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Abstract: This paper presents a novel approach to the design veri�cation of Software Product
Lines(SPL). The proposed approach assumes that the requirements and designs are modeled as
�nite state machines with variability information. The variability information at the requirement
and design levels are expressed di�erently and at di�erent levels of abstraction. Also the proposed
approach supports veri�cation of SPL in which new features and variability may be added incre-
mentally. Given the design and requirements of an SPL, the proposed design veri�cation method
ensures that every product at the design level behaviorally conforms to a product at the require-
ment level. The conformance procedure is compositional in the sense that the veri�cation of an
entire SPL consisting of multiple features is reduced to the veri�cation of the individual features.
The method has been implemented and demonstrated in a prototype tool SPLEnD (SPL Engine
for Design Veri�cation) on a couple of fairly large case studies.
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Compositional Veri�cation of Evolving Software
Product Lines

RØsumØ : Ce papier prØsente une approche nouvelle de vØri�cation pour les
lignes de produits logiciels (LPL). L’approche proposØe considŁre que la spØci-
�cation et la conception de LPL peuvent Œtre abstraites comme des automates
à Øtats �nis comprenant des informations sur la variabilitØ. Ces informations
sont exprimØes di�Øremment aux niveaux spØci�cation et conceptions. Sous ces
hypothŁses, l’approche proposØe supporte la vØri�cation de LPLs dans lesquelles
des fonctionnalitØs peuvent Œtre ajoutØes incrØmentalement.

A partir de la spØci�cation et de la conception d’une LPL, la mØthode de
vØri�cation proposØe assure que chaque produit au niveau conception se con-
forme, comportementalement parlant, à un produit au niveau spØci�cation.

La procØdure de conformitØ est compositionnelle car la vØri�cation de la
LPL en entier se rØduit à la vØri�cation des fonctionnalitØs qui la compose
individuellement. La mØthode a ØtØ implantØe dans un outil appelØ �SPLEnD"
et essayØe sur deux cas d’Øtude relativement larges.

Mots-clØs : VØri�cation, Ligne de produits logiciels, SPIN, QSAT



Compositional Veri�cation of Evolving SPL 3

1 Introduction
Large industrial software systems are often developed as Software Product Line
(SPL) with a common core set of features which are developed once and reused
across all the products. The products in an SPL di�er on a small set of features
which are speci�ed using variation points. The focus of this paper is on modeling
and analysis of SPLs which have drawn the attention of researchers recently [1,
3, 4].

Many approaches have been proposed to describe SPLs, the most prominent
one being feature diagrams. All these proposals seem to assume a global view of
SPL as they start with a complete list of features and the variation points using
a single vocabulary. All the subsequent SPL assets, like requirement documents,
design models, source codes, test cases, documentations, share the same de�ni-
tion and vocabulary [6, 18]. The assumption of a single homogeneous and global
view of variability description is inapplicable in many practical settings, where
there is no top level complete description of features and variabilities. They
often evolve during the long lifetime of an SPL as new features and variabilities
are added during the evolution. Further, SPL developers tend to use di�erent
representations and vocabulary of variability at di�erent stages of development:
at the requirement level, a more abstract and intuitive description of variation
points are used, while at the design level, the e�ciency of implementation of
variation points is of primary concern. For example, consider the case of an au-
tomotive SPL, where one variation point is the region of sale (eg. Asia Paci�c,
Europe, North America etc). At the requirement level, this variation point is ex-
pressed directly as an enumeration variable assuming one value for every region.
Whereas, at the design level, the variation point is expressed using two or three
boolean variables; by setting the values of the boolean variable appropriately,
the behavior speci�c to a region is selected at the time of deployment.

We present a design veri�cation approach that is more suited to the above
kind of evolving SPLs in which di�erent representation of variabilities would
be used at the requirement and design level. One natural and unique problem
that arises in this context is to relate formally the variation points expressed
at di�erent levels of abstractions. Another challenge is the analysis complexity:
the number of products is exponential in the number of variation points and
hence product centric analyses are not scalable. We propose a compositional
approach in which every feature of the SPL is �rst analyzed independently; the
per-feature analysis results are then combined to get the analysis result for the
whole SPL.

For capturing variability in the behavior of an SPL, we have extended the
standard �nite state machine model, which we call Finite State Machines with
Variability, in short, FSMv. The behavior and variability of a feature at the
requirement and design level can be modeled using FSMv. We de�ne a con-
formance relation between FSMvs to relate the requirement and design models.
This relation is based upon the standard language containment of state ma-
chines.

One unique feature of FSMv is that it provides a compositional operator
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4 Millo & Ramesh & Krishna & Ganesh

for composing the feature state machines to obtain a model for an SPL. This
operator thus enables incremental addition of features and variabilities. The
proposed veri�cation approach exploits the compositional structure of the SPL
models to contain the analysis complexity.

Figure 1 summarizes the proposed approach. It shows an SPL composed
of features f1 to fn. Each feature has an FSMv model of its requirements
(called FSMr) and an FSMv model derived from its design (called FSMd). The
proposed analysis method checks whether the FSMd of every feature conforms
to its FSMr (1st check). The output of this �rst step is a conformance relation
between each pair of FSMr and FSMd. The obtained conformance relations are
then used to check whether the actual behavior of the entire SPL conforms to
the expected one (2nd check). We reduce this check to checking the satis�ability
of a Quanti�ed Boolean Formula (QBF). There is no need to build the entire
behavioral model of the SPL in the second step.

We have built a prototype tool SPLEnD based upon this approach. This
tool performs the �rst check using SPIN [13] while the the well-known QBF
SAT solver CirQit [10] is used for the second step. We have experimented with
the tool using modest industrial size examples with very encouraging results.

1.1 Related works

FSMv and the proposed design veri�cation approach were developed indepen-
dently but has some apparent similarities with the FTS+ model [3], which also
extends �nite state machines to include certain product variability information.
However, there is a motivational di�erence between the two formalisms. The
aim of FTS+ is to model the entire SPL and hence there is a single global ma-
chine with a single global vocabulary for expressing variabilities; the variability
information represents the presence/absence of features in the SPL. In contrast,
our approach is based upon a di�ernt view of SPL: a feature with variability
is an increment in functionality and an SPL is a collection of features. We use
a single FSMv to model a feature and a whole SPL is modeled as a parallel
composition of FSMv machines.

