow field (using
the same color coding). The bottom left panel shows a set
tracked features along each of which an MBH descriptor is
computed. The bottom right panel shows spatio-temporal cells
aligned with the feature track, for each of which gradient
orientation histograms are computed and then concatenated.
Since the MBH feature is relatively expensive to compute, we
consider in Section III-C the trade-off between the accuracy
of the descriptor vs. the computational efficiency by down-
sampling videos over space and time.

B. Low-level feature encoding

Once the three local low-level features are extracted, we
use them to construct a signature to characterize the video.
For this feature encoding step we proceed in the same manner
for all three low-level features by using a Fisher Vector (FV)
representation [23]. This is an extension of the bag-of-visual-
words (BoV) representation, which is widely used for image
classification and retrieval since its introduction in [7], [27].
The BoV approach is based on a quantization of the local
descriptor space (typically obtained off-line using a k-means
clustering on a large collection of local descriptors). A video
is then represented by a histogram that counts how many local
descriptors of that video are assigned to each quantization cell.
The size of histogram equals the number of quantization cells.

Fisher vector (FV) records, for each quantization cell, not
only the number of assigned descriptors, but also their mean
and variance along each dimension. Therefore, a smaller
number of quantization cells can be used than for BOV. This
leads to a signature with a dimension of K(2D + 1) for K
quantization cells and D dimensional descriptors. Since the
assignment of local descriptors to quantization cells is the
main computational cost, the FV signature is faster to compute.
Instead of using a k-means clustering, a Mixture of Gaussian
clustering is used in the FV representation. Local descriptors
are then assigned not only to a single quantization cell, but
in a weighted manner to multiple clusters using the posterior
component probability given the descriptor. In addition, we
apply power and L2 normalization, as introduced in [24].



Fig. 8: Illustration of the MBH motion feature computation, see text for more details.

C. Video rescaling for efficient MBH computation

The videos in the TRECVid MED dataset vary strongly in
size: the duration ranges from few seconds to one hour, while
the resolution goes from low quality (e.g., 128 × 88) to full
HD (1920×1080). We normalize the videos to make the MBH
feature extraction feasible and to ensure that the features across
different videos are comparable.

We experimented with rescaling the videos such that its
width is at most 160 pixels (small), 320 pixels (medium),
640 pixels (large), or 1280 pixels (maximum); the video’s
height is set to preserve the original aspect ratio.

For the temporal rescaling, we tried two approaches: com-
puting features only on parts of the video (chunk) and
dropping some frames uniformly, with a similar effect to
increasing the frame rate (skip). For both cases, we selected
the parameters such that we only process a quarter (T/4) or
half (T/2) of the video frames: for the chunk case, we used
each 120 frames (around 4 s) discarding the next 360 (T/4)
or the next 120 (T/2); and, for the skip case, we skip either
three frames out of each four (T/4) or one out of two (T/2).
From the timings in Table I we can see that the cost of MBH
feature extraction scales roughly linearly with the number of
pixels in the spatial-temporal video volume.

For computational efficiency we decided to rescale the
videos to either small or medium. To finally determine the
spatial and temporal resolution, we conducted experiments
using training set of Trecvid 2011 MED. This data set of
about 7500 videos was divided itself in a train and test set,
each containing about 100 videos for 15 event categories, plus
additional videos from the null class. We trained per-event
classifiers on samples from that event and the null class. We
evaluated in a similar scenario, using mean average precision
as metric. The results in Table II, show that the skip strategy
yields higher quality descriptors, and that spatial sub-sampling
yields a smaller degradation of performance than temporal
sub-sampling.

Based on these results, we decided to use the small

Temporal subsampling
Resolution Original 1

2
1
4

c
h
u
n
k maximum (1280× 720) 2:36:11 1:15:25 37:08

large (640× 360) 37:17 18:08 8:46
medium (320× 180) 9:08 4:29 2:10
small (160× 90) 2:07 1:01 0:30

s
k
i
p large (640× 360) 20:53 10:58

medium (320× 180) 5:01 2:40
small (160× 90) 1:08 0:36

TABLE I: CPU time for MBH feature extraction for various
rescalings of a 1280× 720 video with length 2m15s.

Temporal subsampling
Resolution Original 1

2
1
4

chunk
medium 52.630 49.069 44.045
small 49.313 46.443 41.843

split
medium 52.099 50.603
small 53.174 49.827

TABLE II: Mean average precision for different rescalings on
a subset of the MED 2011 dataset using MBH features.

spatial resolution, and skipped every second frame. These
design choices allowed us to compute the complete motion
feature pipeline —video re-scaling, MBH extraction, and FV
encoding— in 2.42 times the real-time duration of the video
on a single core.

