
HAL Id: hal-00748687
https://inria.hal.science/hal-00748687

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the Addition of Fault Tolerance with
Discrete Controller Synthesis

Alain Girault, Eric Rutten

To cite this version:
Alain Girault, Eric Rutten. Automating the Addition of Fault Tolerance with Discrete Controller
Synthesis. Formal Methods in System Design, 2009, 35, pp.190–225. �10.1007/s10703-009-0084-y�.
�hal-00748687�

https://inria.hal.science/hal-00748687
https://hal.archives-ouvertes.fr

Automating the Addition of Fault Tolerance
with Discrete Controller Synthesis

Alain Girault⋆ andÉric Rutten⋆⋆

INRIA and Grenoble University

Abstract. Discrete controller synthesis (DCS) is a formal approach, based on thesame state-space exploration
algorithms as model-checking. Its interest lies in the ability to obtain automaticallysystems satisfying by
construction formal properties specified a priori. In this paper, our aimis to demonstrate the feasibility
of this approach for fault tolerance. We start with a fault intolerant program, modeled as the synchronous
parallel composition of finite labeled transition systems; we specify formallya fault hypothesis; we state
some fault tolerance requirements; and we use DCS to obtain automatically aprogram, having the same
behavior as the initial fault intolerant one in the absence of faults, and satisfying the fault tolerance
requirements under the fault hypothesis. Our original contribution resides in the demonstration that DCS
can be elegantly used to design fault tolerant systems, with guarantees onkey properties of the obtained
system, such as the fault tolerance level, the satisfaction of quantitative constraints, and so on. We show
with numerous examples taken from case studies that our method can address different kinds of failures
(crash, value, or Byzantine) affecting different kinds of hardwarecomponents (processors, communication
links, actuators, or sensors). Besides, we show that our method also offers an optimality criterion very useful
to synthesize fault tolerant systems compliant to the constraints of embedded systems, like power consumption.

Keywords. fault tolerant systems, discrete controller synthesis, automatic fault tolerance.
Category C.3: Computer Systems Organization. Special-purpose and application-based systems. Real-time
and embedded systems.
Category D.3.2:Software. Programming languages. Concurrent, distributed, and parallel languages.
Category F.2.2: Theory of Computation. Analysis of algorithms and problem complexity. Non numerical
algorithms and problems. Computations on discrete structures.

1 Introduction

1.1 Discrete controller synthesis

Discrete controller synthesis(DCS, also known as “supervisory control of discrete event systems”) was invented
by Ramadge and Wonham in the nineteen eighties [48]. Its theoretical foundation is language theory. The goal of
DCS is, starting from two languagesU andD, to obtain a third languageC such that:

U ∩ C ⊆ D (1)

The three languagesU , D, andC represent respectively theplant, thedesired system, and thecontroller . U ∩ C
is called thecontrolled system. Since the context is language theory, the alphabetI of the plant U is to be
understood as the set of events that can occur, and the language U is the set of all possible words made with the
letters ofI, each understood as a possible behavior of the plant (i.e., asequence of events). A tool suite for DCS,
called TCT, has been implemented.1

Since U andD are given and we want to findC such thatU ∩ C ⊆ D, the solution could be written as
C = D.U−1 provided that the operators ‘.’ and ‘−1’, classical for real numbers, existed for languages. In this
sense DCS can be seen as an inversion problem.

The alphabetI of the languageU is partitioned into two subsets: the setIC of controllable events and the
set IU of uncontrollable events. The first key point of DCS is that the controller can only act on the controllable

⋆ INRIA Grenoble Rĥone-Alpes and Grenoble University, POP ART project-team and LIG laboratory, 38334 Saint-Ismier
cedex, France, Email:Alain.Girault@inria.fr. This research was supported by a Marie Curie International Outgo-
ing Fellowship within the 7th European Community Framework Programme.

⋆⋆ INRIA Grenoble Rĥone-Alpes and Grenoble University, SARDESproject-team and LIG laboratory, 655 avenue de l’Europe,
38334 Saint-Ismier cedex, France, Email:Eric.Rutten@inria.fr

1 TCT: http://www.control.utoronto.ca/people/profs/wonham.

http://www.control.utoronto.ca/people/profs/wonham

events of the plant. The second key point is that the synthesized controller isthe most permissive one, meaning
that the languageU ∩ C must be the greatest one included inD.

Note that DCS can fail for a given objectiveD. This means that no languageC exists acting only onIC and
such thatU ∩ C ⊆ D.

Finally, it is classical to represent the pair (plant,controller) as aclosed loop system, where the controller
observes the plant and modifies its behavior through the controllable events. This is illustrated by Figure1. This
figure depicts two arrows between the plantU and the controllerC. These communications do not necessarily
need to take place through a communication network since most DCS tools directly produce the controlled system
U ∩ C.

outputs

controllerC

plant U
uncontrollable inputs

controllable inputs

Fig. 1.The closed loop system (plant,controller).

Several research teams have applied and extended these language theory techniques tolabeled transition
systems(LTS), both in the area of computer science and discrete event systems control theory. The algorithms
used in DCS are the same as those of model checking: mostly it is state space exploration, reachability analysis,
and invariance analysis, be it enumerative or symbolic withBinary Decision Diagrams (BDDs). In particular, this
is the case of the SIGALI 2 [43] tool that we have used in the present article. Also, in modelchecking, it is well
known that objectives can be equivalently expressed as predicates on the states ofU or as LTSs.

Within SIGALI , the desired systemD is specified as a set of state properties, possibly involvingsynchronous
observers [29], and synthesis objectives upon them : we use essentially the objectives tomake invariant a subset
of states, orkeep reachablea subset of states. This is very versatile and allows the userto change easily his
synthesis objective. Figure2 summarizes the behavior of SIGALI .

Sigali
U : system model

(modular)

U ∩ C: controlled system

D: invariance or
reachability property

Fig. 2.Overview of DSC with SIGALI .

DCS can be used on different kinds of systems, be it hardware or software. In the case of a software sys-
tem, modeling the system with an LTS does require a high levelof abstraction. This is classically achieved by
considering only the control layer of the software and by abstracting away the data computations, as in [1].

1.2 The need for fault tolerance

There is no arguing that dependability is a key issue in critical systems. There are three threats to dependability:
fault, error, and failure, with the classical causality relationship [4]:

· · · −→ fault
activation
−−−−−→ error

propagation
−−−−−−→ failure

causality
−−−−→ fault −→ · · ·

For instance, consider a software where one variablex is incorrectly modified in one execution path. This is
commonly known as a bug, but, in the field of dependability, itis referred to as a fault. When the software takes
this precise execution path, then it is an error. When the incorrect value ofx prevents the software from delivering
its nominal service, then we have a failure. Finally, the failure of a subsystem is seen as a fault in the encompassing
system.

We believe in the need of separation of concerns between the functional specification and the fault tolerance
requirement. Hence, we would like to proposeautomaticmethods to turn a fault intolerant program implementing
the functional specification3, into a new program implementing the same functional specification (i.e., preserving
the semantics of the initial program) and tolerant to the faults required by the user. There have been several
methods proposed in the past, and we will study them in Section 8.

2 SIGALI : http://www.irisa.fr/vertecs/Logiciels/sigali.html.
3 By “fault intolerant”, we mean a program that is not necessarily fault tolerant.

2

http://www.irisa.fr/vertecs/Logiciels/sigali.html

1.3 Contribution

We propose a DCS-based framework to transform automatically a fault intolerant program into a fault tolerant
one. It offers the following features:

– The possibility to try several fault hypotheses on the same specification.
– The possibility to evaluate several fault tolerance requirements.
– In the final program, the guarantee by construction of the fault tolerance level required by the user.

The above-mentioned features are generally also offered bymost methods and algorithms that provide fault
tolerance automatically. The originality of our DCS-basedmethod is that the failure recovery mechanism provided
by DCS isdynamic(hence it does not induce too much redundancy overhead like static methods), with astatic
guarantee on the fault tolerance of the obtained system (unlike dynamic methods). As a result, if offers the best of
both worlds, static guarantee and small overhead, at the price of an exhaustive state-space exploration at compile-
time. Besides, our method also offers an optimality criterion very useful to synthesize fault tolerant systems with
embedded constraints like power consumption.

Compared to relevant related work on approaches similar to DCS for fault tolerance, our originality is that
we propose an integrated framework offering a full coverageof the possible failures of the system’s components:
processors, communication links, actuators, and sensors.Furthermore, we not only address the easy to tolerate
crash failures, but also the much more difficult value and Byzantine failures, a feature which is unique to our
framework. Finally, we use optimal DCS over finite paths in order to provide more possibilities of synthesis for
fault tolerance; this is another unique feature of our framework.

1.4 Outline

We start by introducing the formal model of labeled transition systems and how they are used in DCS: this is
Section2. Then, we present in Section3 the general principles for automating the addition of faulttolerance
with DCS. In Section4 we detail how to specify and handle the failures of hardware components (processors,
communication links, actuators, and sensors). In Section5 we detail how to specify and handle several kinds of
failures (crash, value, and Byzantine failures). In Section 6 we present advanced DCS features, like how to specify
and handle quantitative constraints, and how to obtain a distributed controller. Then, we present in Section7 two
previously unpublished case studies that exemplify how ourframework can be actually used to specify and make
fault tolerant an entire system. We have completed three other case studies that further demonstrate the pertinence
of our framework: they have been published in [27,23,28,22] so we do not include them in the present article
(although several of our examples presented in Sections4 to 6 will be taken from these articles). We end with a
presentation of the related work in Section8, and with concluding remarks in Section9.

2 Formal models used in DCS

2.1 Labeled transition systems

A labeled transition system(LTS) is a tupleS = 〈Q, q0, I,O, T 〉, whereQ is a finite set of states,q0 is the
initial state ofS, I is a finite set of input events (produced by the environment),O is a finite set of output event
(emitted towards the environment), andT is the transition relation, that is a subset ofQ × Bool(I) × O∗ × Q,
whereBool(I) is the set of boolean expressions ofI. If we denote byB the set{true, false}, then a guard
g ∈ Bool(I) can be equivalently seen as a function from2 I into B.4

Each transition has alabel of the formg/a, whereg ∈ Bool(I) must be true for the transition to be taken (g is
theguard of the transition), and wherea ∈ O∗ is a conjunction of outputs that are emitted when the transition
is taken (a is theaction of the transition). Stateq is thesourceof the transition(q, g, a, q′), and stateq′ is the

destination. A transition(q, g, a, q′) will be graphically represented byq
g/a
−−→ q′.

An LTS is deterministic (resp.reactive) iff, for each stateq ∈ Q and for each valuation of the inputs, there
exists at most (resp. at least) one transition fromq and whose guard is true for this inputs valuation.

4 For any setX, 2X is the set of all subsets ofX.

3

The composition operator of two LTSs put in parallel is thesynchronous product, noted||, as defined by
Milner [46] and a characteristic feature of the synchronous languages[6]. The synchronous product is commutative
and associative. Formally:

〈Q1, q0,1, I1,O1, T1〉 || 〈Q2, q0,2, I2,O2, T2〉 = 〈Q1 ×Q2, (q0,1, q0,2), I1 ∪ I2,O1 ∪ O2, T 〉

with T = {((q1, q2)
g1∧g2/a1∧a2

−−−−−−−−→ (q′1, q
′
2)) | q1

g1/a1

−−−→ q′1 ∈ T1, q2
g2/a2

−−−→ q′2 ∈ T2}.

Here,(q1, q2) is called amacro state, whereq1 andq2 are its twocomponent states.
Like all product operators for LTSs, the synchronous product causes a combinatorial explosion, since the

number of states inS1||S2 is, at worst, equal to the product of the number of states ofS1 byS2. However, it limits
this explosion, compared to the asynchronous product, where for two LTSs making each a transition in parallel,
all interleavings are explicitly represented in the product, with all intermediary states. Indeed, the synchronous
product makes it possible to group parallel transitions into one global transitions where several local transitions
are taken in the same step, without developing sub-steps.

A path in the LTSS = 〈Q, q0, I,O, T 〉 is a sequence of transitionsq1
g1/a1

−−−→ q2
g2/a2

−−−→ q3 · · · qn
gn/an

−−−−→
qn+1. A trace is a path starting in the initial stateq0. The set of all traces ofS is notedT (S). A stateq of Q is
reachable iff there exists a trace toq. A set of statesE is reachable iff all its states are. In the CTL temporal
logic [24], this is stated asS ⊢ ∀♦(E). A set of statesE is invariant iff any transition having as source a state
of E has its destination state inE. In CTL, this is stated asS ⊢ ∀�(E).