SPL Design level 

f1 f�Y fn 

FSMr FSMr FSMr 

FSMd FSMd FSMd 

Extraction Extraction Extraction 

Abstraction Abstraction Abstraction 

SPL Requirement level 

�Y �Y 

�Y �Y 

Figure 1: The proposed veri�cation framework.
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Compositional Veri�cation of Evolving SPL 5

The di�erence in viewpoint has another consequence: FTS+ models, since
they model the entire SPL, tend to be large and hence has high analysis complex-
ity. E�cient abstraction techniques are hence used for solving this problem [4].
Whereas, each FSMv models a fraction of functionality and hence can be anal-
ysed easily. Further, the entire SPL can be modeled as composition of FSMvs
and can be e�ciently analysed using composition techniques.

Many other behavioral models have also been proposed [15, 20, 7, 11] which
are usually coupled with a variability model such as OVM [18], the Czarnecki
feature model [6], or VPM [9] to attain a fair level of variability expressibility.
Unlike all these approaches, FTS+ [3] and FSMv capture the variability in an
explicit way which we �nd more intuitive.

The Variation Point Model (VPM) of Hassan Gomaa [9] distinguishes be-
tween variability at the requirement and design levels but no design veri�cation
approach has been presented. Kathrin Berg et al.[2] propose a model for vari-
ability handling throughout the life cycle of the SPL. Andreas Metzeger et al.[19]
and M Riebisch et al.[21] provide a similar approach but they do not consider the
behavioral aspect. In the proposed approach, we extract the relation between
requirement and design level variability from a behavioral analysis.

Kathi Fisler et al. [14] have developed an analysis based on three-valued
model checking of automata de�ned using step-wise re�nement. Later on, Jing
Liu et al. [17] have revisited Fisler’s approach to provide a much more e�cient
method. Recently, Maxime Cordy et al. have extended Fisler’s approach to
LTL formula [5]. Kim Lauenroth et al. [16] as well as Andreas Classen et al.
[3, 4], and Gruler et al. [12] have developed model checking methods for SPL
behavior. These methods are based on the veri�cation of LTL/CTL/modal �
calculus formula.

All these veri�cation methods assume a global view of variability and hence
the representation of variability information is identical in both speci�cation
and the design. In contrast, in our work the speci�cation and design involve
variability information at di�erent levels of abstraction and hence one needs
mapping information between the two levels. Furthermore, our formalism allows
incremental addition of functionality and variability and enables compositional
veri�cation.

2 Design Veri�cation of a Single Feature
An SPL, in general consists of multiple features, each feature having di�erent
functionality and variability. A typical body control software of an automotive
system is an SPL that has several features such as door lock, lighting, seat
control etc. Each of these features has a distinct function and variability. For
example, the locking behaviour of a door lock function has a variation point
called transmission type. If the transmission type is manual then the door
is locked after the speed of the vehicle exceeds a certain threshold value; for
automatic transmission, the door is locked when the gear position is shifted out
of park. In this section we will focus on modeling and relating the design of a
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6 Millo & Ramesh & Krishna & Ganesh

single feature to its requirement.

2.1 FSMv and language re�nement
Finite State Machines with Variability (FSMv) is an extension of �nite state
machines, to represent all possible behaviours of a feature. Let V ar be a �nite
set of variables, each taking a value ranging over a �nite set of values. Let
x 2 V ar, and let Dom(x) be the �nite set of values that x can take. Let
S � Dom(x). The set of atomic formulae we consider are x = a, x 6= a, x 2 S,
x =2 S for a 2 Dom(x) and x = y, x 6= y for x; y 2 V ar. Let AV ar denote the
set of atomic formulae over V ar. Let � represent a typical element of AV ar.
De�ne � ::= � j :� j � ^� j � _� j� ) � to be the set of all well formed
predicates over V ar.

De�nition 1 (FSMv). An FSMv is a tuple A = hQ; q0;�; V ar; E; �i where:
(1) Q is a �nite set of states; q0 is the initial state; (2) � is a �nite set of
events; (3) V ar is a �nite set of variables; (4) E � Q � � � � � Q gives the
set of transitions. A transition t = (s; g; a; s0) represents a transition from state
s to state s0 on event a; the predicate g is called a guard of the transition t; g
is consistent and de�nes the variability domain of the transition; (5) � 2 � is
a consistent predicate called the global predicate.

The variables in V ar determines the variability allowed in the feature with
each possible valuation of the variables corresponding to a variant. The allowed
values of the variables are constrainted by the global predicate �. For example,
if � is ((x = 1) _ (x = 2)) ^ (x = y � 1), then the allowed variants are those
for which the values for the pairs (x; y) are (1; 2); (2; 3). The predicate in a
transition determines the variants to which the transition is applicable. While
drawing a transition t = (s; g; a; s0), the edge connecting s to s0 is decorated
with g : a. When g is true, we simply write a on the edge.

De�nition 2 (Con�guration). A con�guration, denoted by �, is an assignment
of values to the variables in V ar. The set of all con�gurations is denoted by
�V ar, or �, when V ar is clear from the context. De�ne �(�) = f� j � j= �g
to be the set of all those con�gurations that satisfy �. The elements of �(�)
are called valid con�gurations. Given a valid con�guration � and a transition
t = (s; g; a; s0), we say that t is enabled by � if � j= g.

As a concrete example of an FSMv, consider the feature Door lock in auto-
motive SPL which controls the locking of the doors when the vehicle starts. The
expected behavior of this feature is modeled using the FSMv Reqdl described
pictorially in Figure 2. In the initial state, this feature becomes active when
all the doors are closed. The doors are locked when either the speed of the
vehicle exceeds a prede�ned value or the gear is shifted out of park. An unlock
event reactivates the feature. There are four con�gurations for this feature all
of which are described using the three variables: DL_Enable, Transmissiondl
and DL_User_Pref . The top box denotes the values that these variables
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Compositional Veri�cation of Evolving SPL 7

can assume, and the bottom box gives the global predicate (�) associated
with the machine. � ensures that in every valid con�guration, the variable
Transmissiondl having the value Manual implies that DL_User_Pref takes
the value Speed. This captures the fact that in manual transmission, there is no
park position on the gearbox. To avoid clutter, we have replaced guards of the
form x = i with i in the �gure. The transition labeled with Disable : � means
that when DL_Enable assumes the value Disable, it stalls on any event.

DL_Enable: {Enable,Disable} 
Transmissiondl: {Auto,Manual} 
DL_User_Pref: {Speed, Park} 

Manual�ÆSpeed 

Disable: * 

Unlock 
Lock 

Figure 2: The FSMv of the feature Door lock.