D. Text features from optical character recognition

Our fourth feature encodes high-level information extracted
using an Optical Character Recognition (OCR) system. For
each video frame (sampling rate of 5Hz), MSER [14] regions
are extracted from the luminance channel (see Figure 9 a,
b). Regions that do not have a suitable aspect ratio or weak
gradients on their boundary are eliminated (Figure 9 c).
Remaining ones are grouped into text lines, which are further
segmented into words (Figure 9 d). Then, each region is



Video frame all MSERs

Gradient filtering Color and stroke width filtering

Pairs filtering Forming words

Video frame all MSERs
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(a) Video frame (b) Extracted MSERs

Video frame all MSERs
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Video frame all MSERs
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(c) Filtered MSERs (d) MSER grouping

Fig. 9: Three stages of the OCR system, see text for details.

expressed in term of a HOG-based descriptor [8], and a RBF
kernel SVM classifier (trained on standard Windows fonts)
predicts the probability of each character. Those probabilities
are combined using an English language model based on 4-
grams over letters to yield the final OCR results at the word
level.

From the OCR output, a sparse bag-of-word descriptor is
formed for each video. To decrease the descriptor sparsity, we
include in the words hypernyms (according to the Wordnet
lexical database). We also found that including bi-words (i.e.
pairs of words) improves their distinctiveness and the overall
performance.

E. Classifier training and feature fusion strategies

For each feature type (visual static and motion, audio,
and text) we learn linear Support Vector Machine (SVM)
classifiers, which permit efficient training and testing. We
compared different feature aggregation techniques. Early and
late fusion techniques are applied to combine the information
from the different features.

1) Feature aggregation techniques: We have explored two
setups to train classifiers. In the first we compute a single
signature for the complete video by averaging the frame-level
FVs into a single descriptor as described above. The second
option we considered was to segment the video in several
chunks of a fixed duration, and to compute a FV for each
chunk.

Using the first setup we train and use the SVM classifiers
in a conventional manner. For the second setup we proceed
as follows. During training all the chunks extracted from a
video are treated as separate training videos that inherit the
class label of the complete video. To classify a new video,
we apply the classifier to the chunks, and assign the video the
maximum classification score that was obtained among the
chunks.

While the second chunk-based approach might be less
sensitive to irrelevant portions of the video by taking the
maximum, we do no find it to be more effective in practice.
This might be understood by noting that during training this

approach introduces a form of label noise, since irrelevant
parts of a positive video are included in the training data for
the classifier. The benefit of the complete-video approach is
substantial, e.g. in initial experiments using the SIFT features
we measured an improvement from 44% to 51% mean av-
erage precision over the 10 categories used in the evaluation
presented in the next section.

2) Early and late fusion: In order to combine the different
low-level features we consider an early fusion strategy, which
consists in concatenating the signatures extracted from the
different features. A relative scaling of the features is deter-
mined using a cross-validation technique. We used a discrete
grid-search to set the weight of the feature signatures, but
instead of exhaustively considering all possible weights on a
pre-determined grid, we do a form of local search. A pool
of optimal combinations is maintained, and at each iteration,
the neighbors of the current optimum are evaluated, while the
less-than-optimal solutions are progressively removed from the
pool.

Second, we include a late-fusion stage in which we lin-
early combine the classifier scores computed from each of
the three low-level features, the OCR features, as well as
the early-fusion system. To find this late-fusion weights we
experimented with training a logistic discriminant classifier,
and using an exhaustive grid search which is feasible since at
this stage each video is represented by a small set of classifier
scores.

IV. EXPERIMENTS

In the following we describe our experiments for TRECVid
2012, see [18] for an overview.

A. Known Item Search

The known-item search experiments were carried out in
BBC London in September 2012. A total of 20 media pro-
fessionals from BBC participated in the experiments. The
experiments were carried out in sessions with between three
and six participants per session. Before each session, the
participants were briefed on the purpose of the experiment,
and given a short 10-15 minute tutorial on how to operate
the system. Each participant was assigned six topics and
had five minutes to complete each topic. After each session,
participants were asked to complete a brief survey and provide
some free form feedback on the system.

