N

N

Automating the Addition of Fault Tolerance with
Discrete Controller Synthesis
Alain Girault, Eric Rutten

» To cite this version:

Alain Girault, Eric Rutten. Automating the Addition of Fault Tolerance with Discrete Controller
Synthesis. Formal Methods in System Design, 2009, 35, pp.190-225. 10.1007/s10703-009-0084-y .
hal-00748687

HAL Id: hal-00748687
https://inria.hal.science/hal-00748687

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00748687
https://hal.archives-ouvertes.fr

Automating the Addition of Fault Tolerance
with Discrete Controller Synthesis

Alain Girault- andEric Rutter*

INRIA and Grenoble University

Abstract. Discrete controller synthesis (DCS) is a formal approach, based saihe state-space exploration
algorithms as model-checking. Its interest lies in the ability to obtain automatispdiems satisfying by
construction formal properties specified a priori. In this paper, our iginto demonstrate the feasibility
of this approach for fault tolerance. We start with a fault intolerant @nog modeled as the synchronous
parallel composition of finite labeled transition systems; we specify formalfgult hypothesis; we state
some fault tolerance requirements; and we use DCS to obtain automatigattygeam, having the same
behavior as the initial fault intolerant one in the absence of faults, andfysagisthe fault tolerance
requirements under the fault hypothesis. Our original contribution essiidl the demonstration that DCS
can be elegantly used to design fault tolerant systems, with guarantdesy groperties of the obtained
system, such as the fault tolerance level, the satisfaction of quantitathgraints, and so on. We show
with numerous examples taken from case studies that our method cagsswdiiiferent kinds of failures
(crash, value, or Byzantine) affecting different kinds of hardwamponents (processors, communication
links, actuators, or sensors). Besides, we show that our method &ds® af optimality criterion very useful
to synthesize fault tolerant systems compliant to the constraints of emtbsgistems, like power consumption.

Keywords. fault tolerant systems, discrete controller synthesis, automatic faulataer

Category C.3: Computer Systems Organization. Special-purpose and applicatiod-bgstems. Real-time
and embedded systems.

Category D.3.2:Software. Programming languages. Concurrent, distributed, antlgddanguages.
Category F.2.2: Theory of Computation. Analysis of algorithms and problem complexityn Namerical
algorithms and problems. Computations on discrete structures.

1 Introduction

1.1 Discrete controller synthesis

Discrete controller synthesigDCS, also known as “supervisory control of discrete evgstesns”) was invented
by Ramadge and Wonham in the nineteen eighti€k [ts theoretical foundation is language theory. The gdal o
DCS is, starting from two languagés andD, to obtain a third languagé such that:

Uncco 1)

The three languaged, D, andC represent respectively tipdant, thedesired systemand thecontroller. &/ N C
is called thecontrolled system Since the context is language theory, the alphabetf the planti/ is to be
understood as the set of events that can occur, and the gmguis the set of all possible words made with the
letters of Z, each understood as a possible behavior of the plant (seg@ence of events). A tool suite for DCS,
called TCT, has been implement&d.

Since U and D are given and we want to find such thatt/ N C C D, the solution could be written as
C =D.U~! provided that the operators ‘and ‘~!", classical for real numbers, existed for languages. Is thi
sense DCS can be seen as an inversion problem.

The alphabetZ of the languagé/ is partitioned into two subsets: the s&t of controllable events and the
set Z;; of uncontrollable events. The first key point of DCS is that the controller caly aat on the controllable

* INRIA Grenoble Rbne-Alpes and Grenoble UniversityoP ART project-team and LIG laboratory, 38334 Saint-Ismier
cedex, France, Emaiil ai n. G raul t @nri a. fr. This research was supported by a Marie Curie International Outgo-
ing Fellowship within the # European Community Framework Programme.

** INRIA Grenoble Rbne-Alpes and Grenoble UniversityASDES project-team and LIG laboratory, 655 avenue de I'Europe,
38334 Saint-Ismier cedex, France, EmEili c. Rutten@nria. fr
ITCT:http:// www. control . utoronto. cal peopl e/ prof s/ wonham

http://www.control.utoronto.ca/people/profs/wonham

events of the plant. The second key point is that the syrzbdsiontroller ishe most permissive onemeaning
that the languag@é/ N C must be the greatest one includedin

Note that DCS can fail for a given objectiZ® This means that no languageexists acting only oriZ~ and
such that/ N C C D.

Finally, it is classical to represent the pair (plant,coliér) as aclosed loop systemwhere the controller
observes the plant and modifies its behavior through the@ltatile events. This is illustrated by FiguteThis
figure depicts two arrows between the pldntand the controlleC. These communications do not necessarily
need to take place through a communication network sincé DS tools directly produce the controlled system
unc.

uncontrollable input:
controllable input

> outputs

»

controllerC

Fig. 1. The closed loop system (plant,controller).

Several research teams have applied and extended thesmd@ntheory techniques tabeled transition
systems(LTS), both in the area of computer science and discretetesyetems control theory. The algorithms
used in DCS are the same as those of model checking: mostlgtatie space exploration, reachability analysis,
and invariance analysis, be it enumerative or symbolic Bittary Decision Diagrams (BDDs). In particular, this
is the case of the 18ALI 2 [47] tool that we have used in the present article. Also, in matelcking, it is well
known that objectives can be equivalently expressed asgated on the states éf or as LTSs.

Within SIGALI, the desired syster® is specified as a set of state properties, possibly involsymghronous
observers]9], and synthesis objectives upon them : we use essentialglfectives tanake invariant a subset
of states, okkeep reachablea subset of states. This is very versatile and allows the tasehange easily his
synthesis objective. Figutesummarizes the behavior of &ALl .

D: invariance or

reachability propert
Sigali]—> U N C: controlled system
U: system model

(modular)

Fig. 2. Overview of DSC with $GALI.

DCS can be used on different kinds of systems, be it hardwassfoware. In the case of a software sys-
tem, modeling the system with an LTS does require a high lefz@bstraction. This is classically achieved by
considering only the control layer of the software and bytralosing away the data computations, aslij [

1.2 The need for fault tolerance

There is no arguing that dependability is a key issue incaitsystems. There are three threats to dependability:
fault, error, and failure, with the classical causalityateinship f:

. fault 2NAION oo PIOPAGAION coiire UMY goult — -
For instance, consider a software where one variabie incorrectly modified in one execution path. This is
commonly known as a bug, but, in the field of dependabilitis ieferred to as a fault. When the software takes
this precise execution path, then it is an error. When theriecbvalue ofx prevents the software from delivering
its nominal service, then we have a failure. Finally, thufa of a subsystem is seen as a fault in the encompassing
system.