2.2 Discrete controller synthesis on labeled transition systems

The plantU is specified as an LTS, more precisely the result of the synchronous product of several LTSs.D is the
objective that the controlled system must fulfill. The controller C obtained with DCS achieves this objective by
restraining the transitions ofU , that is, by disabling those that would jeopardize the objective D.

The setI of inputs of U is partitioned into two subsets: the setIC of controllable inputs and the setIU

of uncontrollable inputs. Formally,I =IC ∪ IU and IC ∩ IU=∅. As a consequence, a transition guardg ∈
Bool(IC ∪ IU) can be seen as a function from2 IC × 2 IU into B.

A transition iscontrollable iff there exists at least one valuation of the controllable inputs such that its guard
is false; otherwise it isuncontrollable. Formally, a transition(q, g, a, q′) ∈ T is controllable iff∃X ∈ 2 IC such
that∀Y ∈ 2 IU , we haveg(X,Y) = false.

In the framework of this paper, we use the following functions to synthesize the controlled systemU ∩ C,
whereE is any subset of states ofU (possibly specified itself as a predicate on statesϕ):

– S′ = make invariant (S,E) is a function that synthesizes and returns a controllable systemS′ such that the
controllable transitions leading to statesqi+1 6∈ E are inhibited,as well asthose leading to states from where
a sequence of uncontrollable transitions can lead to such statesqi+k 6∈ E.

For example, consider a LTSS, synchronous composition of several LTSs, with one of them being an
observer with a stateError. The function making invariant the set of global states where the local state of the
observer is different fromError inhibits behaviors leading to thisError state, making it unreachable. This
technique will be used in Section6.4.

– S′ = keep reachable (S,E) is a function that synthesizes and returns a controlled systemS′ such that the
controllable transitions entering subsets of states from whereE is not reachable are disabled. Note that making
E invariant is equivalent to making states not inE unreachable.

For example, a system can have a set of states defined as safe back-up configurations, where the system
should always be able to go in case of need, from anywhere in its reachable state space.

– E′ = reachable under control (S,E) is a function that returns a subsetE′ of the states ofS such that states
in E′ are reachable by controllable transitions. This function allows us to transform a reachability objec-
tive into an invariance one:keep reachable (S,E) = make invariant (S, reachable under control (S,E)).
This feature will be useful in Section6.3when we consider conditioned reachability objectives.

It must be noted that the order in which synthesis operationsare applied does matter: indeed, their composition
is not commutativein general. Reachability can not be considered before an invariance constraint, because the
latter might compromise the former by removing paths and breaking reachability. On the contrary, considering
reachability after invariance does not jeopardize the invariance, as it will not result in paths going out of the
invariant set.

4

This introduction to the formal models used in DCS is kept simple in order to concentrate the paper on its con-
tribution concerning fault tolerance issues. Readers interested in more detailed formalizations of discrete controller
synthesis are referred to [48,43,2].

Figures3 shows, from left to right, an example of DCS on an LTS with five states and two inputs, one control-
lablec and one uncontrollableu. The objective is to make this system invariant w.r.t. the subset of stateE, i.e.,
to avoid stateS4. Given the particular uncontrollable transitions, only a smaller subsetE’ can be controlled. This
example shows that, in the general case, even for propositional state properties and invariance objectives, the DCS
algorithm has to explore the whole state space in order to findthe controllable transition in a path where control
has to be enforced, in cases where the following transitionsare not controllable. The LTS on the right shows the
controlled system, where in stateS2 the controllable inputc is forbidden to take the valuetrue and must be
false, hence inhibiting the wrong behavior to be avoided by disabling the transition fromS2 to S3.

E
E’

S0 S1

S2S4

S3

c

cu

not c

not c u

u
E

E’
S0 S1

S2S4

S3

c

cu

not c

not c u

u
E

E’
S0 S1

S2S4

S3

c

cu

not c

not c u

u

E
E’

S0 S1

S2S4

S3

c

cu

not c

not c u

u

c = false

Fig. 3.An example of DCS, on an automaton.

If DCS fails w.r.t. the objectiveD, since all the state space is traversed during the synthesis(be it exhaustively
or symbolically), it means that it is impossible to restrainthe plantU only by disabling controllable transitions. In
our framework for fault tolerance, we will discuss the implication of this situation.

2.3 Tools and programming languages

We use the Mode Automata language to program LTSs [40].5 Without going into too many details, Mode Automata
are LTSs: each state represents a different mode of operation of the program, specified as data-flow equations
relating the inputs and the outputs of the program. Mode Automata use the synchronous product operator to
combine several programs put in parallel. This allows the user to program in a clean and modular way.

The compiler associated to the Mode Automata language, MATOU, compiles an LTS into theZ/3Z format6,
which is the input format of the SIGALI tool for DCS [43]. Finally, we use SIGAL SIMU to co-simulate the system
and the controller. This tool chain, illustrated in Figure4, is the support for a DCS methodology [1] that was also
used to generate task managers [44].

SigalSimu
interactive
simulation

Mode

controlled
system

Automata
system model

Z/3Z

encoding

properties

Sigaliweights

components

Fig. 4.Tools used.

Note that we use the synchronous composition as a model specification facility, because of its clarity and
elegance; however it is not intrinsically necessary, and the asynchronous product may be used too; in that sense
our choice of tools is not central to the paper. Concerning performance, the impact is not obvious: synchronous
composition tends to reduce the state space because intermediate states in the communications are abstracted away
by the instantaneous broadcasting; on the other side, labels on the transitions can be more complex.

5 Matou:http://www-verimag.imag.fr/∼maraninx/MATOU
6

Z/3Z is the Galois field with three elements,{−1, 0, 1}.

5

http://www-verimag.imag.fr/~maraninx/MATOU

3 A framework for automating the addition of fault tolerance with DCS

From the point of view of fault tolerance, it is natural to consider the fault events as uncontrollable events. Then,
the plantU must represent all the possible behaviors, both the good ones (where either no fault occurs, or those
that occur are masked) and the bad ones (where at least one fault prevents the system from providing its nominal
service). Finally, the desired systemD must express the fact that a certain number of faults must be tolerated. By
synthesizing a controllerC guaranteeing thatU ∩ C satisfies the properties ofD, we will obtainautomaticallya
fault tolerant system.

Note however that uncontrollable events are by no means restricted to be fault events. They can be any event
that the user wants to be determined by the environment, e.g., non-deterministic events.

Besides, the fault model will be described as an LTS that willbe composed in parallel with the remaining of
the plant specification. This approach yields two advantages, first it is flexible and modular since it is possible to
change the fault hypothesis without modifying the remaining of the specification, and second it is formal thanks
to the usage of an LTS.

The design of dependable systems calls for a dedicated specification and validation procedure. Two key points
must be taken into account: the fault hypothesis and the fault tolerance policy. This is detailed in the following
paragraphs.

3.1 Defining the fault intolerant system

The first step involves designing the fault intolerant system. We use LTSs to specify the various concurrent parts of
the system (both hardware and software), and the synchronous parallel composition operator to compose them in
order to obtain the full system; these formal models have been defined in Section2.1. We advocate that designing
a single monolithic LTS is both non-modular and non-scalable. Breaking down the system into a set of concurrent
components that collaborate together to the desired behavior has always been the method of choice to achieve
modularity and scalability. It is also much easier to designeach sub-component independently of its interactions
with the other sub-components, and to rely on DCS to derive automatically their interactions.

3.2 Defining the fault hypothesis

A fault hypothesis states which components of the system mayfail. If more than one component is likely to fail,
failure configurations are a common way to express subsets of components that may fail together. According
to this hypothesis, the remaining components are supposed to be reliable: they never fail, or if such a failure
occurs, the whole system fails. The fault hypothesis can be obtained by a stochastic analysis, in order to find the
probability for each failure configuration; this is out of the scope of our paper. In the following, we assume that all
the specified failure configurations are equally probable.

Then, a fault model is required for each component identifiedby the fault hypothesis. For a given component
failure, what this failure implies has to be specified. This amounts to defining a behavior that is triggered by this
failure. For instance, when a component fails (processor, communication link, sensor, etc.), it may stop reacting
to its environment (fail-silent behavior) or it may react byemitting random values (Byzantine behavior). Another
aspect of the fault model is to specify whether the faults arepermanent or temporary. The failure models must be
combined with the failure patterns in order to specify realistic failure scenarios.

3.3 Defining a fault tolerance policy

Ideally, a fault tolerant system should maintain its functionalities and its performance (nominal service) even
though some of its components are faulty. In practice, this assumption is too strict and expensive to implement.
Thus, if a failure occurs, the nominal service may be replaced by adegraded operating mode. When the system
runs inside a degraded mode, only a subset of its initial functional requirements are still met. We achieve fault
tolerance by establishing such a degraded mode when a failure occurs.

In our context, DCS is used to control the system’s behavior,in order to ensure a minimal service. The fault
tolerance policy is a DCScontrol objective expressing fault tolerance: what the system should always do or avoid,
despite failure occurrences. The control objective can be atemporal logic property, expressing either an invariant
or an accessibility property.

However, a degraded operating mode only exists for those systems that arecontrollable. DCS will act on
the subset ofcontrollable eventsof the system for service maintenance purposes. The system behavior will be

6

constrained by driving these controllable events appropriately. If DCS fails, it means that the system at hand
cannot be made fault tolerant for the required fault tolerant policy and under the specified fault hypothesis; thus,
the system must be redesigned, either by relaxing some constraint or by adding/improving the available resources:
for instance, the number of processors can be increased.

One important point not addressed by DCS is the possible faults of the controller itself. One feasible solution
is to apply to the controlled system the classical techniques of fault tolerance, for instance active replication with
voting, where the number of active replica depends on the number of faults to be tolerated.

Technically, the fault tolerance policy is specified in terms of the functionsmake invariant (S,E) and
keep reachable (S,E), whereE is any subset of states of the fault intolerant systemS. This subsetE will be
specified either directly as a set or as a predicateϕ on states ofS. In particular, when the fault intolerant systemS
is the parallel product of several LTSs, thenϕ can be a predicate on the states of one (or several) of its component
LTSs:

U = S1 ‖S2 ‖ · · · ‖Sn with Si = 〈Qi, qi0, Ii,Oi, Ti〉 (2)

E = {q = (q1, . . . , qn) ∈ Q1 × · · · × Qn | ϕ(q1, . . . , qn) = true} (3)

In other words, each macro state of the product such that its component states match the predicateϕ is inE.

4 Specifying the hardware component failures

A complete system classically consists of several hardwarecomponents: processors, communication media, sen-
sors, and actuators. In accordance, when designing fault tolerant systems, we should not only address the failures
of the processors (what most of the related work does), but also the failures of the communication media, the
sensors, and the actuators. In particular, in distributed systems, communication media are usually more subjects to
failures than processors. Also, in embedded systems, sensors and actuators are critical components, whose failure
will inevitably put the system in a degraded mode, if not causing its actual failure.

As we have said in Section3, which hardware components can fail will be expressed in thefault tolerant
hypothesis. We show in this section that each kind of hardware component calls for specific means to handle its
failure.

4.1 Processor failures

f

OK

ERR

f̄

r̄

r

OK

ERR

f̄

r̄

f

f

OK

ERR

d̄

r̄

DEG f̄r

d

(a) (b) (c)

Fig. 5. (a) LTS of a processor with permanent fail-silent failures; (b) Same with temporary failures; (c) Same with degraded
modes.

Figure5(a) specifies a processor subject to permanent failures: theprocessor starts in theOK states, and upon
the reception of the input failure eventf , goes into theERR state, where it stays forever. Figure5(b) specifies a
processor subject to transient failures: once in theERR state, it can go back to theOK state following the repair
input eventr. Figure5(c) specifies a processor that can go into theDEG state following the degraded mode input
eventd; once there, it can go into theERR state; finally, the processor can be repaired (eventr). Degraded modes
are very useful to model intermediary behaviors where the processors is not crashed but does not deliver its full

7

functionality: for instance, it could be running at half itsnormal clock speed. These three LTSs are just examples
of what can be specified, and the user is free to modify them to suit his needs.

In terms of DCS, it is natural that the eventsf andd be uncontrollable (i.e.,∈ Iu), since a failure is an
event intrinsically uncontrollable. To differentiate them from the other events, they are typeset in bold italic font.
Concerning the repair eventr, this depends on the system the user wants to specify: if the system is self-repairable,
thenr will be controllable, while if the repair is an external operation (e.g., requiring the intervention of a human
operator), then it will be uncontrollable.

