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Abstract—This paper deals with the varying sampling control
of Linear Parameter Varying (LPV) systems, where varying sam-
pling can be used to accommodate limited computation or sensory
resources. A discrete-time Linear Fractional Representation of
a LPV system is used to design a gain-scheduled controller,
where both varying or uncertain parameters of the plant and
the sampling rate are gathered in a unique varying parameters
structure. The method is successfully applied for the case of the
altitude control of an Autonomous Underwater Vehicle (AUV).

I. INTRODUCTION

In the context of network-controlled systems the idea of

using varying control intervals naturally arises when the avail-

able computing power devoted to feedback control is limited,

e.g. in embedded systems. It can be easily shown, e.g. [1], that

decreasing the control frequency directly decreases the amount

of computing needed for control. In that case a feedback

scheduler is assumed to compute on-line new control intervals

according to the CPU load and system’s state. Another case

is when sensing cannot be done at any time. For example,

underwater vehicles mainly sense their environment using

acoustic sensors. Due to the slow propagation of the acoustic

signals, measurements are subject to delays increasing with

the distance to the target. Also, to avoid cross-talking between

acoustic sensors working in a narrow area these sensors must

be scheduled, so that some of the sensors used in the control

laws are triggered only at instants determined by an external

manager [2]. In all these cases the control intervals are not

equidistant, nevertheless they can be accurately measured by

the local clock of the controller when the control computation

is started.

Different control approaches have been considered to design

varying sampling discrete-time controller. In [3] a gridding

approach is used to design a discrete-time controller and

observer with variable sampling. In [4] stability analysis of

a controlled system under non uniform sampling is realized

with a predictor/observer structure. Furthermore the authors

have proposed in [5], [6] a LPV method for polytopic systems,

under the assumption that the system representation is affine

w.r.t the sampling period.

On the other hand Linear Parameter Varying representations

are also increasingly used to deal with robust control of non-

linear systems. In particular this allows to represent some non-

linearities as varying parameters (assuming some knowledge

of internal measurements), and also to schedule a controller

according to some performance criteria, e.g [7], [8].

The contribution stands here in the combination, for the

first time, of these two ideas by synthesizing a discrete-time

controller with a variable sampling rate for LPV systems.

The key point then relies on the connection of the sampling

parameter with the system’s parameters. Indeed, when the

number of varying parameters of the system increases, the

inherent conservatism of the previously studied polytopic

approach may lead to poor performances of the controlled

system, or to unsolved problems due to numerical issues.

Another approach is proposed here to design sampling

varying gain-scheduled controller for LPV systems, based

on the Linear Fractional Representation (LFR). This method

has already been studied in [9] concerning the synthesis of

discrete-time gain-scheduled controller, depending only on the

sampling period. This paper extends this previous work and

deals with the design of a gain scheduled LFR controller w.r.t

the sampling interval and w.r.t system’s parameters, given a

discrete-time Linear Fractional Representation (LFR) of the

LPV varying sampling model.

The approach is then applied to an Autonomous Underwater

Vehicle (AUV) for which for the operating constraints and

plant’s non-linearities fits well the LPV methodology.

In the next section, the LFR approach is presented, and an

approach to get a discrete-time LPV model scheduled by both

the plant’s varying parameters and the varying sampling rate

is described. In section III, two LPV models under LFR are

developed, considering a hierarchical control structure (altitude

and pitch angle control) for an Autonomous Underwater

Vehicle (AUV). Finally in section IV, the two controllers of the

hierarchical structure are designed using the LFR methodology

with variable sampling period, and applied for the altitude

control of the AUV.

II. LFR APPROACH

The LFR formulation is widely used in robust analysis to

study the influence of the plant’s uncertain parameters on

the stability and performances of a closed-loop system. It

can also be used to build a parameter dependent model of

a dynamical system, depending on a known set of parameters.



In particular, this approach can be used to keep some system’s

non linearities in a LFR model, and then linear control

tools can be used to compute a controller scheduled by the

parameters (as in[10]). In this section, the LFR formulation

is presented and applied to the case of discrete-time sampling

varying modeling and control of LPV systems.