We submitted four runs of our system for evaluation. Each
run used an identical search system and user interface, varying
only in the users that actually performed the search. Figure 10
shows the proportion of correct videos found in each of the
runs submitted by all participants for evaluation. The AXES
runs are highlighted in blue and the interactive runs in green.
Users from our best run found 13 of the 25 topics, and the
performed above the median out of the submitted interactive
runs. It is clear from the table that interactive systems almost
always outperformed fully automatic systems. Figure 11 shows
the mean time taken by axes users to find the correct video in
each of the runs.
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Fig. 10: Proportion of correct videos found by KIS participants
in each of the KIS runs. The graph is ordered from top to
bottom by the number of videos found. The blue bars rep-
resent the runs submitted by AXES, the green bars represent
interactive runs submitted by other groups, and the gray bars
represent automatic runs.
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Fig. 11: Mean time (in minutes) required to find the correct
video by AXES runs and other runs.

B. Instance Search

The instance search experiments were carried out at Dublin
City University in August 2012. A total of 16 people partici-
pated in the experiments. Participants were primarily research
assistants, students, and post doctoral researchers. Each par-
ticipant was assigned five or six topics and had 15 minutes to
complete each topic. Participants were briefed on the purpose
of the experiment the day before it was run, and shown how to
operate the user interface. They were also given a sample topic
and some time to familiarize themselves with the interface
before the experiment.

We submitted four runs of our system for evaluation. Each
run trialled a different variant of the user interface. The user
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Fig. 12: Mean average precision over all submitted INS runs.
AXES runs are shown in blue and other interactive runs in
green.

interface variants for each of the runs were:

1) AXES_1_1: An un-tabbed user interface with a feedback
mechanism for visual search;

2) AXES_2_2: A tabbed user interface with a feedback
mechanism for visual search;

3) AXES_3_3: An un-tabbed user interface without a feed-
back mechanism for visual search;

4) AXES_4_4: A tabbed user interface without a feedback
mechanism for visual search.

In the tabbed variations of the user interface, search results
were displayed in a new in page tab each time the user
clicked on the Find button, allowing users to keep many results
around simultaneous available and start new queries while they
browsed previously found results. The feedback mechanism
allowed users to see the intermediate images that were returned
from the external search engine when performing an on the
fly visual concept search and select which ones that should be
used to model the concept.

Figure 12 shows mean average precision for all submitted
INS runs, with AXES runs shown in blue and other interactive
runs shown in green. Based on mAP, we found that the tabbed
version of the interface consistently outperformed the un-
tabbed version. It is also clear based on mAP that variants
with the feedback mechanism enabled outperformed their
counterparts without a feedback mechanism, suggesting that
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Fig. 13: Number of correct results out of the first 100 results
returned for all submitted INS runs. AXES runs are shown in
blue and other interactive runs in green.

the allowing users to refine the images used to train the on
the fly visual search models can often produce better results.

Figure 13 shows the number of correct results out of the first
100 results returned for all submitted INS runs. The two AXES
runs that incorporated the feedback mechanism outperformed
all other submitted runs, both interactive and automatic, when
compared under this metric.

Figure 14 shows a more detailed plot of the proportion of
relevant videos found by the experiment participants in each
of four runs. Each bar in this plot represents the performance
of a single user on a single topic. There was, in general, less
relevant videos per topic than in TRECVid 2011. There was
also clearly quite a few very difficult topics, particularly 9067,
9066, and 9061, in which none of our users were able to find
any relevant examples.

Figure 15 shows the relative proportions of relevant and
non-relevant videos saved by each participant by topic. In
comparison with TRECVid 2011, the proportion of non-
relevant videos that users believed were relevant (saved) has
significantly reduced, indicating that there was less ambiguity
in the topics this year.

C. Multimedia Event Detection

The setup of the MED 2012 evaluation is the same as in
2011, except that the training set is different, 10+5 more events
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Fig. 14: Comparison of the number of relevant videos with
the number of saved (returned) videos for each of the four
AXES runs. The number of saved videos are shown as dark
blue bars; the total number of relevant videos are shown as
light brown bars.
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Fig. 15: Plot showing the relative proportions of relevant and
non-relevant videos saved by each participant by topic. The
dark blue bars represent the number of relevant videos; the
light brown bars represent the number of non-relevant videos.

are added, and the test set is larger (98000 videos, 4000 h).
1) Description of submitted runs: The final results we sub-

mitted are computed from two descriptor versions: “small” that
we use in this section for validation, and “big” ones. We did
not have time to validate the big version on the validation set.
Therefore, we also submitted results on the small descriptors
as a fallback. The descriptor sizes are summed up in table III:

• for MBH: the 96 D MBH1 are reduced by PCA to
D = 64, that are aggregated in FVs of 2KD dimen-
sions (derivatives w.r.t. the mean and variance, each of
dimension KD). For the small version: K = 256, big:
K = 1024.