If we are dealing with a distributed architecture consisting of n processors, then we must put in our specifi-
cationn such LTSs, not necessary all of the same kind (the three LTSs above can be mixed at will). Each such
LTS will need to have a separate vocabulary, each identified by a different subscript:fi will therefore denote the
failure event of processori.

f ′

1
f̄ ′

2
f̄ ′

3
/f1

B

F1

F2 F3

¯
f
′

1
f
′

2

¯
f
′

3
/f2

f̄ ′
1 f̄ ′

2 f ′
3 /f

3

f ′

1
f̄ ′

2
f̄ ′

3
/f1

(a)

B

F1

F2,3

F2

F1,2

F3

¯f ′

1
f ′

3
/f3 f ′

2

¯f ′

1
/f2

f ′

2
f̄ ′

3
/f2

f ′

1

¯f ′

3
/f1

f ′

1

¯f ′

3
/f1

(c)

f̄ ′

1
f ′

2
f ′

3
/f2f3

¯
f
′

1
f
′

2

¯
f
′

3
/f2 f̄ ′

1 f ′
3 /f

3

f ′
1 f ′

2 f̄ ′
3 /f

1f
2

B

F1

F2,3

F2

F1,2

F3

F1,3

¯f ′

1
f ′

3
/f3 f ′

2

¯f ′

1
/f2

f̄ ′

2
f ′

3
/f3f ′

2
f̄ ′

3
/f2

f ′

1
f̄ ′

2
/f1

f ′

1

¯f ′

3
/f1

(b)

f̄ ′

1
f ′

2
f ′

3
/f2f3

¯f
′

1
f
′

2

¯
f
′

3
/f2 f̄ ′

1 f̄ ′
2 f ′

3 /f
3

f ′
1 f ′

2 f̄ ′
3 /f

1f
2 f

′

1

¯
f
′

2
f
′

3
/f1

f3

Fig. 6. Three examples of environment models for a 3 processor architecture: (a) Only one failure can occur; (b) Two failures
can occur, possibly simultaneously; (c) Failure pattern.

Aside from the processor failure model, what failures can occur in the system must also be specified: for
instance, how many processors can fail? Or can they fail simultaneously? In terms of our processor LTSs of
Figure5, the question is how can thefi anddi events occur? Like we have said, all the failure eventsfi anddi

are uncontrollable. But this means that there is no constraints whatsoever on them. In particular,all the eventsfi

could occur, meaning that all processors could fail. Of course, this would result in a total failure of the system,
with no possibility at all to ensure the fault tolerance of the system. No one expects a system to tolerate a failure
of all the processors it is made of. To specify the way in whichthe failures can occur, the user must provide a LTS
modeling the environment. Its purpose is to issue the signals fi (resp.di) from signalsf ′

i (resp.d′

i) produced by
the environment. These signalsf ′

i andd′

i will be uncontrollable (i.e.,∈ Iu), reflecting the fact that a failure can
occur at any time, while the signalsfi anddi will be local, i.e., neither inIu nor in Ic, and will be used only for
building the synchronous product of all the LTSs.

The three LTSs of Figure6 concern a distributed architecture consisting of three processors: they are examples
of possible environment models that filter the uncontrollable eventsf ′

i andd′

i to produce the local eventsfi anddi

that must be tolerated by the system. Providing such an environment model is up to the designer. His choice will

8

depend on his knowledge of the system and the related failureassumptions. For instance, if it is unlikely for two
failures to occur simultaneously, he will remove from the automaton6(b) the three transitions fromB to Fi,j .
Alternatively, if he wants to consider malicious attacks, he will keep them.

The models above alone do not allow the user to specify how thefailures are actually detected. If the user
wants to concentrate on error processing only, then this is sufficient and he can assume that there exists a reliable
external unit that reports an error if and only if a failure has occurred. Otherwise, the user can specify additional
LTSs to model the failure detection process, for instance bydetecting discrepancies between the outputs of two
redundant processing units, and issuing the correspondingf ′

i event.
To specify a whole system, the above-described models of processors and environments can be used along

with the models of several tasks running on those processors. Such a task can, for instance, be migrated from
a processor P1 to another processor P2 in order to react to a failure event affecting P1. The advantage lies in
the decoupling of the task, the environment, and the processor model, making the definition of the fault tolerant
policy straightforward: indeed, it suffices to request thatno task be active on a faulty processor to synthesize
automatically, by DCS, a controller making the system faulttolerant. Such a scheme has been reported in [27].
Additionally, more sophisticated fault tolerance mechanisms can be specified, for instance checkpointing and
rollback, as described in [22].

Finally, note that communication links and memories can be treated exactly in the same way.

4.2 Actuator failures

In order to model the failure of an actuator, one has to specify how the failures affect the service that the actuator is
supposed to deliver. For instance, consider a braking system subject to failures. When not faulty, the brake is either
open (stateO) or closed (stateC), and can switch from the open to the close state according tothe controllable
input c, or vive versa witho. The brake becomes faulty following the uncontrollable event f , and goes either in
theFO state if it was open at the time of the failure, or to theFC state if it was closed. The failures are permanent,
which is modeled by the fact that the statesFO andFC are sink states. This behavior is encoded in the LTS of
Figure7(a). To model temporary failures, it suffices to add transitions from theFO (resp.FC) state back to theO
(resp.C) state, labeled with the controllable repair inputr. This is depicted in Figure7(b).

f

ōf̄

c̄f̄

f

cf̄of̄

FC

FO

C

O r̄

of̄

r

r

f

f

cf̄

c̄f̄

ōf̄ r̄

O

C

FO

FC

(a) (b)

Fig. 7. (a) LTS of a braking system subject to permanent failures; (b) Same with temporary failures.

Furthermore, degraded modes can also be specified: for instance, the LTS of Figure8(a) shows a braking
system that can be either open (stateO), closed (stateC), or half-open (stateH). In terms of breaking pressure,
the pressure would of course be equal to the maximal pressure(saym) in stateF , equal to 0 in stateO, and equal
tom/2 in stateH. Figure8(b) shows the LTS of a braking system with two degrade modes, one consisting of the
statesDO andDH, where the breaking pressure is in the interval[0,m/2], and a second degraded mode consisting
of the statesDC andDH ′, where the braking pressure is in the interval[m/2,m]. The degraded states are entered
upon the occurrence of the uncontrollable eventd, while the failure states are entered upon the occurrence ofthe
uncontrollable eventf . For the sake of clarity, the self-loops have been omitted.

9

cf̄

ocf̄
ōc̄f̄∨

f
c̄f̄

f

oc̄f̄

cōf̄of̄

fōf̄

FHH

FCC

FOO

cf̄

fd

od̄

oc̄d̄ cd̄

d

f

cf̄of̄

d

d

f

f

cōd̄
of̄

O

DH

FHH

FCDC

FODO

C

DH ′

(a) (b)

Fig. 8. (a) LTS of a three-state braking system subject to permanent failures;(b) Same with degraded modes.

Like in Section4.1, it is mandatory to specify how many actuators of the same kind can fail and in what
manner. This is done by providing an LTS like those of Figure6.

Other kinds of actuators can be defined. The common feature isthat the LTS must specify how the failures
affect the service that the actuator is supposed to deliver.For instance, a valve controlling the flow of some liquid
might be specified by exactly the same LTS as the braking system that we have just described.

The common feature that all actuator specifications must share concerns the state variables of the actuator
(e.g., the braking pressure, or the flow of liquid that passesthrough the valve). Due to the DCS framework, these
state variables must be encoded bydiscretevariables. Yet, as we have shown in Figure8(a), it is perfectly possible
to extend this discretization to more than two states, at theprice of more state space. This is the same as the output
of a sensor, as we will see in Section4.3.

4.3 Sensor failures

In order to model a sensor subject to failures, it is necessary to specify how the failures affect the service that
the actuator is supposed to deliver. For instance, considera liquid level sensor: either it is immersed in the liquid
(hence wet, in stateW), or it is not (hence dry, in stateD), or faulty (in theERR state). See the LTS in Figure9(a).
It goes to theERR state upon receiving the failure eventf . It goes from stateW toD upon receiving the eventd,
and back to stateW upon receiving the eventw. The eventsd andw are issued by the environment (or possibly by
another LTS modeling the liquid tank itself) to signal the sensor that it must change state. Concerning the failure
eventf , either it is uncontrollable or it must be produced by an environment model provided by the user, just like
the LTSs of Figure6 for the processor failures.

f̄ w̄/0 f̄ d̄/1

f/vf/v

f̄w/1

f̄d/0

/v

WD

ERR

f̄ w̄/0 f̄ d̄/1

f̄w/1

f̄d/0

r̄/v

rw/1rd/0

f/v f/v

D

ERR

W

(a) (b)

Fig. 9. (a) LTS modeling a liquid level sensor subject to permanent failures; (b) Same with transient failures.

Now, the purpose of a sensor is to produce an output corresponding to the physical data sensed by it from the
environment. In the case of a liquid level sensor, this will be a Boolean equal to 1 when the sensor is wet, and
to 0 when the sensor is dry. However, when the sensor is faulty, its the value of its output should not be fixed: we
model this by making this output equal to an uncontrollable event, calledv in Figure9(a).

10

Figure9(a) specifies a sensor subject to permanent failures: theERR state is a sink state. If one wants to
specify a sensor subject to transient failures, it suffices to add transitions back fromERR toD andW , like it is
done in Figure9(b).

5 Handling different kinds of failures

There are various kinds of failures that can affect the hardware components of the system. They are classified
according to the following criteria [4]:

– their domain: in value or temporal (in the latter case, their duration must also be specified);
– their coherencew.r.t. all the users;
– their detectability by the user.

For instance, crash failures are actually temporal and permanent failures; they are detectable and coherent: they
are the easiest failures to detect (and to tolerate), but conversely they have the least failure mode coverage7. At the
other end of the spectrum, Byzantine failures are incoherent value failures: they are the hardest failures to detect
(and to tolerate), but conversely they have the largest failure mode coverage. Because they are easier to model and
to tolerate, most of the related work concentrates on crash failures. In contrast, we show in this section not only
how to handle crash failures within our DCS framework, but also value failures and even Byzantine failures.

5.1 Crash failures

Crash failures are the easiest kind of failures to model and to handle. A hardware component subject only to crash
failures is calledfail-silent. Either it works fine, or it is faulty and in this case it ceasesto emit any output. In
particular, such failures are very easy to detect, for instance with heartbeat: the processor emits an “I am alive”
message at regular intervals with some fixed periodT , and whenever two messages in a row are not received, we
know that the processor is faulty.

A consequence of this definition is that Figure5 does not capture the nature of crash failures, because it says
nothing about the outputs of a processor when it is faulty. But in fact, it is not necessary to model explicitly the
processor’s outputs: it suffices to specify that any task executed onto a processor runs fine (i.e., produces correct
outputs) until the processor becomes faulty, in which case the task stops producing any outputs. In conjunction
with the LTSs of Figure5, it suffices to specify that no task can be active on a faulty processor.

r̄j

Aj
2

Rj

T j

Aj
3

Aj
1

tj tj

tj

aj
3

aj
2

aj
2

aj
1

aj
3

aj
1

Ij

āj
1
∧ āj

2
∧ āj

3

aj
2 aj

3
aj

1

rj

r̄j

r̄j

Fig. 10.LTS of taskτj .

7 The coverage of a failure mode assumption is defined as the probability thatthe assertion that formalizes the assumption is
true, conditioned on the fact that the component has failed [47].

11

For instance, Figure10shows the LTS of a simple taskτ j that can be active on either processorP1, P2, orP3,
borrowed from [27]. The task is first idle (stateIj) until it receives a run uncontrollable eventrj . It then goes to
the ready stateRj , where it waits until the controller decides to activate it either on processorP1 (stateAj

1), on
processorP2 (stateAj

2), or on processorP3 (stateAj
3). At any time, the controller can decide to migrate the task

onto another processor (thanks to the eventsaj
i). This goes on until the task terminates and goes to stateT j , which

is signaled by the reception of the uncontrollable eventtj .
Now, when several tasks obeying to the above specification are run concurrently on a three processor archi-

tecture, if the user wants to model fail-silent failures, itsuffices to express that no task should ever be active on
a faulty processor, and hence should be migrated by the controller onto another not faulty processor. Since the
failures of a fail-silent processor are easy to detect, it isconsistent to apply DCS with the following function:

S′ = make invariant



S,¬
n
∨

j=1

p
∨

i=1

(Aj
i ∧ ERRi)





whereS is the fault-intolerant system resulting from putting in parallel one LTS like the one of Figure10 for
each taskτ j , one LTS like the one of Figure5(a) for each processorPi, and one LTS like the one of Figure6(a)
specifying the environment. This scheme has been used in [27,22].