A. LFR model depending on system parameters

The approach comes from the robust control theory and

consists in separating the LTI part P (not depending on the

set of parameters) from the varying part ∆ (parameters or

uncertainties), as shown on figure 1.
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Fig. 1. System under LFR form

The matrix ∆ represents the influence of the set of parame-

ters ρ(.) on the plant. ρ(.) is a varying parameter vector that

takes values in the parameter space Pρ such that:

Pρ :=
{

ρ(.) :=
[

ρ1(.) . . . ρn(.)
]T

∈ R N

ρi(.) ∈
[

ρ
i

ρi

]
∀i = 1, . . . ,N

}

where N is the number of varying parameters. Pρ is a convex

set.

Here the vector of parameters ρ(.) represents plant’s param-

eters to be kept in the model, for example some non-linearities

as in [11]. Note that the dependence of the system matrices

w.r.t the parameters is not bounded to be affine, e.g. it can be

rational.

For a LPV system depending on a vector of parameters

ρ(.) an equivalent Linear Fractional Representation can be

found as presented in Figure 1, with P a continuous-time LTI

plant (P(s)) and ∆ a block diagonal matrix composed from the

uncertain parameters.

The LFR representation is written as :
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where the continuous uncertain system’s matrices as :

A (continuous plant state) B = [B∆ B1 B2]

C =





C∆

C1

C2



 D =





D∆∆ D∆1 D∆2

D1∆ D11 D12

D2∆ D21 D22



 (2)

From this model, a gain scheduled controller can be com-

puted, depending on the same set of parameters ∆ (or on a

subset of ∆) as presented in [12]. Here the LFR approach

proposed in [9] will be extended to set-up a LFR model that

accounts for system and sampling parameters. The steps below

describe the proposed methodology.

B. Parametrized discretization

The interest of the previous LFR formulation is that the

varying part is separated from the system dynamics. Then the

LFR model in figure 1 can be discretized, assuming that the

uncertain input/outputs (w∆ and z∆) are sampled and hold at

the sampling frequency. Then, in that context, the methodology

proposed in [9] can be extended to get a sampling dependent

LFR discrete-time model of an LPV system.

From the LFR model (1), where non-linearities are consid-

ered as varying parameters, a new LFR is computed by adding

the sampling interval to the existing set of varying parameters.

The exact discretization w.r.t. a sampling interval h of the

LTI system (A,B,C,D) is given in equation (3)

G :

{

xk+1 = Ad(h)xk +Bd(h)[w∆ w u]T

[z∆ z y]T = Cxk +D[w∆ w u]T
(3)

with:

Ad(h) = eAh Bd(h) =
Z h

0
eAτdτB (4)

The usual numerical method uses the matrix exponential :
(

Ad(h) Bd(h)
0 I

)

= exp

((
A B

0 0

)

h

)

(5)

The sampling interval is assumed to be in [hmin,hmax] with

hmin > 0, it is evaluated around its nominal value h0 as:

h = h0 +δ with hmin −h0 ≤ δ ≤ hmax −h0 (6)

As explained in [5] equation (5) in this case becomes:
(

Ad(h) Bd(h)
0 I

)

=

(
Ad(h0) Bd(h0)

0 I

)(
Ad(δ) Bd(δ)

0 I

)

(7)

with matrices Ah0
= Ad(h0), Aδ = Ad(δ), Bh0

= Bd(h0) and

Bδ = Bd(δ) in equation 7 are defined following equation (5).

Matrices Ad(h) and Bd(h) depend both on the constant part

h0 and on the varying part δ of the sampling interval :

Ad(h) = Ah0
Aδ (8)

Bd(h) = Bh0
+Ah0

Bδ (9)

Only the matrices Aδ and Bδ depend on the varying part of

the sampling interval δ which appears in the varying part of

the LFR model. An approximate form of equation (4) can be

obtained by a Taylor series expansion at order l (with a very

good approximation for small values of δ, as shown in [5]).