2.1.1 Requirement against Design

In the requirement of a product line, the variability is usually discussed in
terms of variation points, which are at a high level of abstraction and focused
on clarity and expressibility. The restriction of the possible con�gurations is
expressed as general constraints on these variation points, e.g., the global pred-
icate Manual =) Speed in the Door lock example. In contrast, in a design,
the variability description is constrained by e�ciency, implementability, ease of
recon�guration and deployment considerations. For instance, in the automotive
applications, one often �nds calibration parameters ranging over a set of boolean
values. Further, the constraint on the calibration parameters (�) takes the spe-
cial form of the list of the possible con�gurations of the calibration parameters
in order to easily con�gure the design.

FSMv can capture both the design as well as the requirements of a feature.
We distinguish the requirement and design models by denoting them FSMr and
FSMd respectively. Figure 2 presents the FSMr, Reqdl, of the feature Door
lock. The FSMd, Desdl, of the feature Door lock is presented in Figure 3. The
structure of Desdl is similar to Reqdl except that the top elliptical shaped state
in Figure 2 is split into two states (the top and the bottom elliptical shaped
states) in Figure 3. The top state is for auto-transmission whereas the bottom
one is for manual transmission as can be seen from the con�guration label of the
two transitions going from the initial state. Two variables Cp1 and Cp2 encode
the possible con�gurations in the FSMd. The box in Figure 3 depicts the set
of possible values of these. Cp1 = Auto corresponds to the con�guration in
which the transmission is Auto whereas Cp1 = Moff corresponds to either the
manual transmission or the case when Cp1 is disabled; similarly, Cp2 = Speed
means that the user preference is set on Speed, while Cp2 = Poff means either
Park or the case when Cp2 is disabled.
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8 Millo & Ramesh & Krishna & Ganesh

Cp1:{Moff, Auto} 
Cp2:{Poff, Speed} 

Moff�?Poff:*  

Lock 

Lock 

S
pe

ed
>

n 

M
of

f:U
nl

oc
k 

Poff: 
ShiftOutOfPark 

Figure 3: Desdl: the FSMd abstracted from the design of the feature Door lock.

2.2 Variants of FSMv and Conformance

Having described the design and requirement behaviour of a feature f using
FSMd and FSMr respectively, we now de�ne the notions of variants and con-
formance. A variant of an FSMv corresponds to one of the several possible
behaviours of the feature (at the design, requirement level respectively). Given
a feature f , and a (FSMd, FSMr) pair corresponding to f , we say that the de-
sign of f conforms to the requirements of f provided every variant of the FSMd
has a corresponding FSMr variant.

De�nition 3 (Variant of an FSMv). Let A = hQ; q0;�; V ar; E; �i be an FSMv
and � 2 �(�) be a valid con�guration of A. A variant of A is an FSM obtained
by retaining only transitions t = (s; g; a; s0), and states s; s0 such that g j= �.
Once the relevant states and transitions are identi�ed, we remove the guards g
from all the transitions; � is also removed. The resultant FSM is denoted A # �.

In the example of FSMr for the feature Door lock, the variant Reqdl #
hEnable; Auto; Parki does not contain the transitions with the event Speed > n
and �. We compare the FSMd and FSMr of a feature f using their variants.
Given an FSMv A, we associate with each con�guration � of A the language of
the FSM A # �, denoted by L(A # �). We say that an FSMd Ad conforms to
an FSMr Ar if and only if the behaviour of every variant of Ad is contained in
the behaviour of some variant of Ar.

De�nition 4 (The conformance mapping �). Let Ar and Ad be a pair of FSMr
and FSMd respectively with global predicates �d and �r. Let �d;�r be the set
of all design, requirement con�gurations. Then Ad conforms to Ar denoted
Ad �� Ar if there exists a mapping � : �d(�d) ! 2�r(�r) such that 8�d 2
�d(�d);9�r 2 �r(�r) satisfying L(Ad # �d) � L(Ar # �r). � is called the
conformance mapping.

In the featureDoor lock, �(hMoff; Speedi) contains hEnable;Manual; Speedi
since L(Desdl # hMoff; Speedi) � L(Reqdl # hEnable;Manual; Speedi).

Inria



Compositional Veri�cation of Evolving SPL 9

2.3 Checking the conformance
Let f be a feature with FSMr Reqf and FSMd Desf . Then the conformance
checking problem is to compute a mapping � such that Desf �� Reqf .

The conformance mapping is computed by comparing every projection of
Desf with every projection of Reqf . Algorithm 1, given below, presents a pos-
sible implementation using the standard automata containment algorithm[22],
as implemented in the SPIN model checker [13]. To use SPIN, one should de-
scribe the system along with the checked property in the Promela language [13].
Out of this description, SPIN generates the pan.c �le which is the veri�er for the
system. After compilation, the pan(.exe) executable performs the veri�cation.
The details of the conformance checking using Algorithm 1 and its correctness
can be found in Appendix A. Lemma 5 proves the correctness of Algorithm 1.

Algorithm 1 implements the conformance checking using SPIN.
Input : Desf , Reqf .
Output : The mapping � when Desf �� Reqf
1. Generate a Promela �le which contains Reqf , Desf , the environment, the
never claim, and the initialization sequence.
2. Launch the full veri�cation algorithm of spin
3. Build the mapping � from the output of spin.
4. Conclude whether the design conforms to the requirement
if 8�d 2 �(�d), �(�d) 6= ; then
return true along with (�)

else
return false along with (�d) {where �d has no correspondence through
�}

end if

Lemma 5. Given FSMd Desf and FSMr Reqf for a feature f , let (�d; �r) be a
pair of design and requirement con�gurations. Then, L(Desf # �d) 6� L(Reqf #
�r) if and only if :error(Desf ) ^ error(Reqf ).

Proof. The proof can be found in Appendix A.1.

3 Design Veri�cation of SPL
In the previous section, we looked at individual features in an SPL and provided
a method for comparing the design and requirements of a feature, both contain-
ing variabilities. In this section, we extend this method to verifying a whole SPL
design against its requirements. An SPL is essentially a composition of multiple
features satisfying certain constraints. We de�ne a parallel composition opera-
tor over FSMv to model an SPL. The features in an SPL can interact and we
follow one of the standard methods of allowing the composed FSMv models to
share some common events, which correspond to two-party handshake commu-
nication events. A distinguishing aspect of the proposed parallel operator is
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10 Millo & Ramesh & Krishna & Ganesh

that it takes into account the constraints across the composed machines. The
constraints could be of various types, e.g. dependency and exclusion relations,
and are modeled as predicates over variables of the composed features.

De�nition 6 (Parallel composition of FSMv).
Let Ax = hQx; qx0 ;�x; V arx; Ex; �xi, x 2 f1; 2g be two FSMv’s with V ar1 \
V ar2 = ;. Let H = �1 \ �2 be the set of handshaking events. Let �12 be a
predicate over V ar1 [ V ar2, such that �12 ^ �1 ^ �2 is consistent. �12 is the
composition predicate capturing the possible constraints between the variabilities
of the two composed features. Let � = �12 ^ �1 ^ �2.