One can notice that, in the resulting controlled system, this control objective will lead to choosing between
statesAj

i in the LTS of Figure10. Indeed, in the global LTS resulting from the composition ofLTSs shown
previously, from a global state product of the local stateOK of a processorP1 and the local stateAj

1 of taskτ j ,
on the occurrence of a fault eventf1, the controller will only allow a transition satisfying theobjective, and given
that a local transition towardsERR1 will take place, the controller will constrain the values oftheaj

i controllable
inputs in such a way that the LTSmustgo from the local stateAj

1 into eitherAj
2 orAj

3. This is also illustrated in
Figure3.

5.2 Value failures

Value failures are much more difficult to detect than crash failures: in particular, obvious schemes like heart-
beating do not work. The difficulty within a DCS framework is to model the fact that when the failure occurs, the
variable concerned by this failure can take any value. Two cases must be distinguished:

– For aboolean variableu, this can be easily modeled by adding an additional uncontrollable variablev and
makingu equal tov whenever the failure occurs. As a result, the value of the faulty variableu can be any
value inB. This is shown in Figure9, where the additional uncontrollable variablev serves as the output of
the sensor whenever it is faulty.

– For anumerical variable u, it is necessary to discretize its domain of values, to encode this domain with
boolean variables, and to add as many uncontrollable variables to generate uncontrollable values in the domain
of u. This is exactly similar to abstract interpretation [20], and future work could concern coupling abstract
interpretation with DCS in order to be able to synthesize controllers on systems with numerical variables; in
particular, we plan to apply techniques such as dynamic partitioning [30].

5.3 Byzantine failures

Byzantine failures are like value failures, except that they are also incoherent [37]. This means that a processor
subject to Byzantine failures which must send a data to two distinct processors can send two different values to
each of them! For this reason, they are even more difficult to detect than value failures. The scheme we propose
is a generalization of the value failures: for each boolean variableu computed by a given componentC, we add
as many additional uncontrollable variables(vi)1≤i≤n, wheren is the number of other components(Ci)1≤i≤n to
whichC must send the value ofu. WhenC is not faulty, it sends to all components(Ci)1≤i≤n the same correct
valueu. But whenC is faulty, it sends to each componentCi a different valuevi.

Figure11(a) depicts a non-faulty componentC that computes an internal functionu = F (i) and transmits the
resultu ton other componentsC1, . . . ,Cn: each of those components receives the same value. Figure11(b) shows
the corresponding component having the same functionalityF but with Byzantine failures. When the failure event
f occurs (i.e., whenf = 1), the resultu of the internal functionF is bypassed, and each componentCi receives
a different valuevi instead ofu. This is exactly a Byzantine failure. Otherwise (i.e., whenf = 0), the behavior is
the same as in Figure11(a).

12

i
u ...

...F

componentC

toCn

toC1

i

f

u

vnv1 · · ·

...
...

1

componentC
toC1

F
toCn

0
1

0

(a) (b)

Fig. 11. (a) A non-faulty componentC connected to three other components; (b) The same component subject to Byzantine
failures.

6 Advanced DCS features

There are several other features offered by our method, which we present in this section. The first one concerns
shared resources (for instance a communication device): wewill show that, just by modifying the DCS objective
that specifies the desired behavior, the user can switch froma resource in shared access to a resource in mutual
exclusion (Section6.1). The second feature is optimal DCS, which allows us to enforce quantitative constraints
on the synthesized fault tolerant system. Such constraintsare very useful when designing embedded systems, e.g.,
power consumption, memory footprint, bandwidth, and so on (Section6.2).

The remaining features concern the technical aspects of DCS. First we show how conditioned DCS objectives
can be used to take degraded modes explicitly into account within the fault tolerant policy (Section6.3). Secondly,
we show how synchronous observers can be used to refine the fault tolerant objectives and to express more complex
objectives (Section6.4).

6.1 Shared resources

We consider two tasksτ1 andτ2, running on the same processor, and competing for a shared resource, for instance
a communication device connected to their processor. Figure 12 shows the LTSs of both tasks: each starts in
stateXi, where it does not have access to the resource, and goes to stateAi, where it has access to the resource,
upon receiving eventai.

x1

X1 A1

a1

x̄1ā1

x2

X2 A2

a2

x̄2ā2

(a) (b)

Fig. 12.(a) LTS of taskτ1; (b) LTS of taskτ2.

In order to specify the access policy of the shared resource,we design the DCS objective of the desired system
in the following way:

– Shared access (default access policy):true.
– Mutual exclusion (useful when a resource can only be used by one client at a time):
S′ = make invariant (S,¬(A1 ∧A2)).

– Continuous access (useful when a resource must be monitoredor controlled at all time, for instance a robotic
arm because of the gravity compensation that must be constantly applied to prevent it from falling):
S′ = make invariant (S,A1 ∨A2).

The above formulas can be straightforwardly generalized tomore than two tasks and more than one shared re-
source.

An interesting particular case of mutual exclusion is critical sections. Figure13 shows the generic LTS of
a task havingn successive stepsS1 to Sn: when in stepSi, it must wait for the arrival of eventti before go-
ing to the next stepSi+1; after the final stepsSn, it goes to the terminated stepT . Then, a taskτ1 havingn

13

successive steps and competing for a shared resource will bespecified by putting in parallel the two LTSs of Fig-
ures12(a) and13: because of the parallel composition, its states will be pairs (s1, q1) with s1 ∈ {X1, A1} and
q1 ∈ {S1,1, . . . , S1,n, T1} (with a renaming of the statesSi of the LTS of Figure13 into S1,i). Similarly, a second
taskτ2 will be specified by putting in parallel the two LTSs of Figures 12(b) and13 (with a similar renaming of
the states). Then, the following function guarantees that only stepSi is a critical section for both tasksτ1 andτ2:

S′ = make invariant
(

S,¬
(

(A1, S1,i) ∧ (A2, S2,i)
))

t̄n

S1

t1
S2

t2
Sn

tn−1

t̄1

T
tn

t̄2

Fig. 13.LTS of a task havingn successive stepsS1 to Sn.

6.2 Optimal discrete controller synthesis

It is possible to associate, to each transition and/or stateof the initial system aweight, and to specify some
combination function of the weights. This function is then used for the computation of the synchronous product,
and it can be required that it never goes above or below some fixed maximal or minimal bound, or even that it be
maximized or minimized. This is whatoptimal synthesisdoes [36,53,50,41,42]. Such an optimization can apply
to single transitions [44] or to finite paths. Let us note that optimal synthesis does not guarantee that the controlled
system will be deterministic, but only that it will be the most permissive one optimizing the combination function.
It is indeed possible that two outgoing and controllable transitions produce the same result on the combination
function.

Within our framework, it is very useful to model limited resources, like memory or power, which are crucial for
embedded systems, and we have demonstrated its applicability in two case studies [27,22], the former is a single
transition optimization, while the latter is a finite path optimization. Concretely, we use following additional DCS
function, whereψ is any cost function from the states to the integers:

– S′ = maximize step (S, ψ) is a function that synthesizes and returns a controllable systemS′ such that, from
any stateqi, all the controllable outgoing transitions that lead to successor statesqi+1 having a non maximal
cost functionψ(qi+1) are disabled. Optimization must always be applied after theinvariance and reachability
objectives, as a means of choosing one optimal solution among the correct ones.

For instance, we can specify three tasksτ1, τ2, andτ3, each modeled by the LTS of Figure10, running on
three processorsP1, P2, andP3. Table1 gives the power consumption costs and the quality of each task onto
each processor, as well as the maximal power consumption of each processor. The notion of quality refers, e.g.,
to computation tasks that can give more accurate results if given better computing resources. The combination
function for both weights is the sum, that is, the cumulativepower consumption (resp. the cumulative quality) is
the sum of the power consumptions (resp. of the qualities) inall the active states of the synchronous product.

power consumptionCj
i qualityQj

i

per task and processor per task and processor
P1 P2 P3 P1 P2 P3

τ1 4 4 2 3 5 3
τ2 2 2 3 2 2 5

ta
sk

τ3 2 3 4 2 2 5
boundbi 5 3 6

Table 1. Power consumptionCj

i and qualityQj

i of the tasksτj on the processorsPi, with the boundsbi giving the maximal
power consumption of each processor.

The complete system specification can therefore be given by the LTSs of Figure10 for the three tasks, of
Figure5(a) for the three processors, and of Figure6(a) for the environment model. Aconfiguration of the system is

14

an assignment of the tasks to the processors: for instance, the configuration〈A1
1|A

2
2|A

3
3〉 indicates that the tasksτ1,

τ2, andτ3 are respectively executed on the processorsP1, P2, andP3, while the configuration〈A2
1, A

3
1|∅|A

1
3〉

indicates thatτ1 is onP3, thatτ2 andτ3 are onP1, and thatP2 executes no task. There is a total of 27 different
configurations.

A basic fault tolerant policy can require that no task be active on a faulty processor:

S′ = make invariant



S,¬
3

∨

j=1

3
∨

i=1

(Aj
i ∧ ERRi)





Thanks to optimal DCS, it is possible to refine this policy by requiring that no processor exceeds its maximal
power consumption bound:

S′′ = make invariant



S′,

3
∧

i=1





3
∑

j=1

Cj
i ≤ bi









Note that, in the above objective, the predicateϕ that specifies the subsetE is actually aconstraint on the costsof
the component states; this is a generalization of the state predicates of Equation (3) in Section3.3.

Finally, again thanks to optimal DCS, we can require that thecumulative quality of the tasks be maximal:

S′′′ = maximize step (S′′, Qg)

where the qualityQg of the current global state of the system is the sum of qualities of the tasks, each in its current
state (Aj

1,Aj
2, orAj

3): Qg =
∑3

j=1
Qj , whereQj has the value ofQ in the current state of taskτj .

For instance, suppose thatP2 fails (i.e., the uncontrollable evente2 occurs) while the system is in the configu-
ration〈A1

1|A
2
2|A

3
3〉. From this state, the 27 possible configurations are reachable. We shall not discuss all of them,

but rather just explain that the three following configurations must be avoided in the controlled system since they
violate one of the required properties:

– 〈A1
1|A

2
2|A

3
3〉, after no migration, violates the fault tolerance property;

– 〈A1
1, A

2
1|∅|A

3
3〉, after the migration ofτ2 to P1, violates the maximal power consumption property because of

the boundb1 of P1;
– and〈A1

1|∅|A
2
3, A

3
3〉, after the migration ofτ2 toP3, violates the maximal power consumption property because

of the boundb3 of P3.

As a consequence, the three corresponding transitions mustbe disabled by the synthesized controller. In contrast,
the two following configurations satisfy the four required properties:

– 〈A2
1, A

3
1|∅|A

1
3〉, after the migration ofτ1 to P3 and ofτ2 andτ3 to P1;

– and〈A2
1|∅|A

1
3, A

3
3〉, after the migration ofτ1 to P3 and ofτ2 to P1.

Among those two configurations, thanks to the quality property, the controller should prefer〈A2
1|∅|A

1
3, A

3
3〉 since

the corresponding cumulative quality is 10 (3 + 2 + 5), instead of only 7 (2 + 2 + 3) for 〈A2
1, A

3
1|∅|A

1
3〉.

What we have just described involves an optimization of the controlled system only over a single step. That is,
from the current state, it selects the transition that leadsto the immediate successor state that optimizes the given
criteria. But in general, it does not select the transition that leads ultimately to the reachable state that optimizes
the given criteria. This is known as path optimization, and we have demonstrated its utility within our framework
of DCS for fault tolerance [22].

Optimal DCS over finite paths involves a modified Bellman DCS algorithm [5] in order to deal with path
having infinite loops, something that the classical Bellmanalgorithm cannot do. We will not go into the details of
our modified algorithm, which can be found in [22]. We illustrate its application to fault tolerance on taskshaving
several successive phases separated by checkpoints. Such atask is exemplified by the LTS of Figure14(a): the
task, namedτ1, begins in the idle stateI1, then goes in the ready stateR1, before starting its first phaseA on either
one of the processorsPi (in one of the statesA1

i); the task can be migrated to another processor while still in its
first phase (these are the “horizontal” transitions which are rollbacks); only after passing its first checkpoint can it
start its second phaseB, again on either one of the processorsPi (in one of the statesB1

i); again, the task can be
migrated to another processor while still in its second phase; finally, only after passing its second checkpoint can
the task terminate and go to the terminated stateT 1. In this LTS, there are only two phases / checkpoints, but in

15

the general case this number is arbitrary. Like in Section5.1, the eventsr1 andt1 (the latter playing the role of the
second checkpoint events) are uncontrollable; the first checkpoint eventsc1 are also uncontrollable (and similarly
for the LTS of Figure14(b)).