We believe in the need of separation of concerns betweeruti@iénal specification and the fault tolerance
requirement. Hence, we would like to prop@eomaticmethods to turn a fault intolerant program implementing
the functional specificatichinto a new program implementing the same functional speatiéin (i.e., preserving
the semantics of the initial program) and tolerant to thdt$arequired by the user. There have been several
methods proposed in the past, and we will study them in Se8tio

2giGaLl:http://ww.irisa.fr/vertecs/Logiciels/sigali.htm.
3 By “fault intolerant”, we mean a program that is not necessarily fault doler

http://www.irisa.fr/vertecs/Logiciels/sigali.html

1.3 Contribution

We propose a DCS-based framework to transform automatieafhult intolerant program into a fault tolerant
one. It offers the following features:

— The possibility to try several fault hypotheses on the sgpeeification.
— The possibility to evaluate several fault tolerance regignts.
— In the final program, the guarantee by construction of th# falerance level required by the user.

The above-mentioned features are generally also offeraddst methods and algorithms that provide fault
tolerance automatically. The originality of our DCS-baseethod is that the failure recovery mechanism provided
by DCS isdynamic(hence it does not induce too much redundancy overheadthitie snethods), with atatic
guarantee on the fault tolerance of the obtained systerikéudiynamic methods). As a result, if offers the best of
both worlds, static guarantee and small overhead, at the pfian exhaustive state-space exploration at compile-
time. Besides, our method also offers an optimality critenery useful to synthesize fault tolerant systems with
embedded constraints like power consumption.

Compared to relevant related work on approaches similarG8 for fault tolerance, our originality is that
we propose an integrated framework offering a full coverafgghe possible failures of the system’s components:
processors, communication links, actuators, and senBarthermore, we not only address the easy to tolerate
crash failures, but also the much more difficult value anddByme failures, a feature which is unique to our
framework. Finally, we use optimal DCS over finite paths idearto provide more possibilities of synthesis for
fault tolerance; this is another unique feature of our fraoré.

1.4 Ouitline

We start by introducing the formal model of labeled transitsystems and how they are used in DCS: this is
Section2. Then, we present in Sectidghthe general principles for automating the addition of fdaalerance
with DCS. In Section4 we detail how to specify and handle the failures of hardwampmonents (processors,
communication links, actuators, and sensors). In Se&ime detail how to specify and handle several kinds of
failures (crash, value, and Byzantine failures). In Seoéiove present advanced DCS features, like how to specify
and handle quantitative constraints, and how to obtaintalalised controller. Then, we present in Sectibtwo
previously unpublished case studies that exemplify howfraumework can be actually used to specify and make
fault tolerant an entire system. We have completed threer atise studies that further demonstrate the pertinence
of our framework: they have been published #7,23,28,27] so we do not include them in the present article
(although several of our examples presented in Sectldns will be taken from these articles). We end with a
presentation of the related work in Secti&rand with concluding remarks in Sectién

2 Formal models used in DCS

2.1 Labeled transition systems

A labeled transition system(LTS) is a tupleS = (Q, qo, Z,0,T), whereQ is a finite set of stategy is the
initial state of.S, 7 is a finite set of input events (produced by the environménts a finite set of output event
(emitted towards the environment), afidis the transition relation, that is a subset@fx Bool(Z) x O* x Q,
where Bool(Z) is the set of boolean expressions Bf If we denote byB the set{true, false}, then a guard
g € Bool() can be equivalently seen as a function frdfinto B.*

Each transition haslabel of the formg/a, whereg € Bool(Z) must be true for the transition to be takeng
the guard of the transition), and where € O* is a conjunction of outputs that are emitted when the tremmsit
is taken ¢ is theaction of the transition). State is the sourceof the transition(q, g, a,¢’), and state/ is the

destination. A transition(q, g, a, ¢") will be graphically represented b)yﬂ q.
An LTS is deterministic (resp.reactive) iff, for each state; € Q and for each valuation of the inputs, there
exists at most (resp. at least) one transition figpand whose guard is true for this inputs valuation.

4 For any setX, 2¥ is the set of all subsets Of.

The composition operator of two LTSs put in parallel is #ymchronous product noted||, as defined by
Milner [46] and a characteristic feature of the synchronous langyéa@iekhe synchronous product is commutative
and associative. Formally:

(Q1,90,1, Z1,01,71) || (Q2, 90,2, Z2, O2,T2) = (Q1 x Qa,(q0,1,90,2), Z1 U Lo, O1 U O, T)

with 7 = {((q1, o) L2200 (f) [225 ¢ € oo 225) € To).

Here,(q1, ¢2) is called amacro state whereq; andg, are its twocomponent states

Like all product operators for LTSs, the synchronous prodacises a combinatorial explosion, since the
number of states i ||.52 is, at worst, equal to the product of the number of states; dfy S,. However, it limits
this explosion, compared to the asynchronous product,evoertwo LTSs making each a transition in parallel,
all interleavings are explicitly represented in the prddwdgth all intermediary states. Indeed, the synchronous
product makes it possible to group parallel transitions orie global transitions where several local transitions

are taken in the same step, without developing sub-steps.

A path in the LTSS = (Q, g0, 7,0, T) is a sequence of transitions /%% go /%% ... q, 22/,

gn+1. A trace is a path starting in the initial statg. The set of all traces of is notedT'(S). A stateq of Q is
reachableiff there exists a trace t9. A set of states is reachableiff all its states are. In the CTL temporal
logic [24], this is stated a$' F VO(FE). A set of stated is invariant iff any transition having as source a state
of E has its destination state i. In CTL, this is stated a§ - VOI(E).

2.2 Discrete controller synthesis on labeled transition stems

The plantl/ is specified as an LTS, more precisely the result of the symchus product of several LTSB.is the
objective that the controlled system must fulfill. The cotier C obtained with DCS achieves this objective by
restraining the transitions @#, that is, by disabling those that would jeopardize the dbje®.

The setZ of inputs of U/ is partitioned into two subsets: the sét of controllable inputs and the séf
of uncontrollable inputs. FormallyZ =Z- U Zy and Z¢ N Zy=0. As a consequence, a transition gugra:
Bool(Zc U Iiy) can be seen as a function frae x 27v into B.

A transition iscontrollable iff there exists at least one valuation of the controllableuts such that its guard
is false; otherwise it isincontrollable. Formally, a transitiorig, g, a, ¢') € 7 is controllable iff3.X € 2Z¢ such
thatvy € 27v, we haveg(X,Y) = false.

In the framework of this paper, we use the following funcidn synthesize the controlled systen C,
whereF is any subset of states of (possibly specified itself as a predicate on stafes

— 8" = make_invariant (S, E) is a function that synthesizes and returns a controllatdeesyS’ such that the
controllable transitions leading to statgs, ¢ F are inhibitedas well asthose leading to states from where
a sequence of uncontrollable transitions can lead to satbsst . ¢ E.

For example, consider a LTS, synchronous composition of several LTSs, with one of theimd an
observer with a stat€rror. The function making invariant the set of global states wtike local state of the
observer is different froniorror inhibits behaviors leading to thigrror state, making it unreachable. This
technique will be used in Sectidh4.

