On the discriminant scheme of homogeneous polynomials

Abstract : In this paper, the discriminant scheme of homogeneous polynomials is studied in two particular cases: the case of a single homogeneous polynomial and the case of a collection of n-1 homogeneous polynomials in n variables. In both situations, a normalized discriminant polynomial is defined over an arbitrary commutative ring of coefficients by means of the resultant theory. An extensive formalism for this discriminant is then developed, including many new properties and computational rules. Finally, it is shown that this discriminant polynomial is faithful to the geometry: it is a defining equation of the discriminant scheme over a general coefficient ring k, typically a domain, if 2 is not equal to 0 in k. The case where 2 is equal to 0 in k is also analyzed in detail.
Type de document :
Article dans une revue
Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. 〈10.1007/s11786-014-0188-7〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00747930
Contributeur : Laurent Busé <>
Soumis le : mardi 8 juillet 2014 - 15:27:56
Dernière modification le : samedi 2 décembre 2017 - 09:43:11
Document(s) archivé(s) le : mardi 11 avril 2017 - 10:36:38

Fichier

disc-mcs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Busé, Jean-Pierre Jouanolou. On the discriminant scheme of homogeneous polynomials. Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. 〈10.1007/s11786-014-0188-7〉. 〈hal-00747930v2〉

Partager

Métriques

Consultations de la notice

912

Téléchargements de fichiers

234