Furthermore, we associate to each state a static cost representing the cost for the task to traverse this state. We
also assume that the processors are subject to permanent crash failures, and we adopt the environment model of
Figure6(a). The problem consist now in finding a controller that willguarantee that no task be active on a faulty
processor (fault tolerance policy), and that the total costs of executing the tasks from their idle to their terminated
state be minimized; this cost is computed by summing, for each task, the individual cost of each traversed state.
For instance, if a task is migrated fromP1 to P2 before its first checkpoint, then it must pay the cost of its first
phase twice: this is consistent with the classical notion ofcheckpoints and rollback.

1 1

4 3 2

1 2
6

1

c1

I1

A1

2
A1

3

T 1

R1

a1

2
a1

1
a1

3

a1

2
f a1

3
f

a1

1
f a1

2
f

A1

1

B1

1
B1

2
B1

3

t1

r1

c1

r1

...
t1 t1

a1

1
f

a1

2
f

a1

2
f

a1

3
f

c1

c
1 a

1
1

c 1
a 1
3

1 1

8 1 2

3
2

1

1

t2

I2

A2

2
A2

3

T 2

R2

a2

2
a2

1
a2

3

a2

2
f a2

3
f

a2

1
f a2

2
f

a2

2
f a2

3
f

a2

1
f a2

2
f

A2

1

B2

1
B2

2
B2

3

t2

r2

c2

r2

...

c
2 a

2
1

c 2
a 2

3

c2

c2

t2

(a) (b)

Fig. 14.Example of runs for two tasks,T 1 (a) andT 2 (b), executing on three processors, whenP2 fails.

Figures14(a) and14(b) show the examples of runs for two tasks, respectively namedT 1 andT 2, executing on
three processors. The cost of each state is indicated next toits state. In this example, the best execution cost for
taskT 1 would be 1+1+2+1+1=6, which corresponds to executing its first phase onP3 and its second phase onP1.
The best execution cost for taskT 2 is 1+1+1+1+1=5, which corresponds to executing its first phase onP2 and its
second phase onP1. The run proceeds as follows. First,T 1 is scheduled onP3 andT 2 is scheduled onP2. At that
moment, processorP2 fails.T 2 must migrate immediately and the best cost solution is offered by processorP3; in
the meantime, taskT 1 remains on processorP3. The tasks can execute their own checkpoint independently of each
other, when receiving the corresponding uncontrollable eventc1,2. Just after a checkpoint, processor migrations
can also occur for optimality reasons: here, bothT 1 andT 2 migrate respectively fromP3 toP1 in order to achieve
their best execution cost.

6.3 Conditioned discrete controller objectives

Conditioned DCS objectives are very useful to addressdegraded modesof control, e.g., to achieve a management
of the degraded modes. The principle is that each such mode isspecified by, on one hand a predicate on states
(ϕi)1≤i≤n, and on the other hand a condition(Ci)1≤i≤n. Then, there are two possibilities, either a conditioned
invariance or a conditioned reachability:

– A single conditioned invariance objective is achieved byS′ = make invariant (S,Ci ⇒ ϕi), where the
predicateCi ⇒ ϕi is of course equal to¬Ci ∨ ϕi. In the case of multiple conditioned invariance objectives,
the controlled system is synthesized byS′ = make invariant (S,

∧n
i=1

(Ci ⇒ ϕi)). A useful instantiation of
this is the synthesis functionS′ = make invariant (S, (C ⇒ ϕ1) ∧ (¬C ⇒ ϕ2)), which amounts to switch
from the DCS objectiveϕ1 toϕ2 and back according to the conditionC.

16

– A conditioned reachability objective is a bit more elaborate, and requires first to transform the objective into
an invariance one:keep reachable (S,E) = make invariant (S, reachable under control (S,E))
(see Section 2.2). Then, for a single conditioned objective, the controlledsystem is synthe-
sized by S′ = make invariant (S,Ci ⇒ reachable under control (S, ϕi)). In the case of
multiple conditioned reachability objectives, the controlled system is synthesized byS′ =
make invariant (S,

∧n
i=1

(Ci ⇒ reachable under control (S, ϕi))).

As a consequence, the obtained controlled system will satisfy the predicateϕi (that is, either the subset of
states satisfyingϕ will be invariant or reachable) provided that the conditionCi holds. Of course, this technique
involving conditioned synthesis objectives can be used to design many other systems and not just degraded modes.
A full case study involving degraded modes and conditioned DCS objectives is presented in Section7.1.

6.4 Synchronous observers

Observability is an important notion in discrete controller synthesis. Just like the alphabetI of the languageU is
partitioned into two subsets (the setIc of controllable events and the setIu of uncontrollable events), it can also
be partitioned into two other subsets: the setIo of observableevents and the setIuo of unobservableevents.
The idea is that the controller must behave in the same way whether an unobservable occurs or not [39,18].

Within our framework, it is sometimes useful to express a synthesis objective that refers to the output of one
of the system’s LTSs. In such a case, if its internal states ofthis LTS were observable, then the controller could
make some of its internal states unreachable (by disabling incoming transitions). In contrast, if this LTS’s internal
states were unobservable, then the controller would not be able to make them unreachable. As we can see, this is a
different notion of observability as the one defined in [39,18], since it refers to the states rather than to the events
and transitions.

A typical situation where a synchronous observer is useful is a system consisting of a plant coupled to one
or more sensors (and with a model of the fault hypothesis as usual). The purpose of such a design is to take into
account the value failures of the sensors. However, it is notpossible to express the synthesis objective w.r.t. the
state of the sensors, because it directly tells whether or not the sensors are faulty, and this contradicts our objective
to tolerate the value failures of the sensors, hence withoutknowing if the sensors are faulty or not. For this reason,
the synthesis objective must be expressed w.r.t. the state of the plant. But in this case, the possible value failure of
the sensors will not be taken into account when synthesizingthe controller, because the closed loop consisting of
the plant and the controller is independent of the values of the sensors.

This situation is illustrated by Figure15: the synthesized controller interacts only with the plant,independently
of the eventual value failures of the sensors.

events events

input events

control
eventsPlantController Sensors

input events

Fault
hypothesis

fault events

local local

state variables

Fig. 15.A controlled system equipped with sensors subject to failures.

Therefore, we propose to add asynchronous observer[29] to the system, an LTS whose job is to observe
the outputs of the sensors, and to go in a state named “BAD” as soon as these outputs correspond to the former
synthesis objective. As a consequence, the new synthesis objective becomes¬BAD, that is, theBAD state
should be unreachable. Now the closed loop includes the plant, the controller,and the sensors. This new situation
is illustrated by Figure16.

17

control
events events

input events

eventsPlantController Sensors

input events

Fault
hypothesis

local events

state variables

fault events

local local

observer
Synchronous

Fig. 16.The same system as in Figure15with a synchronous observer.

We have conducted with Huafeng Yu a full case study, consisting of a water tank with liquid level sensors,
subject to value failures [28].

7 Case studies

Throughout Sections4 to 6, we have used numerous examples extracted from three previously published case
studies [27,23,28,22]. These examples show the usefulness of our framework. To further demonstrate this, we de-
tail in this section two unpublished case studies: a system tolerant to the failures of its actuators, and the Byzantine
generals revisited.

7.1 A system tolerant to the failures of its actuators with conditioned synthesis objectives

The system under study in this section consists of two tanks of liquid, connected by two pipes; it is a benchmark
defined by the COSY group (“Control of Complex SYstems”) of ESF (“European Science Foundation”). The left
tank can be filled with liquid by opening the valveV0. The right tank can be emptied by opening the valveV3.
The flow in the upper (resp. lower) pipe is controlled by the valve V1 (resp.V2). Each valve is subject to fail silent
faults; in other words, it is theactuators of the system that can fail. This is illustrated in Figure17. The level of
the liquid in the left tank is abstracted as eitherN0 (the tank is empty),N1 (the level is between the lower and the
upper pipe),N2 (the level is above the upper pipe), orN3 (the tank is over-flooding). Similarly, the level in the
right tank is abstracted as eitherN ′

0,N ′
1,N ′

2, orN ′
3.

N ′

3

L2

L1

V0

V3V2

V1

N2

N1

N0

N3

N ′

0

N ′

1

N ′

2

Fig. 17.A system with two tanks, two pipes and four valves.

We can observe that this system offers only a limited form of redundancy, since each actuator (valve) plays a
specific role that cannot be directly fulfilled by the other actuators. For this kind of systems, it is always difficult
to elaborate efficient fault tolerance strategies. We will see however that DCS brings satisfactory results to this
respect.

Each valveVi is an actuator subject to failure, and can hence be modeled bythe LTS of Figure18; this LTS
is similar to what has been shown in Figure7(a). When not faulty, the valve is either open (stateOi) or closed
(stateCi), and can switch from the open to the close state according tothe controllable inputci, or vive versa

18

with oi. The valve becomes faulty following the eventfi, and goes either in theFOi state if it was open at the
time of the failure, or to theFCi state if it was closed. The failures are permanent, which is modeled by the fact
that the statesFOi andFCi are sink states. The LTS of valveVi also outputs a variable namedvi that represents
the status of the valve: by convention,1 means open while0 means closed.

fi/1

fi/0

oif̄i/1 cif̄i/0

FCi

FOi

Ci

Oi

Fig. 18.LTS modeling the behavior of valveVi.

For the sake of simplicity, we assume that all the valves haveexactly the same flow per time unit. For instance,
whenV0, V2 andV3 are open whileV1 is closed, the level in both tanks does not change. Also, because of the
rules of communicating tanks, the level in the right tank cannever be greater than the level in the left tank. The
behaviors of the left and right tanks being tightly interdependent one of another, it is not possible to model each as
a separate LTS. Rather, we propose the LTS of Figure19 to model the joint behavior of the two tanks according
the status of the four valves.

v0 ∧ v̄1 ∧ v̄2

v̄0 ∧ (v1 ∨ v2) ∧ v3v̄0 ∧ (v1 ∨ v2)

v0 ∧ v̄1 ∧ v̄2 v0 ∧ v2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ (v1 ∨ v2) ∧ v̄3

v̄0 ∨ (v1 ∧ v2)

v̄0 ∧ v2 ∧ v3

v2 ∨ (v0 ∧ v1)

v̄0 ∧ v̄2 ∧ v3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ (v1 ∨ v2) ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v2 ∧ v̄3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v̄2

v̄0 ∧ v̄2 ∧ v3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ (v1 ∨ v2) ∧ v̄3

N0, N
′

0

N3, N
′

1 N3, N
′

2N3, N
′

0

N2, N
′

2

N1, N
′

1N1, N
′

0

N2, N
′

0 N2, N
′

1

N3, N
′

3

Fig. 19.The LTS modeling the joint behavior of the two tanks.

This model assumes that, if the right tank is empty (stateNi, N
′
0), then it is not possible to empty the left

tank without temporarily filling the right tank. In other words, transitions fromNi, N
′
0 toNi−1, N

′
0 are forbidden.

Furthermore, this model forbids two level changes in a row: for instance, to move fromN0, N
′
0 to N2, N

′
0, the

system must before go intoN1, N
′
0. Finally, to avoid too complex drawings, the self-transitions that make the LTS

reactive have been omitted in Figure19.
The plant is therefore the synchronous product of the LTSs ofthe double tanks (Figure19) and of the four

valves (Figure18). It is show in Figure20.

19

C
O

N
T

R
O

LL
E

R

c0f̄0/0o0f̄0/1

f0/0

c1f̄1/0o1f̄1/1

v̄0 ∧ (v1 ∨ v2)

v0 ∧ v̄1 ∧ v̄2 v0 ∧ v2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

c3f̄3/0o3f̄3/1

f3/0

f3/1

f1/0

f1/1f0/1

v0 ∧ (v1 ∨ v2) ∧ v̄3

v̄0 ∧ v2 ∧ v3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v2 ∨ (v0 ∧ v1)

v̄0 ∧ v̄2 ∧ v3

v0 ∧ (v1 ∨ v2) ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v2 ∧ v̄3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v̄2

v̄0 ∧ v̄2 ∧ v3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3 v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v̄0 ∨ (v1 ∧ v2)

v0 ∧ v̄1 ∧ v̄2 v0 ∧ (v1 ∨ v2) ∧ v̄3

v̄0 ∧ (v1 ∨ v2) ∧ v3

c2f̄2/0o2f̄2/1

f2/0

f2/1
O0

N3, N
′

1 N3, N
′

3N3, N
′

0

N2, N
′

2

N1, N
′

1N1, N
′

0

N2, N
′

0 N2, N
′

1

N0, N
′

0

FC3

FO3

C3

O3

FC2

FO2

C2

O2

FC1

FO1

C1

O1

FC0

FO0

C0

N3, N
′

2

Fig. 20.Complete system made of the tanks and the four valves.