— §" = keep_reachable (S, F) is a function that synthesizes and returns a controllecesyst such that the
controllable transitions entering subsets of states frévareZ is not reachable are disabled. Note that making
FE invariant is equivalent to making states notdrunreachable.

For example, a system can have a set of states defined as skfaeonfigurations, where the system
should always be able to go in case of need, from anywhere fed@ichable state space.

— E' = reachable_under_control (S, E) is a function that returns a subggt of the states of such that states
in E’ are reachable by controllable transitions. This functilows us to transform a reachability objec-
tive into an invariance onéieep_reachable (S, E) = make_invariant (S, reachable_under_control (S, E)).
This feature will be useful in Sectigh3when we consider conditioned reachability objectives.

It must be noted that the order in which synthesis operatomspplied does matter: indeed, their composition
is not commutativén general. Reachability can not be considered before aariamvce constraint, because the
latter might compromise the former by removing paths an@king reachability. On the contrary, considering
reachability after invariance does not jeopardize theriamae, as it will not result in paths going out of the
invariant set.

This introduction to the formal models used in DCS is keptdain order to concentrate the paper on its con-
tribution concerning fault tolerance issues. Readersasted in more detailed formalizations of discrete cotgrol
synthesis are referred t6§,43,2].

Figures3 shows, from left to right, an example of DCS on an LTS with fiteges and two inputs, one control-
lable ¢ and one uncontrollabla. The objective is to make this system invariant w.r.t. thiesed of state, i.e.,
to avoid statés4. Given the particular uncontrollable transitions, onlyneafler subseE’ can be controlled. This
example shows that, in the general case, even for propaaitibate properties and invariance objectives, the DCS
algorithm has to explore the whole state space in order tatfiectontrollable transition in a path where control
has to be enforced, in cases where the following transi@wasiot controllable. The LTS on the right shows the
controlled system, where in sta® the controllable input is forbidden to take the value-ue and must be
false, hence inhibiting the wrong behavior to be avoided by disgtthe transition frons2 to S3.

Fig. 3. An example of DCS, on an automaton.

If DCS fails w.r.t. the objectivéD, since all the state space is traversed during the syntfiEsisexhaustively
or symbolically), it means that it is impossible to restréia plantl/ only by disabling controllable transitions. In
our framework for fault tolerance, we will discuss the inegliion of this situation.

2.3 Tools and programming languages

We use the Mode Automata language to program LTS Without going into too many details, Mode Automata
are LTSs: each state represents a different mode of operatithe program, specified as data-flow equations
relating the inputs and the outputs of the program. Mode mata use the synchronous product operator to
combine several programs put in parallel. This allows ther tsprogram in a clean and modular way.

The compiler associated to the Mode Automata language,dV, compiles an LTS into th&/3Z formaf,
which is the input format of theiSALI tool for DCS [£3]. Finally, we use &AL SIMU to co-simulate the system
and the controller. This tool chain, illustrated in Figdras the support for a DCS methodology] fhat was also
used to generate task managerq |

properties

weights T @ controlled

. tem 0 0
system mode] Mode]—> encoding Sys —P[interactive
—P‘ A ;éigaISim

components utomatg simulation

Fig. 4. Tools used.

Note that we use the synchronous composition as a modelfispéoin facility, because of its clarity and
elegance; however it is not intrinsically necessary, amdaynchronous product may be used too; in that sense
our choice of tools is not central to the paper. Concerninfppmance, the impact is not obvious: synchronous
composition tends to reduce the state space because idiatenstates in the communications are abstracted away
by the instantaneous broadcasting; on the other side slabehe transitions can be more complex.

® Matou:ht t p: / / www ver i mag. i mag. f r/ ~mar ani nx/ MATOU
®7./37 is the Galois field with three elements;- 1,0, 1}.

http://www-verimag.imag.fr/~maraninx/MATOU

3 A framework for automating the addition of fault tolerance with DCS

From the point of view of fault tolerance, it is natural to ealer the fault events as uncontrollable events. Then,
the plantZ/ must represent all the possible behaviors, both the goosl @vigere either no fault occurs, or those
that occur are masked) and the bad ones (where at least dhpréauents the system from providing its nominal
service). Finally, the desired systédhmust express the fact that a certain number of faults musilbmated. By
synthesizing a controlle? guaranteeing that/ N C satisfies the properties @1, we will obtainautomaticallya
fault tolerant system.

Note however that uncontrollable events are by no meansatest to be fault events. They can be any event
that the user wants to be determined by the environmen{,rmg-deterministic events.

Besides, the fault model will be described as an LTS thatlélcomposed in parallel with the remaining of
the plant specification. This approach yields two advargafyst it is flexible and modular since it is possible to
change the fault hypothesis without modifying the remajrofthe specification, and second it is formal thanks
to the usage of an LTS.

The design of dependable systems calls for a dedicatedispdion and validation procedure. Two key points
must be taken into account: the fault hypothesis and the talgrance policy. This is detailed in the following
paragraphs.

3.1 Defining the fault intolerant system

The first step involves designing the fault intolerant systé/e use LTSs to specify the various concurrent parts of
the system (both hardware and software), and the synchsqremallel composition operator to compose them in
order to obtain the full system; these formal models have ldegined in Sectiod.1. We advocate that designing

a single monolithic LTS is both non-modular and non-sca&aBleaking down the system into a set of concurrent
components that collaborate together to the desired behhsis always been the method of choice to achieve
modularity and scalability. It is also much easier to designh sub-component independently of its interactions
with the other sub-components, and to rely on DCS to deritenaatically their interactions.

3.2 Defining the fault hypothesis

A fault hypothesis states which components of the systemfaibyf more than one component is likely to fail,
failure configurations are a common way to express subsets of components that nhaygiether. According

to this hypothesis, the remaining components are suppasbd teliable: they never fail, or if such a failure
occurs, the whole system fails. The fault hypothesis canbit@irmed by a stochastic analysis, in order to find the
probability for each failure configuration; this is out oéthcope of our paper. In the following, we assume that all
the specified failure configurations are equally probable.

Then, a fault model is required for each component identligthe fault hypothesis. For a given component
failure, what this failure implies has to be specified. Thisoants to defining a behavior that is triggered by this
failure. For instance, when a component fails (processonnounication link, sensor, etc.), it may stop reacting
to its environment (fail-silent behavior) or it may reactdayitting random values (Byzantine behavior). Another
aspect of the fault model is to specify whether the faultsp@menanent or temporary. The failure models must be
combined with the failure patterns in order to specify iadifailure scenarios.

3.3 Defining a fault tolerance policy

Ideally, a fault tolerant system should maintain its fuoitlities and its performance (nominal service) even
though some of its components are faulty. In practice, thssimption is too strict and expensive to implement.
Thus, if a failure occurs, the nominal service may be remldneadegraded operating mode When the system
runs inside a degraded mode, only a subset of its initialtfanal requirements are still met. We achieve fault
tolerance by establishing such a degraded mode when agfaibaurs.

