On the discriminant scheme of homogeneous polynomials

Abstract : In this paper, the discriminant scheme of homogeneous polynomials is studied in two particular cases: the case of a single homogeneous polynomial and the case of a collection of n-1 homogeneous polynomials in n variables. In both situations, a normalized discriminant polynomial is defined over an arbitrary commutative ring of coefficients by means of the resultant theory. An extensive formalism for this discriminant is then developed, including many new properties and computational rules. Finally, it is shown that this discriminant polynomial is faithful to the geometry: it is a defining equation of the discriminant scheme over a general coefficient ring k, typically a domain, if 2 is not equal to 0 in k. The case where 2 is equal to 0 in k is also analyzed in detail.
Type de document :
Article dans une revue
Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. <10.1007/s11786-014-0188-7>


https://hal.inria.fr/hal-00747930
Contributeur : Laurent Busé <>
Soumis le : mardi 8 juillet 2014 - 15:27:56
Dernière modification le : mercredi 4 mai 2016 - 01:05:57

Fichier

disc-mcs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Busé, Jean-Pierre Jouanolou. On the discriminant scheme of homogeneous polynomials. Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. <10.1007/s11786-014-0188-7>. <hal-00747930v2>

Exporter

Partager

Métriques

Consultations de
la notice

754

Téléchargements du document

178