The problem we want to address for our two-tanks system is to synthesize a controller guaranteeing the two
following functions:

LV1 : No tanks over-floods. This is achieved byS′ = make invariant
(

S,¬
∨3

i=0
N3 ∨N

′
i

)

. Note that, because of

the physical configuration of the two tanks and the two pipes,the right tank can over-flood only if the left tank
does so too. In other words, it suffices to prevent the system from going in the stateN3, instead ofN3 ∨N

′
3.

LV2 : The level in the left and right tanks must be regulated respectively atN2 andN ′
1. This is achieved by

S′′ = keep reachable (S′, {(N2, N
′
1)}).

Unfortunately, if the valveV0 fails while it is open, and at the same time either the valveV3 fails while it is
closed, or both valvesV1 andV2 fail while they are closed, then the objectiveLV 1 becomes impossible to satisfy.
This intuition is confirmed by SIGALI that fails to synthesize the required controller. The fundamental reason for
this is the low level of redundancy offered by the fault intolerant system.

One solution would be to strengthen the fault hypothesis, byassuming that only one valve can fail. In terms
of our system model, this would result in adding an LTS similar to the one of Figure6(a). Rather, we choose to
condition the synthesis objectiveaccording to the faults of the valves. Our synthesis functions LV 1 andLV 2
therefore become:

LV1’ : If the valveV0 is not stuck in the faulty and open state, then no tank over-floods. This is achieved by

S′ = make invariant
(

S,¬FO0 ⇒ ¬
∨3

i=0
(N3, N

′
i)

)

.

LV2’ : If the four valves work fine, then the level in the left and right tanks must be regulated respectively atN2

andN ′
1. This is achieved by (see Section6.3for the explanations about conditioned reachability objectives)

S′ = make invariant

(

S,
∧3

i=0
(Oi ∨ Ci) ⇒ reachable under control (S, {(N2, N

′
1)})

)

.

This two-tanks system has been implemented in MATOU by Safouan Taha [51]. The controlled system syn-
thesized by SIGALI with the objectivesLV 1’ andLV 2’ behaves as expected: while the four valves work fine, it
regulated the liquid level atN2 in the left tank and atN ′

1 in the right tank.

20

We believe that this approach (DSC with conditioned synthesis objectives) is very useful to design fault tolerant
systems. It guarantees by construction a specified level of fault tolerance, and offers a very elegant way to specify
degraded modes in a system.

7.2 The Byzantine generals revisited

In this section, our goal is to model Byzantine faults by means of LTSs and uncontrollable events, and to obtain
with DCS the same result as Lamport et al. [37] in the particular case of 4 generals. Note that the result in[37]
is parametric forn generals and hence much more general than what we achieve here. It would be interesting in
future work to extend our DCS framework to handle such parametric models.

In [37], Lamport et al. define theByzantine generals problemin the following way:n divisions of the
Byzantine army, each commanded by its own general, are camped outside an enemy city. The generals must decide
on a common plan of action, eitherattack or retreat, by communicating with one another only by oral messages.
The problem is that some generals aretraitors who try to prevent the loyal generals from reaching agreement.
One of the generals is thecommanderof the army, while then− 1 remaining ones are hislieutenants.

The commander first sends an order (attack or retreat) to hisn−1 lieutenants. If he is loyal, then he must send
the same order to all his lieutenants; but if he is a traitor, then he can send different orders to his lieutenants, that
is, incoherent orders. It was after this article that incoherent value faults have been calledByzantine faults.

Then, each lieutenant transmits the received order to all the other lieutenants. Again, a loyal lieutenant must
transmit the order he has received from his commander to all the other lieutenants, but not if he is a traitor.

The goal is to find an algorithm guaranteeing that the loyal generals will reach aconsensusfor their plan of
action. Formally, the two following interactive consistency conditions must be satisfied:

IC1: All the loyal lieutenants obey the same order.
IC2: If the commander is loyal, then each loyal lieutenant obeysthe order sent to him.

The algorithms1.1 and1.2, proposed by Lamport et al., are respectively the actions performed by the com-
mander and by then − 1 lieutenants:m is the number of potential traitors (the actual number of traitors is not
known),v is the initial order, andi is the number of the lieutenant.

Algorithm 1.1 Byzantine Commander(m, v)
1 Send my orderv to then − 1 lieutenants;

Algorithm 1.2 Byzantine Lieutenant(m, i)
1 vi := value received from the commander;
2 if m = 0 then
3 Use as order the valuevi;
4 else
5 Sendvi to then − 2 other lieutenants;
6 forall j 6= i do
7 vj := value received from the lieutenantj;
8 end do
9 Use as order the majoritymaj (v1, v2, . . . , vn−1);
10 end if

Lamport et al. demonstrate by induction overm that, to accommodate the presence of at mostm traitors, there
must be at least3m+ 1 generals to guarantee that all the loyal generals reach the consensus. Three hypotheses on
the exchanged messages are necessary: each message sent is correctly received, the receiver knows the sender, and
the absence of a message can be detected. In terms of computerscience, these hypotheses can be satisfied by a fully
connected point-to-point network, and with synchronized clocks. Moreover, the functionmaj (v1, v2, . . . , vn−1)
is such that if a majority of the valuesvi is equal tov, then the result isv.

The problem we want to address in this section is the following: among then Byzantine generals, how many
at most can be traitors? In order to answer to this question with DCS, we model the environment as themost
permissive possibleLTS, having as inputsec, e1, e2, ande3 (respectively the betrayal of the commander and the
three lieutenants), and producing as outputstc, t1, t2, andt3 (each of those will be used as input respectively by
the LTS of the commander and the three lieutenants; see Figure21). We noteLoyc andTrac respectively the state
where the commander is loyal or traitor, andLoyi andTrai the state where thei-th lieutenant is loyal or traitor.
The following LTS is therefore the most permissive environment model:

〈

Loyc
ec/tc

−−−→ Trac

〉

||

〈

Loy1
e1/t1
−−−→ Tra1

〉

||

〈

Loy2
e2/t2
−−−→ Tra2

〉

||

〈

Loy3
e3/t3
−−−→ Tra3

〉

21

Our idea is that DCS willconstrainthis environment model bypreventingsome generals to be traitors, that is
by inhibiting some of its transitions. In contrast with Section4.1, the eventsec, e1, e2, ande3 must therefore be
controllable. In other words, we want to obtain by DCS the most permissive LTS guaranteeing that the generals
will reach the consensus in any circumstances. Note that when doing so, we limit in fact theactual number
of traitors instead of thepotentialnumber of traitors. In other words, our model considers thatm is theactual
number of traitors instead of thepotentialnumber of traitors.

We noteAttc andRetrc respectively the state where the commander attacks or retreats, andAtti andRetri
the state where thei-th lieutenant attacks or retreats.

v2

3
v1

3

v3

v2

1
v3

1

v1

v1

2
v3

2

v2

t3t2t1

tc

u2

3

u2

1
u1

3

u1

2

u3

2

u3

1

uc
3

uc
2

uc
1

ec
e3
e2
e1

v

01 01 01

Commander

0
1

0
1

Lieutenant 1
0
1

0
1

Lieutenant 2
0
1

0
1

Lieutenant 3

Environment

Fig. 21.Complete system made of the environment model, the commander, and thethree lieutenants.

The LTS of the commander receives, as input, the initial order v he is supposed to send to the three lieutenants
(v being an uncontrollable event):v = true means attack whilev = false means retreat. To model the fact that,
if he is a traitor, then he can send incoherent messages, we add three uncontrollable inputs,uc

1
, uc

2
, anduc

3
(as we

have shown in Section5.3 and in Figure11). In his normal mode of operation, his three outputs are equal to v.
But when he is a traitor, his three outputs are each equal to one of his three uncontrollable inputs. Similarly, the
LTS of lieutenanti receives, as input, the ordervi sent by the commander, and which he is supposed to transmit
to the two other lieutenants, via his outputsvi

2 andvi
3. To model the fact that, if he is a traitor, then he can send

incoherent messages, we add two uncontrollable inputs,ui
2

andui
3
. Finally, the LTS of lieutenanti must compute

the majority of the three received values,vi, v2
i andv3

i , in order to determine if he must go to the stateAtti or
Retri.

In terms of DCS, the propertiesIC1 andIC2 translate into:

– PropertyIC1 = unreachability of the states such that the predicate∀i 6= j, Loyi ∧ Loyj ∧
(

(Atti ∧Retrj) ∨

(Retri ∧Attj)
)

is true, that is:

S′ = make invariant
(

S,∀i 6= j, Loyi ∧ Loyj ∧
(

(Atti ∧Retrj) ∨ (Retri ∧Attj)
)

= false
)

– PropertyIC2 = unreachability of the states such that the predicate∀i, Loyc∧Loyi∧
(

(Attc∧Retri)∨(Retrc∧

Atti)
)

is true, that is:

S′ = make invariant
(

S,∀i, Loyc ∧ Loyi ∧
(

(Attc ∧Retri) ∨ (Retrc ∧Atti)
)

= false
)

With Nour Brinis we have implemented the system of Figure21in MATOU. By asking to SIGALI to synthesize
a controller with the two properties above, we have obtaineda controlled system of four Byzantine generals
tolerating the presence of one traitor among them [12]. This result is consistent with the theorem of Lamport
et al. The originality of our approach lies in the usage of uncontrollable inputs to model incoherent values, as
well as in the usage of DCS to determine the maximal number of Byzantine admissible faults, by producing the
environment model that is the most permissive and still guarantees that the generals reach the consensus whatever
the circumstances.

22

8 Related work

To the best of our knowledge, although they do not mention anysoftware implementation, Cho and Lim have
been the first ones to develop the idea of making a system faulttolerant thanks to DCS, by considering faults
as uncontrollable events [17]. Their results are based on the framework of supervisory control of discrete event
systems of Ramadge and Wonham [48]. First, the set of eventsΣ is partitioned intoΣ = Σc ∪Σuc = Σn ∪Σan,
respectively the subsets of controllable, uncontrollable, normal, and abnormal events; moreover,Σan ⊂ Σuc.
With respect to a marker set of statesQm (the objective for the control), they define arecurrent event to be such
thatQm can be reached from its originating state, either through controllable or other recurrent events. Then, a
fault event is an abnormal event that does not prevent the system from reachingQm, otherwise it is afailure
event. Their guideline is that a fault is a malfunction while a failure is a total breakdown. Finally, a system is
fault tolerant w.r.t.Qm if, when any abnormal event occurs during the execution, either there must exist another
event sequence which can reachQm, or the path to this abnormal event can be eliminated. Any event sequence,
which consists of normal events or fault events and which drives the initial state toQm, is called atolerant fault
event sequence(TFES) if, for each normal event, all the possible events following the corresponding states are
either controllable or other recurrent events. The set of all TFES is then taken as the legal languageK, which is
achievable by construction, i.e., both controllable and observable. Finally, the plant is constructed as the parallel
composition of several finite state automata. The differences w.r.t. our own work reside in:

– their usage of a set of states as control objective instead ofinvariance or reachability properties, which are
easier to use in practice, all the more when in conjunction with a synchronous observer;

– their usage of the basic parallel product instead of the synchronous product: the latter limits the combinatorial
explosion, without avoiding it entirely though;

– the absence of clear definition of their fault hypothesis, while we model it as an LTS, which is both more
formal and more flexible;

– our usage of optimal DCS that provides more possibilities ofsynthesis as well as to limit the non-determinism
of the controlled system;

– finally, our usage of a DCS software tool while Cho and Lim do not mention such a tool.

In [45], Marchand and Samaan exemplify the use of DCS in the specificcase of a power transformer. Like
them, we model failure events with uncontrollable boolean inputs. Their modeling is very specific to their case
study: for instance, the fault propagation is influenced by the opening and closing of circuit-breakers. In contrast,
our framework covers a much wider range of fault tolerance issues.