In our context, DCS is used to control the system’s behairniooyder to ensure a minimal service. The fault
tolerance policy is a DC8ontrol objective expressing fault tolerance: what the system should always dvoid,
despite failure occurrences. The control objective can teergooral logic property, expressing either an invariant
or an accessibility property.

However, a degraded operating mode only exists for thosersgsthat areontrollable. DCS will act on
the subset otontrollable eventsof the system for service maintenance purposes. The systaavior will be

constrained by driving these controllable events appabgisi. If DCS fails, it means that the system at hand
cannot be made fault tolerant for the required fault tolepelicy and under the specified fault hypothesis; thus,
the system must be redesigned, either by relaxing someragrisir by adding/improving the available resources:
for instance, the number of processors can be increased.

One important point not addressed by DCS is the possiblésfatithe controller itself. One feasible solution
is to apply to the controlled system the classical techriagpidault tolerance, for instance active replication with
voting, where the number of active replica depends on thebeumf faults to be tolerated.

Technically, the fault tolerance policy is specified in terof the functionsmake_invariant (S, E) and
keep_reachable (S, E), where E' is any subset of states of the fault intolerant systenThis subsetr will be
specified either directly as a set or as a predigad@ states of. In particular, when the fault intolerant systeim
is the parallel product of several LTSs, theran be a predicate on the states of one (or several) of its @oamp
LTSs:

U=S1|S| - || Sn with S; =(Qi,q0, Zi, 0, T;) (2
E:{q:(%w--a(h)ele"'XQn|S0(CI17~-~>Qn):t7"U€} (3)

In other words, each macro state of the product such thavitgponent states match the predicatis in E.

4 Specifying the hardware component failures

A complete system classically consists of several harde@angonents: processors, communication media, sen-
sors, and actuators. In accordance, when designing faeitatd systems, we should not only address the failures
of the processors (what most of the related work does), Isat thie failures of the communication media, the
sensors, and the actuators. In particular, in distribugstesns, communication media are usually more subjects to
failures than processors. Also, in embedded systems, Isessd actuators are critical components, whose failure
will inevitably put the system in a degraded mode, if not dagiés actual failure.

As we have said in SectioB, which hardware components can fail will be expressed infdlé tolerant
hypothesis. We show in this section that each kind of hardwamponent calls for specific means to handle its
failure.

4.1 Processor failures

@) (b)

Fig.5. (a) LTS of a processor with permanent fail-silent failures; (b) Saritle t¢mporary failures; (c) Same with degraded
modes.

Figure5(a) specifies a processor subject to permanent failuregprtoessor starts in the K states, and upon
the reception of the input failure evefit goes into the RR state, where it stays forever. Figusfh) specifies a
processor subject to transient failures: once inAlieR state, it can go back to th@ K state following the repair
input eventr. Figure5(c) specifies a processor that can go intofhEG state following the degraded mode input
eventd; once there, it can go into th8 R R state; finally, the processor can be repaired (exeriegraded modes
are very useful to model intermediary behaviors where tloegssors is not crashed but does not deliver its full

functionality: for instance, it could be running at half itsrmal clock speed. These three LTSs are just examples
of what can be specified, and the user is free to modify theritdns needs.

In terms of DCS, it is natural that the evenfsand d be uncontrollable (i.e. Z,), since a failure is an
event intrinsically uncontrollable. To differentiate thérom the other events, they are typeset in bold italic font.
Concerning the repair eventthis depends on the system the user wants to specify: i/sters is self-repairable,
thenr will be controllable, while if the repair is an external oggon (e.g., requiring the intervention of a human
operator), then it will be uncontrollable.

If we are dealing with a distributed architecture consgstirin processors, then we must put in our specifi-
cationn such LTSs, not necessary all of the same kind (the three LIb&gacan be mixed at will). Each such
LTS will need to have a separate vocabulary, each identifjeal different subscriptf; will therefore denote the
failure event of processar

F5 55/ f5rh/f3

(b)

Fig. 6. Three examples of environment models for a 3 processor archige¢@)rOnly one failure can occur; (b) Two failures
can occur, possibly simultaneously; (c) Failure pattern.

Aside from the processor failure model, what failures cacuodn the system must also be specified: for
instance, how many processors can fail? Or can they fail lsimeously? In terms of our processor LTSs of
Figure5, the question is how can th& andd; events occur? Like we have said, all the failure eventandd;
are uncontrollable. But this means that there is no comggrahatsoever on them. In particulal, the eventsf;
could occur, meaning that all processors could fail. Of seuthis would result in a total failure of the system,
with no possibility at all to ensure the fault tolerance af gystem. No one expects a system to tolerate a failure
of all the processors it is made of. To specify the way in whighfailures can occur, the user must provide a LTS
modeling the environment. Its purpose is to issue the sighdresp.d;) from signalsf; (resp.d;) produced by
the environment. These signaf$ andd;, will be uncontrollable (i.e.¢ Z,,), reflecting the fact that a failure can
occur at any time, while the signafs andd; will be local, i.e., neither inZ,, nor in Z., and will be used only for
building the synchronous product of all the LTSs.

The three LTSs of Figuré concern a distributed architecture consisting of threegssors: they are examples
of possible environment models that filter the uncontrédi@ventsf; andd, to produce the local evenfs andd;
that must be tolerated by the system. Providing such an@mnwient model is up to the designer. His choice will

depend on his knowledge of the system and the related faksemptions. For instance, if it is unlikely for two
failures to occur simultaneously, he will remove from theéomaton6(b) the three transitions frons to £ ;.
Alternatively, if he wants to consider malicious attacks will keep them.

The models above alone do not allow the user to specify hoviaihees are actually detected. If the user
wants to concentrate on error processing only, then thisficent and he can assume that there exists a reliable
external unit that reports an error if and only if a failuresieeccurred. Otherwise, the user can specify additional
LTSs to model the failure detection process, for instancedigcting discrepancies between the outputs of two
redundant processing units, and issuing the corresporfjiegent.

To specify a whole system, the above-described models aepsors and environments can be used along
with the models of several tasks running on those procesSoich a task can, for instance, be migrated from
a processor P1 to another processor P2 in order to react tueefavent affecting P1. The advantage lies in
the decoupling of the task, the environment, and the processdel, making the definition of the fault tolerant
policy straightforward: indeed, it suffices to request thattask be active on a faulty processor to synthesize
automatically, by DCS, a controller making the system féalktrant. Such a scheme has been reported’ih [
Additionally, more sophisticated fault tolerance meckers can be specified, for instance checkpointing and
rollback, as described ir2F].

Finally, note that communication links and memories carréatéd exactly in the same way.