Aδ = I +
l

∑
i=1

Ai

i!
δi +o(δl+1) (10)

Bδ =
l

∑
i=1

Ai−1B

i!
δi +o(δl+1) (11)



The Taylor series expansion associated with the uncertain

model leads to an LFR representation depending on the

variation of the sampling interval (δ) and the plant’s uncertain

parameters (∆) (see [9] for the details) as:
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Fig. 2. LFR system depending on system parameters and sampling period
variation
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with

Θ =

[
δI2×l×n 0

0 ∆

]

(13)

A = Ah0
B =

(
B1 B2 Bh0

)
(14)

C =

(
Cδ

C

)

D =





D̄ 0 0

0 D̄ D2u

0 0 D



 (15)

B1 = (Ah0
A 0n . . . 0n
︸       ︷︷       ︸

(l-1) times

) B2 = (Ah0
0n . . . 0n
︸       ︷︷       ︸

(l-1) times

) (16)

Cδ = (In . . . In
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l times
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l times
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(17)

where l is the order of the Taylor series expansion order in δ
and n is the number of states of the continuous plant.

C. LFR controller

Following [12] an H∞ gain scheduled LFR controller can be

computed from this discrete-time LFR model. This controller

depends on the same set of varying parameters Θ (or on a sub-

set of this one). The controller will be computed using tools

derived from the bounded Real Lemma. Some performance

specification are therefore fixed using weighting functions for

loop shaping and H∞ design. The dependence between the

discrete-time LTI plant Pd , the controller K, the parameter

block (including the system and sampling parameters) and

the weighting functions Wi and Wo is depicted in Figure 3.

Finally, the LFR controller is computed using the methodology

presented in [12].
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Fig. 3. LFR control structure

Note that the controller synthesis relies on the resolution of

LMIs (as for the Polytopic case, see [6]). But conversely with

the polytopic case, for the LFR case the number of LMIs to

be solved do not depend on the number of parameters, only

the sizes of the matrices in the LMIs are increasing with the

size of the Θ matrix. It is worth noting that to get the solution

of the control problems the YALMIP parser [13] and SeDuMi

solver [14] have been used.

III. A LPV DISCRETE-TIME MODEL OF THE AUV WITH

SAMPLING DEPENDENCE

The LFR formulation developed in the previous section is

applied to the altitude control of an Autonomous Underwater

Vehicle (AUV) using the hierarchical structure already used

in [6], depicted in Figure 4. Two cascaded loops are used

for altitude control, (Kz(δ) and Kθ(δ,ρ)) based on two LPV

models (Gdz
(δ) and Gdθ

(δ,ρ)) detailed in the sequel.

Ku

Kθ(δ, ρ)Kz(δ)
θref

zref β1, β2

∑

NL
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+

+

+

−

−

−

uref Qc

Fig. 4. Global control structure

The description of the full vehicle’s dynamics uses a 12

dimensional state vector: 6 for the positions x, y, z (linear



positions) and φ, θ and ψ (roll, pitch an yaw angles) expressed

in a fixed frame and 6 for the velocities (derivatives of the

positions), u, v, w, p, q, r expressed in the body frame.

A. LPV model for the pitch angle

To control motions around the pitch axis, a model reduction

is considered keeping only the 2 state variables of interest, the

pitch angle θ and the corresponding velocity q. The non-linear

state equations corresponding to these states are :

θ̇ =cos(φ)q− sin(φ)r

M55q̇ =− pr(Ix − Iz)−m[Zg(qw− rv)]

− (Zqm−Z f µV )gsin(θ)

− (Xqm−X f µV )gcos(θ)cos(φ)

+Mwqw|q|+Mqqq|q|+Γθ (18)

where M55 is a diagonal element of the mass matrix (in-

cluding water-added mass), m is the mass of the vehicle,

V the volume of the hull and µ the density of the fluid.

Ix, Iz,Zg,Zq,Z f ,Xq,X f ,Mwq are inertial and hydrodynamics

scalar coefficients. Γθ is the torque induced by the lift and

drag actions on the control surfaces.

An LFR representation of this model is obtained using a

tangential linearization around a variable equilibrium point :

all position and speeds are taken equal to zero except the

longitudinal speed (ueq) and the pitch angle (θeq kept as a

variable equilibrium point). The equations of the linearized

model are :

Gθ :







˙̃θ = q

M55q̇ = [−(Zgm−Z f µV )gcos(θeq)

+(Xgm−X f µV )gsin(θeq)]θ̃+Γθ

(19)

with θ̃ = θ−θeq.