The parallel composition of A1 and A2 denoted by A = A1 k A2 is a tuple
hQ1�Q2; (q1

0 ; q2
0);�1[�2; V ar1[V ar2; E; �i with transitions de�ned as follows:

Consider a state (s1; s2) 2 Q1 � Q2, and transitions (s1; g1; a1; s01) 2 E1 and
(s2; g2; a2; s02) 2 E2.
(1) If a1 = a2 = a 2 H, de�ne ((s1; s2); g1 ^ g2; a; (s01; s02)) 2 E, provided g1 ^ g2
is consistent and g1 ^ g2 j= �.
(2) If a1 2 �1nH, de�ne ((s1; s2); g1; a1; (s01; s2)) 2 E, g1 j= �.
(3) If a2 2 �2nH, de�ne ((s1; s2); g2; a2; (s1; s02)) 2 E, g2 j= �.

For illustration, consider the feature Door unlock which automates the un-
locking of the doors in a vehicle. Figure 4-a gives the FSMr of the feature
extracted from the requirements. From the initial state, the feature becomes
active when the event Lock happens. As soon as either the key is removed from
ignition or the gear is shifted to park position, the doors get unlocked and the
feature Door unlock becomes inactive. Figure 4-b presents the FSMd of the fea-
ture Door unlock. It is quite similar to the requirement except that the active
state is split in two: the feature reacts to the ignition O� event in one state,
and to the Shift Into Park event in another state.

Let us consider the composition of the two FSMrs of the features Door lock
and Door unlock. The handshake events between the two features are Lock
and Unlock. In the composition, we introduce the following composition pred-
icate: (DU_Enable = Enable, DL_Enable = Enable) ^ Transmissiondl =
Transmissiondu, which brings out the natural constraints that Door lock fea-
ture is enabled if and only if Door unlock is also enabled and the transmission
status has to be the same.

The valid con�gurations after composition are restricted by the composition
predicate. We provide a few de�nitions to de�ne composite valid con�gurations.

De�nition 7 (Composing Con�gurations). Let Ai = (Qi; qi0;�i; V ari; Ei; �i) be
two FSMv’s, and let A = A1 k A2 be as given by de�nition 6. Let � = �12^�1^�2
be the global predicate of A. Consider two valid con�gurations �1 2 �(�1)
and �2 2 �(�2) of A1 and A2. The compostion of �1; �2, denoted �12 is a
con�guration over V ar1 [ V ar2 such that �12 agrees with �1 over V ar1, and
agrees with �2 over V ar2, and �12 j= �. �12 is a valid con�guration of A and
we denote it by �12 = �1 + �2.

Inria



Compositional Veri�cation of Evolving SPL 11

DU_Enable:{Enable, Disable} 
Transmissiondu:{Auto, Manual} 
DU_User_Pref:{Key, Park} 

Disable:* 

Unlock 

Lock 

Manual�ÆKey 

Cp3:{Moff,Auto} 
Cp4:{Poff,Key} 

Moff�?Poff:*  

P
off:Lock K

ey
:L

oc
k 

Unlock 

a) b)

Figure 4: a) Reqdu: the Door unlock FSMr and b) Desdu: the corresponding
FSMd.

Lemma 8. Let A1 and A2 be two FSMv’s. For each valid con�guration �
of A1 k A2, there are valid con�gurations �1 of A1 and �2 of A2 such that
� = �1 + �2.

Proof. In Appendix B.

In the example of featureDoor Lock, the con�guration hEnable; Auto; Speedi
from Reqdl can be composed with hEnable; Auto;Keyi from Reqdu because the
transmission is Auto in both (which is speci�ed in the composition predicate).
hEnable; Auto; Speed;Enable; Auto;Keyi is a con�guration of the parallel com-
position of Reqdl with Reqdu.

The parallel composition of FSMv’s is such that each variant of the compo-
sition of two FSMv’s is equal to the composition of variants of the individual
FSMv’s.

Lemma 9 (Variants of a composed FSMv). Let A1 and A2 be two FSMv ma-
chines. Let � be a valid con�guration of A1 k A2. Then L([A1 k A2] # �) =
L(A1 # �) k L(A2 # �). 1

Proof. In Appendix C.

3.0.1 Re�nement and Parallel Composition

The de�nition of parallel composition naturally lends itself to a notion of addi-
tion of conformance mappings between design and requirement pairs. Consider
FSMr’s R1; R2 corresponding to two features f1; f2. Let D1; D2 be the corre-
sponding FSMd’s. Let �r1; �r2 be the global predicates of R1; R2, and let �d1; �d2
be the global predicates of D1; D2 respectively. Assume that D1 ��1 R1 and
D2 ��2 R2. Let �r = �r12 ^ �r1 ^ �r2 be the global predicate of R1 k R2; likewise,
let �d = �d12 ^ �d1 ^ �d2 be the global predicate of D1 k D2. We now want to ask
if D1 k D2 conforms to R1 k R2. This amounts to computing a conformance

1The right hand side k refers to the standard communicating �nite state machine compo-
sition.
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12 Millo & Ramesh & Krishna & Ganesh

mapping between D1 k D2 and R1 k R2 given �1;�2. Consider any valid con-
�guration �d of D1 k D2. By Lemma 8, we can write �d as �d1 + �d2 , where
�d1 ; �d2 are valid con�gurations of D1; D2 respectively. Since D1 ��1 R1 and
D2 ��2 R2, there exists valid con�gurations �r1 2 �1(�d1) and �r2 2 �2(�d2) in
R1; R2 respectively. Given this, the addition of �1;�2 is de�ned as follows:

De�nition 10 (Addition of conformance mappings). The addition of confor-
mance mappings �1;�2 is de�ned to be a mapping � = �1 + �2 as follows. For
every valid con�guration �d = �d1 + �d2 of D1 k D2,

�(�d) = f�r j �r is a valid con�guration of R1 k R2; �r = �r1 + �r2
for valid con�gurations �r1 2 �1(�d1); �r2 2 �2(�d2)g

Lemma 11 (Conformance of composition). Let R1 and R2 be two FSMr ma-
chines corresponding to features f1; f2, and let D1 and D2 be the corresponding
FSMd machines. Let D1 ��1 R1 and D2 ��2 R2. Let � = �1 + �2 and �d be
a valid con�guration of D1 k D2. Then, 8�r 2 �(�d), L([(D1 k D2) # �d]) �
L([(R1 k R2) # �r]).