4.2 Actuator failures

In order to model the failure of an actuator, one has to spéeiv the failures affect the service that the actuator is
supposed to deliver. For instance, consider a brakingrsystdject to failures. When not faulty, the brake is either
open (state)) or closed (stat€’), and can switch from the open to the close state accorditigetaontrollable
input ¢, or vive versa witho. The brake becomes faulty following the uncontrollablergvg and goes either in
the 'O state if it was open at the time of the failure, or to fi€' state if it was closed. The failures are permanent,
which is modeled by the fact that the stafé® and F'C' are sink states. This behavior is encoded in the LTS of
Figure7(a). To model temporary failures, it suffices to add traosgifrom the’O (resp.F'C) state back to th®
(resp.C) state, labeled with the controllable repair inpuf his is depicted in Figurg(b).

Fig.7.(a) LTS of a braking system subject to permanent failures; (b) Sathe¢emporary failures.

Furthermore, degraded modes can also be specified: fonaestéhe LTS of Figure3(a) shows a braking
system that can be either open (st@g closed (stat€), or half-open (staté?). In terms of breaking pressure,
the pressure would of course be equal to the maximal preésaye») in stateF’, equal to 0 in stat®, and equal
tom/2 in stateH . Figure8(b) shows the LTS of a braking system with two degrade modesconsisting of the
statesDO andD H, where the breaking pressure is in the intef0ain /2], and a second degraded mode consisting
of the stateDC' and D H', where the braking pressure is in the interiva)/ 2, m]. The degraded states are entered
upon the occurrence of the uncontrollable evénivhile the failure states are entered upon the occurrentieeof
uncontrollable evenf. For the sake of clarity, the self-loops have been omitted.

Fig. 8. (a) LTS of a three-state braking system subject to permanent fai(lleSame with degraded modes.

Like in Section4.], it is mandatory to specify how many actuators of the samd ki fail and in what
manner. This is done by providing an LTS like those of Fighire

Other kinds of actuators can be defined. The common featuhaighe LTS must specify how the failures
affect the service that the actuator is supposed to deFegrinstance, a valve controlling the flow of some liquid
might be specified by exactly the same LTS as the brakingsyttat we have just described.

The common feature that all actuator specifications mustst@encerns the state variables of the actuator
(e.g., the braking pressure, or the flow of liquid that pasisesigh the valve). Due to the DCS framework, these
state variables must be encodeddigcretevariables. Yet, as we have shown in Fig8(a), it is perfectly possible
to extend this discretization to more than two states, aptlee of more state space. This is the same as the output
of a sensor, as we will see in Sectiér3.

4.3 Sensor failures

In order to model a sensor subject to failures, it is necgssaspecify how the failures affect the service that
the actuator is supposed to deliver. For instance, conaitiquid level sensor: either it is immersed in the liquid
(hence wet, in statd’), or it is not (hence dry, in statR), or faulty (in theE' RR state). See the LTS in Figug¢a).

It goes to theF R R state upon receiving the failure evefitlt goes from statél” to D upon receiving the even

and back to statd/ upon receiving the event. The eventsl andw are issued by the environment (or possibly by
another LTS modeling the liquid tank itself) to signal thesar that it must change state. Concerning the failure
eventf, either it is uncontrollable or it must be produced by an emunent model provided by the user, just like
the LTSs of Figures for the processor failures.

Fig. 9. (a) LTS modeling a liquid level sensor subject to permanent failurgSdme with transient failures.

Now, the purpose of a sensor is to produce an output corregmpto the physical data sensed by it from the
environment. In the case of a liquid level sensor, this wélldbBoolean equal to 1 when the sensor is wet, and
to 0 when the sensor is dry. However, when the sensor is faidtye value of its output should not be fixed: we
model this by making this output equal to an uncontrollaleng, calledv in Figure9(a).

10

Figure 9(a) specifies a sensor subject to permanent failuresttRe state is a sink state. If one wants to
specify a sensor subject to transient failures, it suffioesdd transitions back frol@RR to D andW, like it is
done in Figured(b).

5 Handling different kinds of failures

There are various kinds of failures that can affect the hardweomponents of the system. They are classified
according to the following criteria/]:

— their domain: in value or temporal (in the latter case, their duration nalso be specified);
— their coherencew.r.t. all the users;
— their detectability by the user.

For instance, crash failures are actually temporal and @eemt failures; they are detectable and coherent: they
are the easiest failures to detect (and to tolerate), bwersely they have the least failure mode covefagethe
other end of the spectrum, Byzantine failures are incoliesa@ne failures: they are the hardest failures to detect
(and to tolerate), but conversely they have the largestriainode coverage. Because they are easier to model and
to tolerate, most of the related work concentrates on craifirés. In contrast, we show in this section not only
how to handle crash failures within our DCS framework, babalalue failures and even Byzantine failures.

5.1 Crash failures

Crash failures are the easiest kind of failures to model améhdle. A hardware component subject only to crash
failures is calledail-silent. Either it works fine, or it is faulty and in this case it ceag@&mit any output. In
particular, such failures are very easy to detect, for imtawith heartbeat: the processor emits an “l am alive”
message at regular intervals with some fixed pefipdnd whenever two messages in a row are not received, we
know that the processor is faulty.

A consequence of this definition is that Figureloes not capture the nature of crash failures, becausesit say
nothing about the outputs of a processor when it is faulty.iBdiact, it is not necessary to model explicitly the
processor’s outputs: it suffices to specify that any taskebesl onto a processor runs fine (i.e., produces correct
outputs) until the processor becomes faulty, in which cheetdsk stops producing any outputs. In conjunction
with the LTSs of Figure, it suffices to specify that no task can be active on a faulbgessor.

Fig. 10.LTS of taskr;.

" The coverage of a failure mode assumption is defined as the probabilitjéhassertion that formalizes the assumption is
true, conditioned on the fact that the component has failef [

11

For instance, Figur&0 shows the LTS of a simple task that can be active on either proces&yr P;, or Ps,
borrowed from P7]. The task is first idle (staté’) until it receives a run uncontrollable evert. It then goes to
the ready staté?’, where it waits until the controller decides to activateiiher on processoP; (stateA?), on
processoiP; (stateA?), or on processoP; (stateA). At any time, the controller can decide to migrate the task
onto another processor (thanks to the eveg])sThls goes on until the task terminates and goes to $thterhich
is signaled by the reception of the uncontrollable ewént

Now, when several tasks obeying to the above specificatiemusr concurrently on a three processor archi-
tecture, if the user wants to model fail-silent failuressuftfices to express that no task should ever be active on
a faulty processor, and hence should be migrated by theatlemtonto another not faulty processor. Since the
failures of a fail-silent processor are easy to detect,dbissistent to apply DCS with the following function:

n p
S" = make_invariant | S, \/ \/ (A7 A ERR;)

Jj=li=1

where S is the fault-intolerant system resulting from putting inrgéel one LTS like the one of Figur&0 for
each task”/, one LTS like the one of Figurg(a) for each processdr;, and one LTS like the one of Figuf{a)
specifying the environment. This scheme has been used/jn].