The technique proposed by Kulkarni and Arora in [33], and improved in [34,35,9], is close to our own work.
It involves synthesizing automatically a fault tolerant program starting from an initial fault intolerant program. In
their model, a program is a set of processes, each with its local variables. Each program’s state is a valuation of
the program’s variables. Two execution models are considered: thehigh atomicity model, where the program can
read and write any number of its variables in one atomic step (i.e., it can make a transition from any one state
to any other state), and thelow atomicity model, where it can not (actually, each process can write only its own
variables, and can read only its own variables and its neighbor’s). The initial fault intolerant program ensures that
its specification is satisfied in the absence of faults, but noguarantees are provided in the presence of faults. Then,
a fault is a subset of the set of transitions. The authors consider three levels of fault tolerance:

– thefailsafe ft: even in the presence of faults, the synthesized program guarantees safety;
– thenon-masking ft: even in the presence of faults, the synthesized program recovers to states from where its

safety and liveness are satisfied;
– and themasking ft: conjunction of the two above mentioned levels.

To address their two models of atomicity and their three levels of fault tolerance, the authors propose a sound
and complete algorithm that is polynomial in the state spaceof the source fault intolerant program for the high
atomicity model (resp. exponential for the low atomicity model). In the low atomicity model, the transformation
problem is NP-complete, except for non-masking ft for whichthe complexity is unknown. Each transformation in-
volves recursively removing bad transitions. However, some transitions cannot be removed (like the uncontrollable
transitions in DCS), but this is the case only of fault transitions (while in DCS, any event can be uncontrollable,
not only faults). An efficient BDD-based algorithm has been presented in [8] and implemented in the SYCRAFT

tool [10].8

8 SYCRAFT: http://www.cse.msu.edu/∼borzoo/sycraft

23

http://www.cse.msu.edu/~borzoo/sycraft

Attie et al. have also proposed an automatic synthesis method for fault tolerant programs [3]. In their approach,
a system is a set of concurrent processes, each consisting ofa directed graph, where states are connected by
transitions labeled by guarded commands. At each executionstep, one process is randomly chosen to fire an
enabled transition from its current state. To specify such systems, the temporal logic CTL is used as a specification
language. Such a specification allows to distinguish between thesafety part and theliveness partof the system.
Faults are modeled as guarded commands that perturb the system’s state. The occurrence of a fault is modeled as
a directed graph whose transitions are labeled by fault guarded commands. Attie et al. use the same fault tolerance
properties as Kulkarni and Arora: inmasking tolerance, both the safety and the liveness parts are respected; in
fail-safe tolerance, only the safety part but not necessarily the liveness part is respected; and innon-masking
tolerance, the liveness part is always respected but the safety part isonly eventually respected.

The fault tolerance synthesis problem starts with a problemspecification (a CTL formula of the form
init spec∧AG(global spec)), a fault specification (a CTL formulaF), a problem-fault coupling specification (a
CTL formulaAG(coupling spec)), and a type of toleranceTOL (either masking, fail-safe, or non-masking). The
goal is to synthesize a concurrent program that satisfiesinit spec∧AG(global spec) in the absence of faults, sat-
isfiesAG(coupling spec) in the absence of faults, and isTOL-tolerant toF for init spec ∧ AG(global spec).
The authors use the decision procedure of [24] to solve this problem, i.e., to synthesize the recovery behavior
that conforms to the required tolerance properties. The overall time complexity is exponential in the size of the
specification (i.e., the size of the problem specification plus the size of the problem-fault coupling specification).

There are three important differences between our approachand the ones of Kulkarni and Arora and Attie et
al. Firstly, their model of computation (MoC) is the non-deterministic interleaving, while ours is the synchronous
deterministic parallel composition. We believe that, whendesigning safety critical distributed systems, a determin-
istic MoC is better suited than a non-deterministic one (it makes debugging easier and facilitates formal model-
based methods). This claim is supported by the successes achieved by the synchronous MoC [6], in particular
in avionics [11]. Secondly, only fault transitions are uncontrollable, while we use uncontrollable events to model
fault events but also any event decided non-deterministically by the environment. And finally, our method can
handle some form of optimality w.r.t. costs associated to states of the system.

Based on the work of Kulkarni and Arora, Gärtner and Jhumka propose a way to deal also with non fusion
closed traces [26]. A specification isfusion closediff the entire history of every trace is present in every state of
the trace (hence the next state of the systems depends only onits current state and on the inputs, i.e., not on the
sequence of previous events). The usual way to transform a non fusion closed specification into a fusion closed
one involves addinghistory variables to the states, in order to remember the sequence of past inputs. However, in
general this is exponential. The authors propose a polynomial method, which involves splitting fusion paths (here
a new state is added), and then removing the bad fusion states. If n is the number of state of the initial non fusion
closed specification, then, at worst, the number of states ofthe resulting equivalent fusion closed specification
is O(n2). This result has later been generalized in [35].

Kamach et al. have applied DCS to a system with several modes of operations [32]. Their approach allows
the user to specify, for instance, onenominal modeand onedegraded modefor a subsystem, and to switch this
subsystem between those two modes according to two uncontrollable events, calledcommutation events. They
present a case study consisting of a small industrial pneumatic production line, with two jack cylinders and one
pump. The horizontal jack cylinder has a degraded mode, where it can no longer move. The commutation events
associated to the horizontal jack cylinder arep (failure) andr (repair). This case study has been implemented with
the TCT tool of Ramadge and Wonham.

There are also works in the domain of hardware synthesis, or scheduler synthesis, in co-design. Similarities
with our work exist, at least in the informal statement of theproblems: the use of discrete event dynamical systems
as formal models of reactive systems, be it Petri nets or LTS,to synthesize sequences in the presence of constraints
of different kinds, with controllable and uncontrollable inputs. Hardware synthesis is an elaborate optimization
and constraints process. It can involve notions related to game theory. However, there are differences with our
work, which can be hidden by similarities of vocabulary. Forexample Cortadella et al. distinguish uncontrollable
and controllable inputs by the constraints on the moment when they can be read, the objective being to avoid
blocking schedules [19]. They make the relation with the notions, in the synchronous language ESTEREL, of
“signal” (uncontrollable) and “sensor” (controllable).

In contrast, we use the words controllable and uncontrollable in the different meaning of Ramadge and Won-
ham, which is very classically accepted in the community of supervisory control, also called Discrete Controller
Synthesis [48]. There, the synthesis involves computing the constraint in the value of controllable variables of a
system (and not the moment of their “reading”), as a functionof uncontrollable values and current state, so that
the paths that can be taken in the controlled LTS do respect the properties given as synthesis objectives, and this

24

whatever the values of uncontrollable variables (and not the moment of their “reading”). Controllable events are
used to inhibit some behaviors, through a constraint on their value so that the transitions they are labeling cannot
be taken by the controlled system. Controllable events are inputs of the uncontrolled system, but not of the final
system once the controller is integrated. The control whichis synthesized in supervisory control concerns the
values, not the moments of reading operations. Another significant difference with the work of Cortadella et al. is
that the questions of fault tolerance, which we are treating, do not seem to be explicitly addressed there.

Another research area close to DCS isplanning, a technique that has emerged from artificial intelligence.
Results on the automatic generation of fault tolerant planshave been obtained by Jensen et al. [31]. After defining
the general problem of finding an-fault tolerant plan, the authors concentrate on 1-fault tolerant planning and
present two algorithms based on Ordered BDDs [14]. The main limitation of their results is that they tolerateonly
one fault, while our model can accommodate an arbitrary number of faults.

Timed Game-Automata (TGA) can also be used in a framework forautomating the addition of fault-tolerance.
Quite naturally, one player could be the environment producing the faults, while the other player could be the
controller trying to keep the system in a subset of safe states (this subset being formally specified as a reachability
or safety property). Although there exists an efficient on-the-fly algorithm to verify safety and reachability prop-
erties for TGAs [16], implemented in the UPPAAL-TIGA tool9, this appealing idea has never yet been applied to
fault-tolerance.

Formal approaches to the design of fault tolerant systems have mostly considered the problem offormal
verification, in the context of process algebra [49,13,7]. Theyverify that an existing, hand-made design (replicas
interaction control, voters, etc) satisfies a certain equivalence with the nominal functionality specification, even in
case of faults. What distinguishes these approaches from DCSis the fact that fault tolerance properties are verified
a posteriori. In contrast, DCS approachessynthesizeautomatically a controller that will insure the required fault
tolerance properties by construction, that isa priori.

9 Conclusion and future work

9.1 Contribution

After introducing discrete controller synthesis (DCS) andits application to the automatic addition of fault tol-
erance in systems, we have presented in details how to specify and handle the failures of hardware components
(processors, communication links, actuators, and sensors). Then we have shown how to specify and handle sev-
eral kinds of failures (crash, value, and Byzantine). Finally, we have demonstrated with two case studies how our
framework for fault tolerance can be used in practice. Thesecase studies share the fact that the plant is specified
as the synchronous product of several LTSs, with one LTS representing the fault hypothesis, and that the synthesis
objective is specified as reachability and invariance predicates on states. Our research results are supported by a
tool chain [1] (developed by us and by other research labs): MATOU to program LTSs in an easy way, and SIGALI

for the DCS tool. The great advantages of our framework for fault tolerance are:

– It is automatic, because DCS produces automatically a fault tolerant system from an initial fault intolerant
one.

– Theseparation of concerns, because the fault intolerant system can be designed independently from the fault
tolerance requirements.

– Theflexibility , because, once the system is entirely modeled, it is easy to try several fault hypotheses, several
environment models, several fault tolerance goals, several degraded modes, and so on.

– The safety, because, in case of positive result obtained by DCS, the specified fault tolerance properties are
guaranteed by construction on the controlled system.

– Theoptimality when optimal synthesis is used, modulo the potential numerical equalities (hence a non strict
optimality).

If DCS fails w.r.t. the fault tolerance objective, then since all the state space is traversed during the synthesis
(be it exhaustively or symbolically), it means that no solution exists for the required objective, fault hypothesis,
environment model, and partition of the events into the controllable and the uncontrollable ones. The solution is
then to relax one of these constrains, for instance to tolerate less failures.

9 UPPAAL-TIGA: http://www.cs.aau.dk/∼adavid/tiga

25

http://www.cs.aau.dk/~adavid/tiga

9.2 Discussion on complexity

The main drawback of our framework is thecombinatorial explosion. This is a general drawback of DCS. Con-
cretely, for large systems, the state space is too big to be traversed by a synthesis tool in a reasonable time. For
some classes of problems, DCS can even be undecidable [54,52].

For the decidable part, our opinion is that DCS is today at thesame level as model checking was 15 years ago,
that is, it is a promising technique, but due to its algorithmic complexity it cannot be applied yet to industrial size
systems. However, it must be noted that DCS does benefit from algorithmic and tools progress occurring in the
model-checking area.

Furthermore, in our applicative setting, the problem of thealgorithmic complexity can be tackled by defining
appropriate methodologies. Our approach is to focus on the control kernel of a system, abstracting from the rest
(e.g., numerical computations). Even though identifying the right level of description is more of a practical than a
theoretical essence, it can have a vital impact on the concrete applicability of the techniques [1].

Finally, the synthesis of controllers is a constructive operation, so the complexity comparison should be made
with the manual writing of controllers, followed by their verification and debugging. It is from that perspectives
that we think that, in the case of the algorithms we use, theircomplexity remains reasonable, in the sense that they
can be used for systems of a size where manual design would be very hard.

Regarding the results we have presented in this article, twopoints that can be improved w.r.t. scalability:

1. The DCS tool that we use, SIGALI , is very powerful thanks to its usage of a tri-valued logic (Z/3Z), but this
comes at the price of less computational efficiency. This is embodied by two drawbacks: firstly the translation
from Mode Automata (our language to specify LTSs) intoZ/3Z (the input format of SIGALI), and secondly
the symbolic state space traversal by SIGALI , currently performed with TDDs, the ternary equivalent of BDDs,
but alas less efficient. Nonetheless, DCS being a constructive method (in contrast with model-checking which
is a diagnosis method10), we advocate that it is well worth spending some computation time to obtaincorrect-
by-construction fault tolerant systems.

2. We would like to combine our results with abstract interpretation [20] to achieve the control of systems
with both numerical and discrete data; this would allow us topursue further our work on handling the value
and Byzantine failures. Tools that implement efficiently abstract interpretation on LTSs exist, for instance
NBAC [30].