Proof. In Appendix D.

Considering the example, in the FSMrReqdl k Reqdu with �r : DL_Enable =
DU_Enable ^ Transmissiondl = Transmissiondu, Any con�guration where
DL_Enable = Enable butDU_Enable = Disable is invalid. However, �(hAuto; Speedi)
contains only con�gurations where DL_Enable = Enable, �0(hMoff; Poffi)
contains only con�gurations where DU_Enable = Disable and hAuto; Speedi+
hMoff; Poffi is a valid con�guration of Desdl k Desdu. So the design does
not conform to the requirement. However, if we make the extra assumption
that �d : Cp1 = Moff ^ Cp2 = Poff , Cp3 = Moff ^ Cp4 = Poff , then
hAuto; Speedi and hMoff; Poffi are not compatible anymore and as a result
the design conforms to the requirement.

3.1 Conformance Checking

Let F = ff1; :::; fng be a set of features and F be the complete system com-
prising the features in F , along with the relations between the features. Let
Ri be the FSMr modeling the expected behavior and variability of fi, and Di
the FSMd extracted from the design of fi. Let �r12:::n and �d12:::n be the com-
positional predicates for R1 k � � � k Rn and D1 k � � � k Dn respectively. Now
we state the variability conformance problem for an SPL as follows: Does there
exist a conformance mapping � such that D1 k � � � k Dn �� R1 k � � � k : : : Rn?
A compositional approach to solve the problem is to:
(i) check whether the design of every feature conforms to its requirement using
Algorithm 1; (ii) check whether every valid con�guration of D1 k � � � k Dn can
be mapped to a valid con�guration of R1 k � � � k Rn. This is the conformance
condition.
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3.2 Checking Conformance Using QBF

We implement the second check using QBF solving. Given FSMd’s D1; : : : ; Dn
and FSMr’s R1; : : : ; Rn,
(1) Let V ar(Di) = fvdi1; : : : ; vding be the set of variables of design Di, and
V ar(Ri) = fvri1; : : : ; vrimg, the set of variables of requirement Ri. Let �d :
(vdi1 = a1; : : : ; vdin = an) be a con�guration of Di. We denote by �di (xi1; : : : ; xin)
a formula which takes n values from Dom(Di); 1 � i � n as arguments. If
(vdi1 = a1; : : : ; vdin = an) is a chosen assignment, then �di (xi1; : : : ; xin) is the
conjunction

Vn
j=1(xij = aj);

(2) Given n FSMd’s and n FSMr’s check if Di conforms to Ri for all 1 � i � n
using Algorithm 1. This gives the map �i. Assume �i(�di ) = f�ri1; : : : ; �rimg,
where each of �ri1; : : : ; �rim are con�gurations of Ri, that have been mapped by
�i to some con�guration �di of Di.
(3) We encode the above conformance mapping using the formula
�i(xi1; xi2; : : : ; xin) =

Wm
j=1 �

r
ij(yi1; : : : ; yil), where xij takes values fromDom(vdij),

and yij from Dom(vrij).
(4) Let ’di;j = �d ^ �di ^ �dj and ’ri;j = �r ^ �ri ^ �rj represent respectively the
propositional formulae which ensures consistency of the global predicates of
Di; Dj and Ri; Rj along with the compositional predicates �d and �r. Given a
set S � f1; 2; : : : ; ng, ’dS and ’rS can be appropriately written.
The QBF formula for conformance checking is given by

	 = 8x11 : : : xnin [’d1;2;:::;n ) 9y11 : : : ynjn(�1 ^ � � � ^ �n ^ ’r1;2;:::;n)]

Theorem 12. Given a SPL, let ff1; : : : ; fng be the set of features in a chosen
product. Let Di; Ri be the FSMd and FSMr for feature fi. Then D1 k � � � k Dn
conforms to R1 k � � � k Rn i� 	 holds.

Proof. In Appendix E.

4 Implementation and Case Studies

Figure 5: Overview of SPLEnD

RR n° 8125



14 Millo & Ramesh & Krishna & Ganesh

Figure 5 pictorially describes the tool SPLEnD. It takes as input, a pair of
xml �les corresponding to FSMd, FSMr and outputs a PROMELA �le. The
latter is fed to SPIN, which returns the conformance mappings, or declares non-
conformance; given the conformance mapping the tool computes a QBF formula
	 which is fed to CirQit.

We considered two real case studies for our experimentation: Entry Control
Product Line, ECPL having 7 features and Banking Software Product Line,
BSPL, composed of 25 features. Appendices F.1 and F.2, contain the details
of ECPL and BSPL case studies. The FSMr, FSMd models of each feature
contains less than 10 states.

The analysis results for the two case studies are summarized in Figures 7
and 6 which gives the times taken by Algorithm 1. The number of product
variants and the time taken for Algorithm 1 are very small in both case studies.
In the case of ECPL, a bug was found in the feature Door Lock 2. In this case,
after �xing the bug, for the second step we used SPIN which took 11 seconds.
For BSPL, the second step was performed using the QBF approach and CirQit
took just 0.005 seconds.

In the automotive domain, really very large SPLs are constructed [8]. Before
undertaking the task of modeling such large examples, in order to quickly de-
termine the scalability of our approach, we generated many random SPLs with
5000 to 25,000 features. Each of the corresponding FSMr/FSMd has two vari-
ables (four variants), and 3 to 8 states. Similar to the ECPL and BSPL cases,
SPIN took very little time (less than 0.5 seconds) for each (FSMr, FSMd) pair.
The composite FSMr/FSMd, and hence the QBF formula 	 has then 10,000 to
50,000 variables. As we can see from Figure 8, the the time taken for the largest
example is 196.69 seconds which is quite e�cient. Encouraged by this result,
we plan to take up the large industrial case studies.

5 Conclusion
This paper motivated the need for extending the classical design veri�cation
problem to evolving SPL in which features and variability information can be
added incrementally. The novel aspects of the proposed work are: (i) it veri�es
that the variability at the design level conforms to that at the requirement level,
(ii) it is compositional and (iii) it reduces the conformance checking problem
to QBF sat solving. A prototype tool has been implemented and experimented
with modest sized examples with encouraging results.
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Appendix

A Conformance Checking using SPIN
Algorithm 1 starts by generating a Promela �le containing the de�nition of (i)
the environment, (ii) Desf , (iii) Reqf , (iv) the initialization sequence and (v)
a never claim which holds for the language containment condition. During the
initialization, the con�guration of Desf and Reqf are initialized with a ran-
dom couple of con�gurations. Then the environment, followed by Desf and
Reqf are run atomically. The never claim assertion is : never((:error(Desf )^
error(Reqf )), where error(X) means that X is in error state. The never claim
is violated when the design is not in the error state but the requirement pro-
cess is in the error state. This corresponds to a design con�guration �d such
that Desf # �d handles an event, while Reqf # �r does not, for all possible re-
quirement con�gurations �r. Algorithm 1 runs the full veri�cation algorithm of
SPIN for every pair (�d; �r) of design and requirement con�gurations. SPIN(i.e.
pan(.exe)) returns the list of pairs for which the conformance condition is vio-
lated. Every other pair is added to the conformance mapping �.