One can notice that, in the resulting controlled systens, ¢ointrol objective will lead to choosing between
statesA] in the LTS of FigurelO. Indeed, in the global LTS resulting from the compositionLdSs shown
previously, from a global state product of the local stat& of a processoP; and the local statﬁ{ of task7/,
on the occurrence of a fault evefit, the controller will only allow a transition satisfying tlobjective, and given
that a local transition towards RR; will take place, the controller will constrain the valuesioéa? controllable
inputs in such a way that the LTiSustgo from the local statel{ into eitherAé or A{,) This is also illustrated in
Figure3.

5.2 Value failures

Value failures are much more difficult to detect than crashurfes: in particular, obvious schemes like heart-
beating do not work. The difficulty within a DCS framework ésrhodel the fact that when the failure occurs, the
variable concerned by this failure can take any value. Tvegsanust be distinguished:

— For aboolean variablew, this can be easily modeled by adding an additional unctialtle variablev and
makingu equal tov whenever the failure occurs. As a result, the value of théyfaariable v can be any
value inB. This is shown in Figur®, where the additional uncontrollable variakieserves as the output of
the sensor whenever it is faulty.

— For anumerical variable u, it is necessary to discretize its domain of values, to eadbds domain with
boolean variables, and to add as many uncontrollable vas&b generate uncontrollable values in the domain
of u. This is exactly similar to abstract interpretaticit], and future work could concern coupling abstract
interpretation with DCS in order to be able to synthesizetrailers on systems with numerical variables; in
particular, we plan to apply techniques such as dynamidtioaing [30].

5.3 Byzantine failures

Byzantine failures are like value failures, except thaythee also incoheren8[]. This means that a processor
subject to Byzantine failures which must send a data to twtindit processors can send two different values to
each of them! For this reason, they are even more difficuletea than value failures. The scheme we propose
is a generalization of the value failures: for each booleamablew computed by a given componefit we add

as many additional uncontrollable variables)<;<., wheren is the number of other componeits;), <;<,, to
which C' must send the value eof. WhenC' is not faulty, it sends to all componen(s;);<;<, the same correct
valueu. But whenC' is faulty, it sends to each componefita different valuev;.

Figureli(a) depicts a non-faulty componefitthat computes an internal functian= F'(i) and transmits the
resultu to n other components’, ...,C,: each of those components receives the same value. Higlmeshows
the corresponding component having the same function&lliyt with Byzantine failures. When the failure event
f occurs (i.e., wherf = 1), the result of the internal function?” is bypassed, and each compon€nteceives
a different valuev; instead ofu. This is exactly a Byzantine failure. Otherwise (i.e., whes- 0), the behavior is
the same as in FigurEl(a).

12

component’

> to C
u .

1 — ™ F

> to C),

V1 Un

(a) (b)

Fig. 11.(a) A non-faulty component’ connected to three other components; (b) The same componenttdobzantine
failures.

6 Advanced DCS features

There are several other features offered by our method hwhépresent in this section. The first one concerns
shared resources (for instance a communication deviceyvilvsehow that, just by modifying the DCS objective
that specifies the desired behavior, the user can switch &oesource in shared access to a resource in mutual
exclusion (Sectior®.1). The second feature is optimal DCS, which allows us to eefquantitative constraints
on the synthesized fault tolerant system. Such constraretgery useful when designing embedded systems, e.g.,
power consumption, memory footprint, bandwidth, and soSetfion6.2).

The remaining features concern the technical aspects of Bizs® we show how conditioned DCS objectives
can be used to take degraded modes explicitly into accodhinthe fault tolerant policy (Sectioh3). Secondly,
we show how synchronous observers can be used to refine thiofarant objectives and to express more complex
objectives (SectioB.4).

6.1 Shared resources

We consider two tasks andr, running on the same processor, and competing for a shasedrce, for instance

a communication device connected to their processor. €ifjarshows the LTSs of both tasks: each starts in
stateX;, where it does not have access to the resource, and goesetelstavhere it has access to the resource,
upon receiving event;.

a1 as
[S [S
a - Ty as - Ty
2

I

(@) (b)

Fig. 12.(a) LTS of taskr; (b) LTS of taskr,.

In order to specify the access policy of the shared resoweelesign the DCS objective of the desired system
in the following way:

— Shared access (default access polity)e.

— Mutual exclusion (useful when a resource can only be usedbycbent at a time):
S’ = make_invariant (S, ~(A; A Az)).

— Continuous access (useful when a resource must be mondocashtrolled at all time, for instance a robotic
arm because of the gravity compensation that must be cdlystguplied to prevent it from falling):
S = make_invariant (S, A1 V As).

The above formulas can be straightforwardly generalizemhadoe than two tasks and more than one shared re-
source.
An interesting particular case of mutual exclusion is catisections. Figuré3 shows the generic LTS of
a task havingn successive stepS; to S,,: when in stepS;, it must wait for the arrival of event; before go-
ing to the next stepp;1; after the final steps,,, it goes to the terminated stép. Then, a task, havingn

13

successive steps and competing for a shared resource wsifiduified by putting in parallel the two LTSs of Fig-
ures12(a) and13: because of the parallel composition, its states will bespai , ¢1) with s; € {X;, A;} and
@ € {S1.1,-..,51.n, 1} (with a renaming of the state% of the LTS of Figurel3into Sy ;). Similarly, a second
task, will be specified by putting in parallel the two LTSs of FigarE2(b) and13 (with a similar renaming of
the states). Then, the following function guarantees thbt stepS; is a critical section for both tasks ands:

S" = make_invariant (57 ﬂ((Al, S1.) A (Aa, Sg,i)))

tl tQ tn

Fig. 13.LTS of a task having: successive steff$; to .S,,.

6.2 Optimal discrete controller synthesis

It is possible to associate, to each transition and/or sthtle initial system awveight, and to specify some
combination function of the weights. This function is then used for the computatibthe synchronous product,
and it can be required that it never goes above or below someé firaximal or minimal bound, or even that it be
maximized or minimized. This is whaiptimal synthesisdoes 6,53,50,41,47]. Such an optimization can apply
to single transitions/4] or to finite paths. Let us note that optimal synthesis doeégnarantee that the controlled
system will be deterministic, but only that it will be the mipgrmissive one optimizing the combination function.
It is indeed possible that two outgoing and controllabl@gigons produce the same result on the combination
function.

Within our framework, it is very useful to model limited rasoes, like memory or power, which are crucial for
embedded systems, and we have demonstrated its appticabilivo case studies’[7,22], the former is a single
transition optimization, while the latter is a finite pathtiogization. Concretely, we use following additional DCS
function, where) is any cost function from the states to the integers:

— 8" = mazimize_step (S,) is a function that synthesizes and returns a controllalsdtesyS’ such that, from
any statey;, all the controllable outgoing transitions that lead tocassor stateg, ; having a non maximal
cost functiony(¢;+1) are disabled. Optimization must always be applied aftermbyeriance and reachability
objectives, as a means of choosing one optimal solution grif@correct ones.