9.3 Future work

In the framework we have presented so far, the result of the DCS is a centralized controlled system, fault tolerant
provided that the synthesis objective includes a fault tolerance requirement (e.g., no task should be active on a
faulty processor). However, it remains a centralized system, because it consists of a single global LTS, which is
the result of the synchronous product of the plant and the synthesized controller. This can be a problem w.r.t. fault
tolerance, since most fault tolerant systems must intrinsically be distributed to offer redundancy [25]. In particular,
the controlled system should be tolerant to the failures of the controller.

The automatic generation of local controllers achieving global control objectives is a more difficult task, also
known asdecentralized supervisory control [38,18], among which we distinguish two cases: First the case
where the local controllers do not communicate at run time, and second the case where the local controllers can
exchange information at run time. However, there are two reasons that prevent us from using this technique. On the
one hand, distributed DCS is not fault tolerant, since the failure of one local controller (e.g., following the failure
of the processor it is running on) can lead to the failure of the whole system. And on the other hand, the distributed
DCS problem without communication between local controllers has been shown to be undecidable [54,52].

Rather, we propose to distribute afterwards the controller. It can also be distributed manually when it is small
enough, as demonstrated in [23]. The controller being an LTS, classical LTS distribution algorithm like [15]
can be used. Without entering into the details, starting from a centralized LTS, this algorithm produces a set
of communicating LTSs, one for each desired computing location, guaranteed to be semantically equivalent to
the initial centralized LTS. Then, classical fault tolerance techniques can be used to make the communications
between the local LTSs tolerant to the failures of the processors and the communication links.

Another track that we are considering currently involves addressing specifically software faults. Indeed, soft-
ware faults could be addressed by modeling with behaviors such as n-version programming and voting mecha-
nisms, and then by adapting the fault tolerant policy to thisparticular case.

10 Some even say “autopsy”!

26

Finally, our framework and tool chain could be integrated within the NEMO compiler [21], which nicely
integrates DCS as a compilation step of the domain-specific language for multi-task systems NEMO. This would
provide a more integrated and easy to use fault tolerant framework.

Acknowledgments

Many thanks to Herv́e Marchand for his expertise on discrete controller synthesis and on the SIGALI tool, to
Karine Altisen for her work on the integration of SIGALI and Mode Automata (in particular the SIGAL SIMU tool),
to Emil Dumitrescu for his work on optimal discrete controller synthesis and his case study on the failures of
communication links, to Huafeng Yu for his case study on water tanks conducted with synchronous observers,
to Safouan Taha for his case study on water tanks conducted with conditioned synthesis objectives, and to Nour
Brinis for taming the Byzantine generals.

References

1. K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-synthesis techniques to build property-enforcing
layers. InProceedings of the European Symposium on Programming, ESOP’03, number 2618 in LNCS, Warsaw, Poland,
April 2003.

2. K. Altisen, G. G̈ossler, and J. Sifakis. Scheduler modeling based on the controller synthesis paradigm.Journal of Real-
Time Systems, 23(1/2):55–84, 2002.

3. P.C. Attie, A. Arora, and E.A. Emerson. Synthesis of fault-tolerantconcurrent programs.ACM Trans. Programming
Languages and Systems, 26(1):125–185, 2004.

4. A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its threats: a taxonomy. InIFIP World Computer Congress,
pages 91–120, Toulouse, France, August 2004. Kluwer Academic Pub., Hingham, MA.

5. R. Bellman.Dynamic Programming. Princeton University Press, 1957.
6. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de simone. The synchronous languages

twelve years later.Proceedings of the IEEE, 91(1):64–83, January 2003. Special issue on embedded systems.
7. C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifying fault tolerant system designs.The Computer Journal,

43(3), 2000.
8. B. Bonakdarpour and S.S. Kulkarni. Exploiting symbolic techniques inautomated synthesis of distributed programs with

large state space. InInternational Conference on Distributed Computing Systems, ICDCS’07, Toronto, Canada, June 2007.
9. B. Bonakdarpour and S.S. Kulkarni. Revising distributed UNITY programs is NP-complete. InInternational Conference

on Principles of Distributed Systems, OPODIS’08, volume 5401 ofLNCS, pages 408–427, Luxor, Egypt, December 2008.
Springer-Verlag.

10. B. Bonakdarpour and S.S. Kulkarni. SYCRAFT: A tool for synthesizing distributed fault-tolerant programs. InInter-
national Conference on Concurrency Theory, CONCUR’08, volume 5201 ofLNCS, pages 167–171, Toronto, Canada,
August 2008. Springer-Verlag. Tool paper.

11. D. Brìere, D. Ribot, D. Pilaud, and J.-L. Camus. Methods and specifications tools for Airbus on-board systems. InAvionics
Conference and Exhibition, London, UK, December 1994. ERA Technology.

12. N. Brinis. Synth̀ese d’un contr̂oleur pour le probl̀eme des ǵeńeraux byzantins. Master’s Report,École Nationale des
Sciences de l’Informatique, La Manouba, Tunisie, July 2005.

13. G. Bruns and I. Sutherland. Model checking and fault tolerance.In International Conference on Algebraic Methodology
and Software Technology, AMAST’97, Sidney, Australia, 1997.

14. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput., C-35(8):677–691, 1986.
15. P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive systems for asynchronous networks of processors.

IEEE Trans. Software Engin., 25(3):416–427, May 1999.
16. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for the analysis of timed games.

In International Conference on Concurrency Theory, CONCUR’05, volume 3653 ofLNCS, pages 66–80, San Francisco
(CA), USA, August 2005. Springer-Verlag.

17. K.-H. Cho and J.-T. Lim. Synthesis of fault-tolerant supervisor for automated manufacturing systems: A case study on
photolothographic process.IEEE Trans. Robotics and Automation, 14(2):348–351, April 1998.

18. R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisorycontrol of discrete-event processes with partial observa-
tions. IEEE Trans. Automatic Control, 33(3):249–260, March 1988.

19. J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Wanatabe. Quasi-static scheduling of independant tasks for
reactive systems.IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 24(10):1492–1514, October
2005.

20. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In4th Symposium on Principles of Programming Languages, Los Angeles (CA), USA,
January 1977. ACM SIGPLAN.

27

21. G. Delaval and E. Rutten. A domain-specific language for multi-task systems, applying discrete controller synthesis.
EURASIP J. on Embedded Systems, 2007. Article ID 84192.

22. E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten. Optimal discrete controller synthesis for modeling fault-tolerant
distributed systems. InWorkshop on Dependable Control of Discrete Systems, DCDS’07, pages 23–28, Cachan, France,
June 2007. IFAC, New-York.

23. E. Dumitrescu, A. Girault, and E. Rutten. Validating fault-tolerant behaviors of synchronous system specifications by
discrete controller synthesis. InWorkshop on Discrete Event Systems, WODES’04, Reims, France, September 2004.
IFAC, New-York.

24. E.A. Emerson and E.M. Clarke. Using branching time temporal logicto synthesize synchronization skeletons.Science of
Computer Programming, 2:241–266, 1982.

25. F. G̈artner. Fundamentals of fault-tolerant distributed computing in asynchronous environments.ACM Computing Surveys,
31(1):1–26, March 1999.

26. F. G̈artner and A. Jhumka. Automating the addition of fail-safe fault-tolerance:Beyond fusion-closed specifications. In
Joint Conference on Formal Modelling and Analysis of Timed Systems andFormal Techniques in Real-Time and Fault
Tolerant System, FORMATS-FTRTFT’04, volume 3253 ofLNCS, Grenoble, France, September 2004. Springer-Verlag.

27. A. Girault and E. Rutten. Discrete controller synthesis for fault-tolerant distributed systems. InInternational Workshop
on Formal Methods for Industrial Critical Systems, FMICS’04, volume 133 ofENTCS, pages 81–100, Linz, Austria,
September 2004. Elsevier Science, New-York.

28. A. Girault and H. Yu. A flexible method to tolerate value sensor failures. In International Conference on Emerging
Technologies and Factory Automation, ETFA’06, pages 86–93, Prague, Czech Republic, September 2006. IEEE, Los
Alamitos, CA.

29. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive systems. In M. Nivat,
C. Rattray, T. Rus, and G. Scollo, editors,International Conference on Algebraic Methodology and Software Technology,
AMAST’93, Twente, NL, June 1993. Springer-Verlag.

30. B. Jeannet. Dynamic partitioning in linear relation analysis. Application to the verification of reactive systems.Formal
Methods in System Design, 23(1):5–37, July 2003.

31. R.M. Jensen, M. Veloso, and R. Bryant. Synthesis of fault-tolerant plans for non-deterministic domains. InWorkshop on
Planning under Uncertainty and Incomplete Information, Trento, Italy, June 2003.

32. O. Kamach, L. Pietrac, and E. Niel. Approche multi-modèle pour les systèmesà événements discrets: applicationà un
préhenseur pneumatique. InModélisation des Systèmes Ŕeactifs, MSR’05, pages 159–174, Autrans, France, September
2005. Hermes.

33. S.S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In M. Joseph, editor,International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT’00, volume 1926 ofLNCS, pages 82–93, Pune,
India, September 2000. Springer-Verlag.

34. S.S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In International Conference on Dependable
Systems and Networks, DSN’04, Firenze, Italy, June 2004. IEEE, Los Alamitos, CA.

35. S.S. Kulkarni and A. Ebnenasir. Complexity issues in automated synthesis of failsafe fault-tolerance.IEEE Trans. De-
pendable Secure Comput., 2(3):201–215, July 2005.

36. R. Kumar and V.K. Garg. Optimal supervisory control of discreteevent dynamic systems.SIAM J. Control Optim.,
33(2):419–439, 1995.

37. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Programming Languages and
Systems, 4(3):382–401, July 1982.

38. F. Lin and W.M. Wonham. Decentralized supervisory control of discrete-event systems.Information Sciences, 44(3):199–
224, April 1988.

39. F. Lin and W.M. Wonham. On observability of discrete-event systems. Information Sciences, 44(3):173–198, April 1988.
40. F. Maraninchi and Y. Ŕemond. Mode-automata: a new domain-specific construct for the development of safe critical

systems.Science of Computer Programming, 46(3):219–254, 2003.
41. H. Marchand, O. Boivineau, and S. Lafortune. On the synthesis ofoptimal schedulers in discrete event control problems

with multiple goals.SIAM J. Control Optim., 39(2):512–532, 2000.
42. H. Marchand, O. Boivineau, and S. Lafortune. On optimal controlof a class of partially observed discrete event systems.

Automatica, 38:1935–1943, 2002.
43. H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event controllers based on the Signal

environment.Discrete Event Dynamic System: Theory and Applications, 10(4):325–346, October 2000.
44. H. Marchand and E. Rutten. Managing multi-mode tasks with time cost and quality levels using optimal discrete controller

synthesis. InEuromicro Conference on Real-Time Systems, ECRTS’02, Vienna, Austria, June 2002.
45. H. Marchand and M. Samaan. Incremental design of a power transformer station controller using a controller synthesis

methodology.IEEE Trans. Software Engin., 26(8):729–741, August 2000.
46. R. Milner.Communication and Concurrency. International Series in Computer Science. Prentice-Hall, 1989.
47. D. Powell. Failure mode assumption and assumption coverage. InInternational Symposium on Fault-Tolerant Computing,

FTCS-22, pages 386–395, Boston (MA), USA, July 1992. IEEE, Los Alamitos, CA. Research report LAAS 91462.
48. P.J. Ramadge and W.M. Wonham. Supervisory control of a classof discrete event processes.SIAM J. Control Optim.,

25(1):206–230, January 1987.

28

49. H. Schepers and J. Hooman. Trace-based compositional prooftheory for fault tolerant distributed systems.Theoretical
Computer Science, 128, 1994.

50. R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems.SIAM J. Control Optim., 36(2):488–
541, March 1998.

51. S. Taha. Synth̀ese de contr̂oleurs discrets pour systèmes embarqúes toĺerants aux pannes. Master’s Report, Institut National
Polytechnique de Grenoble, Grenoble, France, June 2004.

52. S. Tripakis. Decentralized control of discrete event systems with bounded or unbounded delay communication.IEEE
Trans. Automatic Control, 49(9):1489–1501, September 2004.

53. E. Tronci. Optimal finite state supervisory control. InIEEE Conference on Decision and Control, CDC’96, Kobe, Japan,
December 1996. IEEE, Los Alamitos, CA.

54. J.N. Tsitsiklis. On the control of discrete event dynamical systems.Mathematics of Control, Signals, and Systems,
2(2):95–107, June 1989.

29

	Automating the Addition of Fault Tolerance with Discrete Controller Synthesis