A.1 Proof of Lemma 5
Assume L(Desf # �d) 6� L(Reqf # �r). Then there exists a word w 2 L(Desf #
�d) which is pre�xed by u:e, with u a �nite pre�x of a word in L(Reqf # �r),
and e an event such that u:e is not a pre�x of any word in L(Reqf # �r). In
such a situation, Desf does not go to the error state but Reqf does.

Conversely, if L(Desf # �d) � L(Reqf # �r), then whenever Desf is not in
an error state, Reqf will also not be in an error state.

B Proof of Lemma 8
Let � 2 �(�) with � = �12 ^ �1 ^ �2 be a valid con�guration of A1 k A2. �1 and
�2 are the global predicates of A1, A2 respectively, and �12 is the composition
predicate of A1, A2. By de�nition of valid con�guration, � j= �; hence � j= �1
and � j= �2. Since � is a con�guration over V ar1 [ V ar2, let us consider the
restriction of � on V ar1, call the resulting con�guration �1. Then �1 j= �1.
Similarly, call the restriction of � on V ar2 as �2. Then �2 j= �2. Then, �1; �2
are respectively valid con�gurations of A1 and A2. Hence, by de�nition 7, we
obtain � = �1 + �2.

C Proof of Lemma 9
We review some preliminary de�nitions before the proof. In the following, the
operation k stands for (i) shu�e of words, (ii) shu�e of languages, (iii)parallel
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composition of FSMs, and (iv) parallel composition of FSMv. The context is
clear in each case; hence there is no confusion.

De�nition 13. Let �1; : : : ;�n be n �nite sets of symbols. Let � be a �nite
set. Given a word w 2 ��, we denote by w # �i, the unique subword of w
over ��i . For example, if �1 = fa; b; eg;�2 = fa; e; fg, and if we consider
w = aefedefr 2 fa; d; e; f; rg�, then w # �1 = aeee and w # �2 = aefeef .

De�nition 14. (Asynchronous Shu�e) Let �1; : : : ;�n be n �nite sets. Let
� = [ni=1�i. Consider n words u1; u2; : : : ; un, ui 2 ��i . The asynchronous
shu�e of u1; : : : ; un denoted u1 k � � � k un is de�ned as fw j w # �i = uig.

As an example, consider �1 = fa; b; c; fg;�2 = fa; d; e; fg;�3 = fc; d; fg,
and the words u1 = abcf; u2 = adfe; u3 = dcf . Then the word w = abdcfe is in
u1 k u2 k u3 since, w # �i = ui for i = 1; 2; 3. Similarly, the word w0 = adbcfe
is also in u1 k u2 k u3. However, the word w00 = aebcfd is not in u1 k u2 k u3,
since w00 # �2 = aefd, not u2.

The de�nition of shu�e can be extended from words to languages. We use
the same notation k for the shu�e of sets, as well as for the shu�e of words.

The asynchronous shu�e of two languages L1; L2 is de�ned as L1 k L2 =
fw1 k w2 j w1 2 L1; w2 2 L2g. For example, if L1 = fabcf; abbfg is a language
over �1 = fa; b; c; fg and L2 = fadfeg is a language over fa; d; e; fg, then L1 k
L2 = fabcf k adfe; abbf k adfeg=fabcdfe; adbcfe; abdcfe; abbdfe; abdbfe; adbbfeg.

De�nition 15. Let Mi = (Qi; qi;�i; �i) and Mj = (Qj ; qj ;�j ; �j) be complete
FSMs. The asynchronous product of Mi;Mj is de�ned as the FSM Mi kMj =
(Qi �Qj ; (qi; qj);�i [ �j ; �) where

1. �((q; q0); a) = (�i(q; a); �j(q0; a)); a 2 �i \ �j,

2. �((q; q0); a) = (�i(q; a); q0); a 2 �i; a =2 �j,

3. �((q; q0); a) = (q; �j(q0; a)); a 2 �j ; a =2 �i.

On the common events, both FSMs move in parallel; otherwise, they move in-
dependent of each other.

It is known that L(Mi k Mj) = L(Mi) k L(Mj). Now we start the proof of
Lemma 9.
Consider a valid con�guration � of A1 k A2. As seen in Lemma 8, we can �nd
valid con�gurations �1 of A1 and �2 of A2 such that � = �1 + �2. The initial
state of A1 k A2 is (q1

0 ; q2
0), where q0

1 is the initial state of A1 and q0
2 is the initial

state of A2. By de�nitions 6 and 15, if we consider a string w = a1a2 : : : an 2
L[A1 k A2] # �, then we can �nd strings w1 2 L(A1 # �) = L(A1 # �1) and
w2 2 L(A2 # �) = L(A2 # �2) such that w = w1 k w2 in the sense of de�nition
14. Hence, L[A1 k A2] # � � L(A1 # �) k L(A2 # �). The converse can be
shown in a similar way.
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D Proof of Lemma 11

Given a valid con�guration �d of D1 k D2, we can write it as �d1 + �d2 , where
�d1 ; �d2 are respectively valid con�gurations of D1; D2 (Lemma 8). Since D1 ��1

R1 and D2 ��2 R2, there exist valid con�gurations �r1 2 �1(�d1) and �r2 2
�2(�d2) such that L(D1 # �d1) � L(R1 # �r1) and L(D2 # �d2) � L(R2 # �r2).

Since � has been computed, for every valid con�guration �d of D1 k D2,
there exists some valid con�guration �r of R1 k R2, �r 2 �(�d). As �r is
valid, �r j= �r12 ^ �r1 ^ �r2; hence, �r can be written as �r1 + �r2, where �r1; �r2
are respectively valid con�gurations of R1; R2 (Lemma 8), and �r1 2 �1(�d1),
�r2 2 �2(�d2) by de�nition 10.

L([(D1 k D2) # �d]) = L(D1 # �d1) k L(D2 # �d2) by lemma 9. Similarly,
L([(R1 k R2) # �r]) = L(R1 # �r1) k L(R2 # �r2). This along with the observation
that L(D1 # �d1) � L(R1 # �r1) and L(D2 # �d2) � L(R2 # �r2) gives L([(D1 k
D2) # �d]) � L([(R1 k R2) # �r]).