For instance, we can specify three tasksr,, andrs, each modeled by the LTS of Figuid, running on
three processor®;, P», and P;. Table1 gives the power consumption costs and the quality of ead¢hdat
each processor, as well as the maximal power consumptioaabf grocessor. The notion of quality refers, e.g.,
to computation tasks that can give more accurate resuliseéhdetter computing resources. The combination
function for both weights is the sum, that is, the cumulapegver consumption (resp. the cumulative quality) is
the sum of the power consumptions (resp. of the qualitiea)l ithe active states of the synchronous product.

power consumptiod quality Q!
per task and processor| per task and processof
P P, P P Py P
T1 4 4 2 3 5 3
x| T 2 2 3 2 2 5
S 2 3 4 2 2 5
boundb; | 5 3 6

Table 1. Power consumptioﬁ?{ and qualityQZ of the tasksr; on the processorB;, with the bound$; giving the maximal
power consumption of each processor.

The complete system specification can therefore be givermdy TSs of FigurelO for the three tasks, of
Figure5(a) for the three processors, and of Figéf&) for the environment model. éonfiguration of the system is

14

an assignment of the tasks to the processors: for instareepnfiguratiof A} | A3| A3) indicates that the tasks,
5, and s are respectively executed on the processrsP,, and P3, while the configuration A%, A3|(|AL)
indicates that is on Ps, thatm andrs are onP;, and thatP, executes no task. There is a total of 27 different
configurations.

A basic fault tolerant policy can require that no task bevaatin a faulty processor:

3 3
S" = make_invariant | S,— \/ \/ (A7 A ERR;)

Thanks to optimal DCS, it is possible to refine this policy bguiring that no processor exceeds its maximal
power consumption bound:

3
S" = make_invariant | S, /\ Z C? <b;
i=1 \j=1

Note that, in the above objective, the predicatinat specifies the subsegtis actually aconstraint on the costsf
the component states; this is a generalization of the statiqates of Equatior8f in Section3.3.
Finally, again thanks to optimal DCS, we can require thattimaulative quality of the tasks be maximal:

S"" = mazimize_step (S”, Q)

where the quahty;gg of the current global state of the system is the sum of qealif the tasks, each in its current
state (47, Ag, or Ag) Qg = Z , @7, where@’ has the value of) in the current state of task.

For instance, suppose tth falls (i.e., the uncontrollable event occurs) while the system is in the configu-
ration (A1| A3]| A3). From this state, the 27 possible configurations are redehale shall not discuss all of them,
but rather just explain that the three following configurai must be avoided in the controlled system since they
violate one of the required properties:

— (A}|A2|A3), after no migration, violates the fault tolerance property

— (A1, A3|0|A3), after the migration of, to P, violates the maximal power consumption property becatise o
the bound; of P;;

— and(A1|0|A3, A3), after the migration of; to P3, violates the maximal power consumption property because
of the bounds of Ps.

As a consequence, the three corresponding transitionshawbsabled by the synthesized controller. In contrast,
the two following configurations satisfy the four requiredperties:

— (A2, A3|0|Ab), after the migration of, to P and ofr, andrs to P;;
— and(A2|0| A}, A3), after the migration of, to P; and ofr, to P;.

Among those two configurations, thanks to the quality priypéne controller should preferd?|(| A3, A3) since
the corresponding cumulative quality is - 2 + 5), instead of only 74 + 2 + 3) for (A%, A3|0|A3).

What we have just described involves an optimization of therotled system only over a single step. That s,
from the current state, it selects the transition that léadkse immediate successor state that optimizes the given
criteria. But in general, it does not select the transitivat {feads ultimately to the reachable state that optimizes
the given criteria. This is known as path optimization, aredh&ve demonstrated its utility within our framework
of DCS for fault tolerance4Z].

Optimal DCS over finite paths involves a modified Bellman Dd@wathm [5] in order to deal with path
having infinite loops, something that the classical Bellralyorithm cannot do. We will not go into the details of
our modified algorithm, which can be found in7]. We illustrate its application to fault tolerance on tabksing
several successive phases separated by checkpoints. $asthia exemplified by the LTS of Figurel(a): the
task, named, begins in the idle statg', then goes in the ready staf, before starting its first phaston either
one of the processor; (in one of the stated}); the task can be migrated to another processor while stitsi
first phase (these are the “horizontal” transitions whi@hratlbacks); only after passing its first checkpoint can it
start its second phag®, again on either one of the process&gin one of the state®}); again, the task can be
migrated to another processor while still in its second phisally, only after passing its second checkpoint can
the task terminate and go to the terminated sfdteln this LTS, there are only two phases / checkpoints, but in

15

the general case this number is arbitrary. Like in Seddidnthe events-! andt! (the latter playing the role of the
second checkpoint events) are uncontrollable; the firstigh@int events:! are also uncontrollable (and similarly
for the LTS of Figurel4(b)).

Furthermore, we associate to each state a static cost egpiregsthe cost for the task to traverse this state. We
also assume that the processors are subject to permansitfailares, and we adopt the environment model of
Figure6(a). The problem consist now in finding a controller that wiliarantee that no task be active on a faulty
processor (fault tolerance policy), and that the totalco$executing the tasks from their idle to their terminated
state be minimized; this cost is computed by summing, foheask, the individual cost of each traversed state.
For instance, if a task is migrated frof} to P, before its first checkpoint, then it must pay the cost of itst fir
phase twice: this is consistent with the classical notiochafckpoints and rollback.

Fig. 14.Example of runs for two taskd;' (a) andZ™ (b), executing on three processors, wherfails.

Figuresl4(a) and14(b) show the examples of runs for two tasks, respectivelyattifit and7?, executing on
three processors. The cost of each state is indicated néstgtate. In this example, the best execution cost for
task7! would be 1+1+2+1+1=6, which corresponds to executing i fihase ot; and its second phase 1.
The best execution cost for tagk is 1+1+1+1+1=5, which corresponds to executing its firssghanP, and its
second phase oR;. The run proceeds as follows. Firgt! is scheduled o®; andT? is scheduled of,. At that
moment, processadp, fails. 72 must migrate immediately and the best cost solution is efféry processaPs; in
the meantime, task' remains on process@k. The tasks can execute their own checkpoint independefgiyah
other, when receiving the corresponding uncontrollabnes!-2. Just after a checkpoint, processor migrations
can also occur for optimality reasons: here, ibtrand7? migrate respectively fron®?; to P; in order to achieve
their best execution cost.

