M. Bansal, V. Belcastro, A. Ambesi-impiombato, and D. Bernardo, How to infer gene networks from expression profiles, Mol Syst Biol, vol.3, p.78, 2007.
DOI : 10.1038/msb4100120

URL : http://doi.org/10.1038/msb4100120

T. Cakir, M. Hendriks, J. A. Westerhuis, and A. K. Smilde, Metabolic network discovery through reverse engineering of metabolome data, Metabolomics, vol.99, issue.Suppl 2, pp.318-347, 2009.
DOI : 10.1007/s11306-009-0156-4

J. Chiquet, A. Smith, C. Grasseau, C. Matias, and . Ambroise, SIMoNe: Statistical Inference for MOdular NEtworks, Bioinformatics, vol.25, issue.3, pp.417-425, 2009.
DOI : 10.1093/bioinformatics/btn637

URL : https://hal.archives-ouvertes.fr/hal-00592218

F. Eduati, A. Corradin, B. Di-camillo, and G. Toffolo, A Boolean Approach to Linear Prediction for Signaling Network Modeling, PLoS ONE, vol.8, issue.9, 2010.
DOI : 10.1371/journal.pone.0012789.t002

C. Forgy, Rete: A fast algorithm for the many pattern/many object pattern match problem, Artificial Intelligence, vol.19, issue.1, pp.17-37, 1982.
DOI : 10.1016/0004-3702(82)90020-0

M. Gebser, T. Schaub, S. Thiele, . Ph, and . Veber, Abstract, Theory and Practice of Logic Programming, vol.1771, issue.2-3, pp.323-360, 2011.
DOI : 10.1017/S1471068410000554

URL : https://hal.archives-ouvertes.fr/hal-01186999

P. Gloaguen, P. Crépieux, D. Heitzler, A. Poupon, and E. Reiter, Mapping the folliclestimulating hormone-induced signaling networks, Front Endocrinol, vol.2, p.45, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01129612

C. Guziolowski, J. Gruel, O. Radulescu, and A. Siegel, Curating a Large-Scale Regulatory Network by Evaluating Its Consistency with Expression Datasets, pp.144-155, 2008.
DOI : 10.1101/gr.1387003

URL : https://hal.archives-ouvertes.fr/inria-00331385

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-555, 2003.
DOI : 10.1093/bioinformatics/btg015

D. Hwang and J. J. Smith, A data integration methodology for systems biology: Experimental verification, Proceedings of the National Academy of Sciences, vol.102, issue.48, pp.17302-17309, 2005.
DOI : 10.1073/pnas.0508649102

K. Inoue, Logic Programming for Boolean Networks, Proc. of IJCAI, pp.924-930, 2011.

K. Iwanuma, K. Inoue, and O. Ray, SOLAR: An automated deduction system for consequence finding, AI Commun, vol.23, issue.2-3, pp.183-203, 2010.

B. Kemper and T. Matsuzaki, PathText: a text mining integrator for biological pathway visualizations, Bioinformatics, vol.26, issue.12, pp.374-381, 2010.
DOI : 10.1093/bioinformatics/btq221

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881405

H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, Using process diagrams for the graphical representation of biological networks, Nature Biotechnology, vol.33, issue.8, pp.961-967, 2005.
DOI : 10.1016/S1478-5382(03)02370-9

N. and L. Novère, The Systems Biology Graphical Notation, Nat Biotechnol, vol.27, issue.8, pp.735-776, 2009.

F. Markowetz and R. Spang, Inferring cellular networks ??? a review, BMC Bioinformatics, vol.8, issue.Suppl 6, p.5, 2007.
DOI : 10.1186/1471-2105-8-S6-S5

A. Mitsos, I. N. Melas, P. Siminelakis, A. D. Chairakaki, J. Saez-rodriguez et al., Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data, PLoS Computational Biology, vol.13, issue.12, 2009.
DOI : 10.1371/journal.pcbi.1000591.s004

M. K. Morris, J. Saez-rodriguez, D. C. Clarke, P. K. Sorger, and D. A. Lauffenburger, Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Computational Biology, vol.31, issue.3, 2011.
DOI : 10.1371/journal.pcbi.1001099.s019

N. Papin, H. Tony, O. P. Bernhard, and S. Shankar, Reconstruction of cellular signalling networks and analysis of their properties, Nature Reviews Molecular Cell Biology, vol.82, issue.2, pp.99-111, 2005.
DOI : 10.1038/nrm1570

R. J. Prill, J. Saez-rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky, Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge, Science Signaling, vol.4, issue.189, p.7, 2011.
DOI : 10.1126/scisignal.2002212

K. Sachs, O. Perez, D. Pe-'er, D. A. Lauffenburger, and G. P. Nolan, Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data, Science, vol.308, issue.5721, pp.308523-308532, 2005.
DOI : 10.1126/science.1105809

J. Saez-rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, vol.41, p.331, 2009.
DOI : 10.1038/msb.2009.87

C. H. Yeang, T. Ideker, and T. Jaakkola, Physical Network Models, Journal of Computational Biology, vol.11, issue.2-3, pp.243-62, 2004.
DOI : 10.1089/1066527041410382