The LFR formulation is used here to keep θ as a varying

parameters into the model formulation. Indeed, in previous

works, the limits of a simple linearization around a fixed

equilibrium point appeared : when the pitch angle significantly

deviates from 0 (the value chosen for linearization), the

linearized model becomes too different from the actual one

(due to the hydro-static return torque needing high actuators

solicitations to keep the equilibrium around θeq), leading to

poor control performances.

An LFR model of the vehicle described in the form of figure

1 is derived from equations (19). The ∆ block contains the

varying part of the model, which depends on the linearization

point (θeq). The LFR form is defined by :

Gθ :







( ˙̃θ

q̇

)

= A

(
θ̃

q

)

+
[

B∆ B1

]
(

w∆

u

)

(
z∆

z

)

=

[
C∆

I2

]

xk +

[
0 0

0 0

](
w∆

u

) (20)

with

A =

[
0 1
0 0

]

, B∆ =

[
0 0

−(Zqm−Z f µV )g (Xqm−X f µV )g

]

B1 =

[
0 0

Bβ1
Bβ2

]

, C∆ =

[
1 0
1 0

]

(21)

where the gains Bβ1
and Bβ2

depend on the geometry of

the control surfaces and are both proportional to u2
eq (assumed

constant), and the control vector is u = (β1 β2)
T .

z∆ =

[
θ̃

θ̃

]

; w∆ = ∆z∆; ∆ =

[
ρ1 0

0 ρ2

]

(22)

with: {
ρ1 = cos(θeq)
ρ2 = sin(θeq)

(23)

This model is then discretized, and the sampling interval,

considered as a varying parameter in the model, is added to

the ∆ parameter block (as in section II-B).

Finally, choosing a Taylor series expansion of order l = 1,

a discrete-time LFR is obtained (as in equations (12) to (17)),

with the parameter block Θ as:

Θ =





δ× I4 0 0

0 ρ1 0

0 0 ρ2



 (24)

B. LPV model for the altitude

Using the geometric relation between the altitude variations

and the pitch angle, it appears that the the pitch angle,

combined with the forward velocity, is in some sense the

”actuator” to be used to generate altitude variations with low

drag. Note that the cutoff frequency for the pitch controller

is chosen faster than the one for the altitude controller to

decouple the two loops, as done classically for cascade loops.

Therefore the altitude controller computes the pitch angle set-

point needed to follow the desired path.

The projection of the body velocities in the fixed frame

leads to a simple model :

ż = ueq sinθ

A first order development of the sinus function is valid for

the moderate pitch angles which are feasible by the AUV,

which provides the linear model and transfer function :

ż ≃ ueqθ

Gz(p) = z
θ =

ueq

p

(25)

Therefore, the inner loop composed by the non linear model

and the pitch angle controller Gθ can be approximated by

an integrator, leading to a low-order controller for which the

discretization step is very simple. The model given in (25) can

be discretized by :

zk+1 = zk +ueq.h.θk (26)

The sampling interval is still assumed to belong to

[hmin,hmax], so that the altitude discrete-time model is :

Gdz
(δ) : zk+1 = zk +(h0 +δ).ueq.θk (27)

Therefore, assuming a constant forward velocity ueq, the

altitude model is scheduled by the sampling interval only.



IV. CONTROL DESIGN

To control the altitude of the AUV at a constant forward ve-

locity, three controllers are designed to implement the structure

of Figure 4. An H∞ controller with a constant sampling period

of 0.1s is used to regulate the forward speed u around ueq, its

classical design is not detailed here.

Two controllers are synthesized in discrete time to control

the altitude z. The altitude controller Kz(δ) (computed from

the model Gdz
(δ)) gives a desired pitch angle θre f , which is

used by the pitch angle controller Kθ(δ,ρ) (model Gdθ
(δ,ρ))

to compute the actions β1 and β2 applied to the AUV.

A. H∞ loop shaping

The two controllers involved in the altitude control loop are

designed using the LFR methodology developed in II-C, based

on H∞ control design : some weighting functions are used to

specify the performances of the closed loop system.
1) Kθ(δ,ρ): The pitch angle controller is designed using

the structure of Figure 5. The weighting functions Wθe
and

Kθ(δ, ρ) Gθ(δ, ρ)

Wθe

-
+

θref ǫθ θ

Wθu

(

β1

β2

)

q

Fig. 5. Pitch control structure

Wθu
are defined in discrete-time as follows:

Wθe
=

z
MSθe

+wSθe

z+wSθe
εSθe

, Wθu
=

[
0.8 0

0 0.8

]

(28)

Remark: The weighting function on the tracking error is

defined directly in discrete-time as a constant (LTI) first order

filter. This correspond to an equivalent continuous time filter

that depends on the period, allowing the adaptation of the

performances with respect to the current sampling rate, as

explained in [5].