E Proof of Theorem 12

Given Di �� Ri, assume that D1 k � � � k Dn conforms to R1 k � � � k Rn. Then,
by de�nition of conformance, it means that for all valid con�gurations �d of
D1 k � � � k Dn, there exists a valid con�guration �r of R1 k � � � k Rn such that
L([D1 k � � � k Dn] # �d) � L([R1 k � � � k Rn] # �r). Let � be the conformance
mapping such that �r 2 �(�d).

�d is a valid con�guration ofD1 k � � � k Dn implies that �d j=
V
S�f1;2;:::;ng �

d
S ,

where �dS is the global predicate of Di1 k � � � k Dij , when S = fi1; : : : ; ijg. Using
Lemma 8 repeatedly, we can then say that �d = �d1 + � � �+ �dn for valid con�g-
urations �di of Di. Since �r 2 �(�d), by de�nition of conformance mappings,
�r must be a valid con�guration of R1 k � � � k Rn, hence �r = �r1 + � � � + �rn
(Lemma 8), such that �di 2 �(�ri ), for valid con�gurations �ri of Ri. �r is valid
means �r j=

V
S�f1;2;:::;ng �

r
S .

Given the above, we show that the QBF 	 holds. The LHS of the QBF
	 is the formula ’d1;2;:::;n, which is the conjunction �dS for all subsets S of
f1; 2; : : : ; ng. The forall quanti�er outside would thus evaluate all con�gurations
of D1 k � � � k Dn that satisfy ’d1;2;:::;n; that is, which satisfy

V
S�f1;2;:::;ng �

d
S :

hence, all valid con�gurations of D1 k � � � k Dn.
For the QBF to hold good, for all valid con�gurations of D1 k � � � k Dn that

have been evaluated on the LHS, we must �nd some con�guration of R1 k � � � k
Rn that satis�es �1^� � �^�n^’r1;2;:::;n : (i) any con�guration � of R1 k � � � k Rn
that satis�es ’r1;2;:::;n would be valid; (ii) further, if it has to satisfy �1^� � �^�n,
it must agree with �ri 2 �i(�di ) over V ar(Ri) for all 1 � i � n. By Lemma 8,
this means that � can be written as �r1 + � � �+ �rn. Thus, for the QBF to hold,
we must be able to �nd for each valid con�guration �d of D1 k � � � k Dn, a valid
con�guration �r of R1 k � � � k Rn which can be written as �r1 + � � �+ �rn, where
�ri 2 �i(�di ) for each i. But this is exactly what the mapping � which checks
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for conformance of D1 k � � � k Dn with R1 k � � � k Rn does. Since we assume
that � exists, the QBF holds.

The converse can be shown in a similar way : that is, if the QBF formula 	
holds, then D1 k � � � k Dn will conform to R1 k � � � k Rn.

F Case Studies
In this section, we describe the two product lines that have been considered in
the paper : (i) ECPL and (ii) BSPL.

F.1 ECPL
The Entry Control Product Line comprises all the features involved in the man-
agement of the locks in a car. In this study, we focus on the following features:

� Power lock: this is the basic locking functionality which manages the
locking/unlocking according to key button press and courtesy switch press,

� Last Door Closed Lock: delays the locking of the doors until all the doors
are closed. It is applicable when the lock command appends while a door
is open,

� Door lock: automates the locking of doors when the vehicle starts,

� Door unlock: automates the unlocking of door(s) when the vehicle stops,

� Anti-lockout: is intended to prevent the inadvertent lockout situations:
the driver is out of the car with the key inside and all the doors locked,

� Post crash unlock: unlocks all the doors in a post crash situation,

� Theft security lock: secures the car with a second lock.

Each feature is represented as a pair of state machines containing 3 to 10 states.

F.1.1 The variability constraints of the ECPL

Figure 9 presents the feature diagram of the ECPL (a la Czarnecki [6]). This di-
agram presents the variability constraints of the ECPL at the requirement level
(�f0). All the constraints represented by this diagram have to be considered
during composition to guarantee the overall consistency of the SPL behavior.
The dark gray boxes are features of the ECPL: Power lock, Anti-lockout, Door
lock, Door unlock, and Post crash unlock. The light gray boxes are con�gura-
tions. The black arrow from the �Manual" con�guration to the �Shift out of
park" con�guration and to the �Shift into park" con�guration says that if the
transmission is manual, the targeted con�gurations cannot be selected. i.e. In
�Manual" con�guration, there is no �park" gear.
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Figure 9: The feature diagram of the ECPL.

F.2 BSPL

The Banking Software Product Line (BSPL) consists of 25 behavioral features.
The BSPL is used to derived the software for ATM, Bank, Online Banking and
Mobile Banking. Figure 10 presents the feature diagram of the BSPL.

Figure 10: The feature diagram of the BSPL.

Similar to ECPL, we ran Algorithm 1 on all the 25 features of BSPL. In
section 4, Figure 6 presents the number of design con�gurations and execution
time of Algorithm 1 for each feature. In the following, we elaborate on the FSMv
of 2 features: (i) User Interface and (ii) Withdraw Money. The FSMd/FSMr
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for all the features has states between 2 and 10 (both inclusive). Figure 11 is
the FSMr for feature User Interface, which has UI as an event with global
predicate � = f:(uip = Disable)g. There is only one boolean variable, V ar =
fuipg, uip takes values from fEnable;Disableg.

Figure 11: FSMr for feature: UserInterface.

Figure 12 is the FSMd for feature User Interface. This FSMd shares the
event UI with the FSMr and has global predicate � = f(type = 2D _ type =
3D)g. There are two variables, V ar = ftype; graphicsg, type takes values from
f2D; 3Dg, while graphics takes values from fEnable;Disableg. The xml �le

Figure 12: FSMd for feature: UserInterface.

corresponding to the FSMr in Figure 11 is as below:

<?xml version=’1.0’>
<FSMv>
<type>R</type>
<name>UserInterface_req</name>
<states>
<s initial=true>1</s>
<s>2</s>
</states>
<set_of_sets_of_final_states>
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<group_of_final_states>
<s>2</s>
</group_of_final_state>
</set_of_sets_of_final_states>
<events>
<e>UI</e>
</events>
<variables>
<variable>
<v_name>uip</v_name>
<value>Enable</value>
<value>Disable</value>
</variable>
</variables>
<rho>
<conjunct>not(uip=Disable)</conjunct>
</<rho>
<vds>
<predicate>
<id>1</id>
<equ>(uip=Enable)</equ>
</predicate>
</vds>
<transitions>
<t>
<start>1</start>
<end>2</end>
<vdid>1</vdid>
<events>UI</events>
</t>
</transitions>
</FSMv>

