Path similarity evaluation using Bloom filters

Abstract : The performance of several Internet applications often relies on the measurability of path similarity between different participants. In particular, the performance of content distribution networks mainly relies on the awareness of content sources topology information. It is commonly admitted nowadays that, in order to ensure either path redundancy or efficient content replication, topological similarities between sources is evaluated by exchanging raw traceroute data, and by a hop by hop comparison of the IP topology observed from the sources to the several hundred or thousands of destinations. In this paper, based on real data we collected, we advocate that path similarity comparisons between different Internet entities can be much simplified using lossy coding techniques, such as Bloom filters, to exchange compressed topology information. The technique we introduce to evaluate path similarity enforces both scalability and data confidentiality while maintaining a high level of accuracy. In addition, we demonstrate that our technique is scalable as it requires a small amount of active probing and is not targets dependent.
Type de document :
Article dans une revue
Computer Networks, Elsevier, 2011, 〈10.1016/j.comnet.2011.11.003〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger
Contributeur : Mohamed Ali Kaafar <>
Soumis le : mardi 29 janvier 2013 - 15:19:12
Dernière modification le : mercredi 11 avril 2018 - 01:59:22
Document(s) archivé(s) le : mardi 30 avril 2013 - 02:25:08


Fichiers produits par l'(les) auteur(s)




B. Donnet, B. Gueye, Mohamed Ali Kaafar. Path similarity evaluation using Bloom filters. Computer Networks, Elsevier, 2011, 〈10.1016/j.comnet.2011.11.003〉. 〈hal-00748208〉



Consultations de la notice


Téléchargements de fichiers