The controller Kθ(δ,ρ) is then computed as in [12] and

its Bode diagram plotted in Figure 6 shows the adaptation

of the controller gain w.r.t. the parameter vector. The pitch

angle controller is scheduled by the “physical” parameters

ρ1 = cos(θ) and ρ2 = sin(θ) and also the sampling interval

h. The bounds on these parameters are chosen as follow:

θ ∈ [−30;30] so ρ1 ∈ [0.86;1] and ρ2 ∈ [−0.5;0.5] and the

sampling interval h ∈ [0.005;0.03]s.
2) Kz(δ): The altitude controller is designed using a similar

control configuration (see figure 7).

with weighting functions defined as follows:

Wze =

z
M′

Sze

+w′
Sze

z+w′
Sze

ε′Sze

, Wzu = 5 (29)

The controller is synthesized and its Bode diagram is

presented in figure 8, for 10 frozen value of the parameter

δ. The altitude controller is scheduled only by the sampling

interval,varying inside the interval [0.05;0.3]s.
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B. Simulation results

The full (12 state variables) non-linear model (detailed in

[9]) is used for the simulations, combined with the global

control structure of Figure 4. The mission consists in bottom

following at a constant altitude with a constant forward ve-

locity (constant speed is needed for most payload, e.g., for

map making using a sonar). An independent discrete-time

H∞ controller regulates the cruising speed u around 1m/s

during all the simulation.

For testing purpose the control interval h is given as a

sinusoidal wave (Figure 11 top right) and the step in the

desired altitude is filtered to avoid unfeasible motion. The

simulation results are given in Figures 9 to 11. These results

show the good adaptability of the controller to the variation

of the parameters : whatever their variations, the closed-loop
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Fig. 10. Pitch reference and measure θ (left) Scheduling parameters (right)

stability is preserved for a large range of sampling intervals,

and the tracking of the altitude and pitch angle references is

achieved with a very good precision and time of response.

Compared with the same case study in [9], where only

the sampling rate was considered as a varying parameter,

considering here both the sampling interval and the plant’s

non-linearities (cos(θeq) and sin(θeq)) in the LPV model

allows to improve the close loop performances, in particular

through a more effective use of the actuators range. In the same

case study, it was also observed that when using discrete-time

H∞ controllers designed for a constant sampling period, the

control systems becomes unstable as soon as the sampling rate

significantly deviates from the nominal value.

V. CONCLUSION

In this paper, the problem of varying sampling control of

an LPV system is addressed. An LFR methodology provides

a unified framework to handle both the plant’s non-linearities

and the varying sampling rate in the same structure. The

approach is applied on the example of the altitude control

of a non-linear AUV.

Considering the sampling interval as a varying parameter

of the LTI system makes the methodology well suited for the

problem, since expressing the LPV system under a LFR makes

0 100 200 300 400 500
-0.5

0

0.5

time (s)

co
nt

ro
l s

ig
na

ls

Q
c

E
1

E
2

0 100 200 300 400 500

0.1

0.2

time (s)

sa
m

pl
in

g 
in

te
rv

al
 (s

)

0 100 200 300 400 500
0.8

0.9

1

1.1

time (s)

su
rg

e 
sp

ee
d 

u 
(m

/s
)

Fig. 11. left: Control signals ; right: Sampling interval (top) Speed (bottom)

quite simple the discretization step. The loop-shaping weight-

ing templates are also made sampling dependent to handle the

closed-loop performance variations w.r.t. the actual sampling

rate, and to preserve the stability margins. Furthermore the

model is well suited for control synthesis through currently

available LMI solvers.

However it is expected that these results, in particular their

conservatism, might be improved considering improvements

in LPV/LFR design, such as using new multipliers for Linear

Fractional Transformations as in [15], or by using parameter-

dependent Lyapunov functions as in [16].
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