• for SIFT: the 128 D SIFT2 descriptors are reduced by
PCA to D = 32 leading to a FV of dimension 2KD. For
small: K = 256, big: K = 1024.

• for MFCC: the 13D MFCC is concatenated with its
derivative and 2nd derivative, resulting in D = 39. For
the small version, the FVs have dimension 2KD+K−1
(derivatives w.r.t. mean and variance + mixing weight for
each Gaussian). For the big version, two vocabularies
were used: one trained on audio data with speech, one

1The MBH implementation is available at: http://lear.inrialpes.
fr/people/wang/dense_trajectories

2Code for SIFT and Fisher: http://lear.inrialpes.fr/src/
inria_fisher

http://lear.inrialpes.fr/people/wang/dense_trajectories
http://lear.inrialpes.fr/people/wang/dense_trajectories
http://lear.inrialpes.fr/src/inria_fisher
http://lear.inrialpes.fr/src/inria_fisher


modality descriptor small version big version
dim × RT dim × RT

Motion MBH 32768 2.42 131072 3.0
Image SIFT 16384 2.54 65536 6.6
Audio MFCC 40447 0.15 80894 0.2
Text BoW 200k 1.42 200k 1.42
Total 289599 6.53 477502 11.22

TABLE III: Descriptor dimension and processing time (as
a slowdown factor with respect to the real video time). The
sparse bag-of words text descriptor comes in only one version.

run signature size late-fusion weights
c-LFdnsmall small grid search
c-LFjrlrsmall small logistic regression
p-LFdnbig big grid search
c-LFjrlrbig big logistic regression

TABLE IV: Description of our submitted runs.

on non-speech. FVs for the two were concatenated, hence
the size doubled. In both cases, K = 512.

Compared to the classification step, the descriptor extraction
is by far the most expensive operation. Of this, the local
descriptor extraction is the most expensive part.

Our four submitted runs are summerized in table IV. There
two runs for small descriptors and two for big ones. The two
variants differ in the way the late-fusion weights are obtained,
either by grid search or by logistic regression.

2) Results: The official results consist in a single score
(the average actual NDC over all events). This does allow
only a very coarse-grained analysis. Table V shows that on
the pre-specified events, we arrive second, and this ranking
does not depend on whether we use small or big descriptors.
We can observe that the big descriptors improve over the
small ones. Estimating the late-fusion weights with a logistic
regression is slightly better than brute-force grid search. We
only report results for the better variant. On the ad-hoc events,
for which ECNU did not submit, we get the best scores. The
performance of the big descriptors is on par with the one on the
pre-specifed run. The small descriptors perform significantly
worse on the ad-hoc events. An analysis of the cross-validation
scores indicate that this is due to a bug in the SIFT descriptor
computation.

3) Evaluation on MED 2011: To obtain a more detailed
analysis we evaluated our system using the TRECVID MED
2011 data set, and present results for the 10 event categories
that were also used in MED 2012. For each category between
100 and 300 training videos are available, while the null
class contains 9600 videos. The test set consists of 32,000

run pre-specified ad-hoc
run/group NDC run/group NDC

best group ECNU 0.4841 - -
our big c-LFjrlrbig 0.5154 c-LFjrlrbig 0.5357
our small c-LFjrlrsmall 0.5361 c-LFdnsmall 0.7112
best after us TokyoTechCanon 0.5698 BBNVISER 0.6873

TABLE V: Official MED results. The actual NDC is averaged
over all events.

videos totaling 1,000 hours of video. We used a 30-fold cross-
validation approach to set hyper-parameters, such as the SVM
regularization parameter, and the balancing between positive
and negative examples. Below, we use settings corresponding
to the c-LFdnsmall run submitted for TRECVID MED
2012. The error measure we report is the NDC measure for
the optimal threshold.

Among the results reported in Table VI we included the
results of the best system that entered in the 2011 edition
[16] (first row), and our 2011 submission (second row, see
[5] for details). Our current system is similar that of last
year; the most important differences are (i) the use of Fisher
Vector encoding for the MBH and MFCC features instead
of BOV encoding, in combination with linear SVMs instead
of non-linear RBF-χ2 kernel SVMs, (ii) the use of per-video
aggregated SIFT features, instead of per frame classification
and taking the maximum score, and (iii) the inclusion of OCR-
based text features.