The xml �le for the FSMd in Figure 12 is as below:

<?xml version=’1.0’>
<FSMv>
<type>D</type>
<name>UserInterface_des</name>
<states>
<s initial=true>1</s>
<s>2</s>
</states>
<set_of_sets_of_final_states>
<group_of_final_states>
<s>2</s>
</group_of_final_state>
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</set_of_sets_of_final_states>
<events>
<e>UI</e>
</events>
<variables>
<variable>
<v_name>type</v_name>
<value>2D</value>
<value>3D</value>
</variable>
<variable>
<v_name>graphics</v_name>
<value>Enable</value>
<value>Disable</value>
</variable>
</variables>
<rho>
<conjunct>or(type=2D,type=3D)</conjunct>
</<rho>
<vds>
<predicate>
<id>1</id>
<equ>(type=2D)</equ>
</predicate>
<predicate>
<id>2</id>
<equ>and(type=3D,graphics=Enable)</equ>
</predicate>
</vds>
<transitions>
<t>
<start>1</start>
<end>2</end>
<vdid>1</vdid>
<events>UI</events>
</t>
<t>
<start>1</start>
<end>2</end>
<vdid>2</vdid>
<events>UI</events>
</t>
</transitions>
</FSMv>

These two xml �les are given as input to SPLEnD, which creates the PROMELA
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model for the feature User Interface. This model is given as input to SPIN,
which returns the conformance mapping � for the feature User Interface.
Similarly, � is constructed for all other features. The PROMELA model for the
FSMd in Figure 12 is as follows:

#define d_type_2D 0
#define d_type_3D 1

#define d_graphics_Enable 0
#define d_graphics_Disable 1

#define r_uip_Enable 0
#define r_uip_Disable 1

/*The Events*/
#define evt_UI 0

/*The states of the design model*/
#define des_1 0
#define des_2 1
#define des_error 2

/*The states of the requirement model*/
#define req_1 0
#define req_2 1
#define req_error 2

/*this channel is use to forward the event
in both des as well in req. from environment*/
chan evts_req= [0] of {byte};
chan evts_des= [0] of {byte};

/*State variable*/
byte req_state;
byte des_state;

/*Initialization variables*/
byte vp_uip;
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byte vp_type;
byte vp_graphics;

byte flag;

proctype environmentModel(){
do

::flag==0 -> flag=1; atomic{if
::(1)-> evts_des! evt_UI; evts_req!evt_UI;
fi;}

od;
};

proctype requirementModel() {
mtype currentEvent;

req_state=req_1;
do
::flag==2-> evts_req?currentEvent;
if

::req_state== req_1-> if
::vp_uip==r_uip_Enable && currentEvent== evt_UI-> req_state=req_2;
::else -> req_state= req_error;

fi;
::req_state== req_2-> if
::else -> req_state= req_error;

fi;
::else -> req_state = req_error;
fi;flag=0;
od;
};

proctype designModel() {
mtype currentEvent;

des_state=des_1;
do
::flag==1-> evts_des?currentEvent;
if

::des_state== des_1-> if
::vp_type==d_type_2D && currentEvent== evt_UI-> des_state=des_2;
::(vp_type==d_type_3D && vp_graphics==d_graphics_Enable)
&& currentEvent== evt_UI-> des_state=des_2;
::else -> des_state= des_error;
fi;
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::des_state== des_2-> if
::else -> des_state= des_error;
fi;
::else -> des_state = des_error;
fi;flag=2;

od;
};

/*never claim definintion*/
never {
TO_init:

if
::(flag==0 && req_state==req_error && des_state!=des_error)
->printf("vp_uip: %d, vp_type: %d, vp_graphics: %d\n",

vp_uip, vp_type, vp_graphics);
goto accept_S9

::(1) -> goto TO_init
fi;
accept_S9:
if
::(1) -> goto TO_init
fi;
}

init{
flag=0; atomic{ if

:: (1)-> vp_uip=r_uip_Enable;
fi;}
atomic{
if

:: (1)->vp_graphics=d_graphics_Enable ; vp_type=d_type_2D ;
:: (1)->vp_graphics=d_graphics_Disable ; vp_type=d_type_2D ;
:: (1)->vp_graphics=d_graphics_Enable ; vp_type=d_type_3D ;
:: (1)->vp_graphics=d_graphics_Disable ; vp_type=d_type_3D ;
fi;}

atomic {
run environmentModel();

run requirementModel();
run designModel();
}
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}

Figure 13 is the FSMr for the feature Withdraw Money, which has events
fWD; enterAmount; insuffUserBal; infussATMBal; checkATMBal; Disburse;
dispatchg and global predicate � = f(WDO = Enable ^ :(med = Online)g.
There are two variables, V ar = fWDO;medg, WDO can take values from
fEnable;Disableg, while med takes values from fBank;ATM;Onlinegg.

Figure 13: FSMr for feature: WithdrawMoney.

Figure 14 is the FSMd for the feature Withdraw Money. This FSMd
shares all the events fWD; enterAmount; insuffUserBal; infussATMBal;
checkATMBal; Disburse; dispatchg of the FSMr. The global predicate is
� = f(WDO = Enable ^ :(med = Online)g. There are six variables, V ar =
fWDO;med; p1; p2; p3; p4g. WDO takes values from fEnable;Disableg, med
takes values from fBank;ATM;Onlineg, p1 to p4 are boolean variables which
assume the value true depending on whether a predicate is satis�ed or not.
These predicates can be seen in the box on the top left of Figure 14.

After running SPLEnD on the feature Withdraw Money, we get the illegal
con�guration in design as � = fWDO = Enable;med = ATM; p1 = True; p2 =
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Figure 14: FSMd for feature: WithdrawMoney.
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False; p3 = True; p4 = Falseg. When we project this con�guration on the
FSMd, we get an FSM as shown in Figure 15.

Figure 15: FSM for con�guration � on FSMd.

It can be seen that the language of this FSM cannot be contained in any of
the variants of the FSMr in Figure 13. So, we removed the transition in red from
Figure 14, to obtain conformance. With this modi�ed FSMd, we carried out the
rest of the study. After construction of � for all features, SPLEnd created the
QBF for the composite FSMd’s and FSMr’s. This QBF is converted to ’qpro’
format which is an input format for CirQit QBF solver. CirQit veri�ed this
QBF formula, and returned the results to SPLEnD. The time taken by CirQit
was 0.005 seconds.
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