From the results it is clear that each of the visual features
alone is quite competitive with last year’s system. In many
cases either the SIFT or MBH feature alone already performs
on par with last year’s submission. Late fusion of the low-level
audio-visual features seems slightly more effective than early
fusion, and provides a system that is outperforming our system
from 2011 on all categories. On average the result of 0.434 is
also comparable to last year’s best entry (0.436), although per
category results can differ significantly. Surprisingly, adding
the early fusion of the visual features on top of the separate
features in the late fusion step improves performance on 7
of the 10 categories. Finally, adding the text features further
improves results to outperform the winning system of last year
[16] on 6 out of 10 categories, as well as on average over all
10 classes.

Compared to [16] our system is relatively efficient, since
the latter computed more features (which represents the main
computational bottleneck), including:

• 4 static visual features (we only use dense SIFT),
• 3 static color features (we use none),
• 2 motion features (we only use MBH),
• 2 audio features (we only use MFCC),
• object detector results (we do not use),
• automatic speech recognition (we do not use).

From the additional features used in [16], the automatic speech
recognition is one that is of most potential value to our system.
First it is complementary to the other ones, and second our
text features based on OCR are quite sparse in the sense that
in many videos no or little text is detected.

In conclusion, the evaluation shows a marked improvement
of our system with respect to last year’s one, underlining the
benefit of (i) the FV encoding over BOV, and (ii) using the
sparse but high-level OCR text features. Moreover, by using
a small set of state-of-the art low-level descriptors we obtain
a system with performance that is better or comparable to the
winning entry in the 2011 edition of TRECVID MED which
was based on a multitude of features.



E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 Mean
Baselines

Best 2011 result [16] 0.442 0.438 0.263 0.379 0.622 0.561 0.446 0.308 0.331 0.575 0.436
INRIA-LEAR 2011 [5] 0.716 0.732 0.433 0.565 0.803 0.857 0.551 0.448 0.509 0.802 0.642

Individual features
MBH 0.766 0.785 0.338 0.590 0.754 0.768 0.523 0.254 0.531 0.652 0.596
SIFT 0.713 0.627 0.400 0.452 0.746 0.693 0.713 0.570 0.611 0.768 0.629
Audio 0.645 0.926 0.704 0.767 0.959 0.936 0.800 0.944 0.553 0.823 0.806
Text 0.950 0.941 0.914 0.992 0.927 0.845 0.951 0.995 0.683 0.884 0.908

Early fusion: MBH + SIFT + Audio
Non-weighted early fusion 0.496 0.445 0.257 0.385 0.582 0.630 0.432 0.250 0.376 0.578 0.443
Weighted early fusion 0.517 0.454 0.253 0.390 0.577 0.639 0.433 0.296 0.375 0.584 0.452

Late fusion
MBH + SIFT + Audio 0.488 0.480 0.261 0.377 0.586 0.646 0.414 0.214 0.351 0.517 0.434
MBH + SIFT + Audio + NW 0.484 0.456 0.265 0.391 0.566 0.641 0.405 0.220 0.345 0.515 0.429
MBH + SIFT + Audio + W 0.479 0.454 0.270 0.379 0.553 0.644 0.405 0.227 0.350 0.511 0.427
MBH + SIFT + Audio + NW + Text 0.458 0.451 0.257 0.383 0.538 0.550 0.391 0.226 0.344 0.507 0.411

TABLE VI: NDC performance on the 2011 MED dataset (w: weighted early fusion of MBH+SIFT, nw: idem, non-weighted).

V. SUMMARY

This paper described the AXES participation in the interac-
tive KIS and INS tasks, and the MED task for TRECVid 2012.
Our interactive INS and KIS systems used nearly identical
backends and user interfaces and focused using classifiers
trained at query time with positive examples collected from
external search engines.

Our MED system used a relatively simple approach based
on four low-level descriptors of audio and visual content, ag-
gregated to produce high-dimensional video-level signatures,
which were then used to train a set of linear classifiers. All
our systems performed relatively well in our experiments. Our
best KIS run found 13 of the 25 topics, our best INS runs
outperformed all other submitted runs in terms of P@100,
and our MED system achieved the second-best score of all
submitted runs in the main track, and best score in the ad-hoc
track. The results show that this configuration can perform
well, provided the descriptors are large enough and tuned
carefully. Their large dimension also makes it possible to use
linear classifiers only, reducing the computational cost and
memory consumption at test time.
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