6.3 Conditioned discrete controller objectives

Conditioned DCS objectives are very useful to adddeggaded modef control, e.g., to achieve a management

of the degraded modes. The principle is that each such masfgeisfied by, on one hand a predicate on states
(pi)1<i<n, @and on the other hand a conditiéf;), <;<,. Then, there are two possibilities, either a conditioned

invariance or a conditioned reachability:

— A single conditioned invariance objective is achieved¥ly= make_invariant (S,C; = ¢;), where the
predicateC; = ; is of course equal te:C; V ;. In the case of multiple conditioned invariance objectives
the controlled system is synthesized®y= make_invariant (S, \|_,(C; = ¢:)). A useful instantiation of
this is the synthesis functioff = make_invariant (S, (C = ¢1) A (-C = 3)), which amounts to switch
from the DCS objective; to ¢, and back according to the conditich

16

— A conditioned reachability objective is a bit more elaberaind requires first to transform the objective into

an invariance one:keep_reachable (S,E) = make_invariant (S, reachable_under_control (S, E))
(see Section2.2). Then, for a single conditioned objective, the controllsgstem is synthe-
sized by S = make_invariant (S,C; = reachable_under_control (S, ¢;)). In the case of

multiple conditioned reachability objectives, the cotligd system is synthesized by’ =
make_invariant (S, \!, (C; = reachable_under_control (S, ¢;))).

As a consequence, the obtained controlled system willfgdtie predicatep; (that is, either the subset of
states satisfying will be invariant or reachable) provided that the condit@nholds. Of course, this technique
involving conditioned synthesis objectives can be usea@sigh many other systems and not just degraded modes.
A full case study involving degraded modes and condition€$SDbjectives is presented in Sectioi.

6.4 Synchronous observers

Observability is an important notion in discrete controller synthesist lilie the alphabe¥ of the languagé/ is
partitioned into two subsets (the sét of controllable events and the s&}, of uncontrollable events), it can also
be partitioned into two other subsets: the $gtof observableevents and the sef,,, of unobservableevents.
The idea is that the controller must behave in the same wayh&@han unobservable occurs or ne9[.g].

Within our framework, it is sometimes useful to express &lsysis objective that refers to the output of one
of the system’s LTSs. In such a case, if its internal statakisfLTS were observable, then the controller could
make some of its internal states unreachable (by disablic@ing transitions). In contrast, if this LTS’s internal
states were unobservable, then the controller would nobleeta make them unreachable. As we can see, this is a
different notion of observability as the one definedin,[g], since it refers to the states rather than to the events
and transitions.

A typical situation where a synchronous observer is usafal $ystem consisting of a plant coupled to one
or more sensors (and with a model of the fault hypothesis aallusThe purpose of such a design is to take into
account the value failures of the sensors. However, it ipogsible to express the synthesis objective w.r.t. the
state of the sensors, because it directly tells whethertdheasensors are faulty, and this contradicts our objective
to tolerate the value failures of the sensors, hence witkilwoiving if the sensors are faulty or not. For this reason,
the synthesis objective must be expressed w.r.t. the dtéte plant. But in this case, the possible value failure of
the sensors will not be taken into account when synthesthiegontroller, because the closed loop consisting of
the plant and the controller is independent of the valuek@&ensors.

This situation is illustrated by Figutks: the synthesized controller interacts only with the plardependently
of the eventual value failures of the sensors.

input events input events fault events
control local local Fault
Controller—gygns™ Plant events’| Se€NSOrsi—gyents | hypothesig

i |

state variables

Fig. 15.A controlled system equipped with sensors subject to failures.

Therefore, we propose to addsgnchronous observer{29] to the system, an LTS whose job is to observe
the outputs of the sensors, and to go in a state nam¥etl)” as soon as these outputs correspond to the former
synthesis objective. As a consequence, the new synthemstiob becomes-BAD, that is, theBAD state
should be unreachable. Now the closed loop includes thé, plencontrollerandthe sensors. This new situation
is illustrated by Figure.6.

17

input events input events fault events

b b b

control local local Fault
Controller—gyents Plant events Sensorsi<gyents hypothesig
local events
synchronodis
state variables observer

Fig. 16. The same system as in FigutBwith a synchronous observer.

We have conducted with Huafeng Yu a full case study, comgjsif a water tank with liquid level sensors,
subject to value failures?f].

7 Case studies

Throughout Sectiond to 6, we have used numerous examples extracted from three pstyipublished case
studies P7,23,28,27]. These examples show the usefulness of our framework. flodludemonstrate this, we de-
tail in this section two unpublished case studies: a systdenant to the failures of its actuators, and the Byzantine
generals revisited.

7.1 A system tolerant to the failures of its actuators with caditioned synthesis objectives

The system under study in this section consists of two tahkguid, connected by two pipes; it is a benchmark
defined by the COSY group (“Control of Complex SYstems”) oF§fSEuropean Science Foundation”). The left
tank can be filled with liquid by opening the val¥g. The right tank can be emptied by opening the vdliye
The flow in the upper (resp. lower) pipe is controlled by thived’; (resp.Vs). Each valve is subject to fail silent
faults; in other words, it is thactuators of the system that can fail. This is illustrated in Figdre The level of
the liquid in the left tank is abstracted as eitgy (the tank is empty)N; (the level is between the lower and the
upper pipe), N, (the level is above the upper pipe), 8k (the tank is over-flooding). Similarly, the level in the
right tank is abstracted as eith®f,, Ny, N3, or Ni.

e
Ngp= == == --q-----=---=--=-- -~ W

No| Ly N;
]\/'1 LQ N{
No/—— — - - = =N}

Fig. 17.A system with two tanks, two pipes and four valves.

We can observe that this system offers only a limited formedundancy, since each actuator (valve) plays a
specific role that cannot be directly fulfilled by the othetuators. For this kind of systems, it is always difficult
to elaborate efficient fault tolerance strategies. We ve#t sowever that DCS brings satisfactory results to this
respect.

Each valveV; is an actuator subject to failure, and can hence be modeléaeblyTS of Figurels; this LTS
is similar to what has been shown in Figuf@). When not faulty, the valve is either open (stétg or closed
(stateC;), and can switch from the open to the close state accorditiget@ontrollable input;, or vive versa

18

with o,;. The valve becomes faulty following the evefy and goes either in thE'O; state if it was open at the
time of the failure, or to thd’'C; state if it was closed. The failures are permanent, whichddeted by the fact
that the state$’O; and F'C;; are sink states. The LTS of vallé also outputs a variable namegdthat represents
the status of the valve: by conventidnmeans open whilé means closed.

fi/0

Fig. 18.LTS modeling the behavior of valVe,.

For the sake of simplicity, we assume that all the valves leaaetly the same flow per time unit. For instance,
when1j, V5 and V3 are open whild/; is closed, the level in both tanks does not change. Also,usecaf the
rules of communicating tanks, the level in the right tank nawer be greater than the level in the left tank. The
behaviors of the left and right tanks being tightly interedlegent one of another, it is not possible to model each as

a separate LTS. Rather, we propose the LTS of Fiddre® model the joint behavior of the two tanks according
the status of the four valves.

Vo AN v2 A\ vs

V2 Vv (UO /\’l)l)

Vo N\ U2 A\ vs
vo N\ U1 A\ V2

vo N\ v A\ U3
’l_)()/\(’l)l V v2 1_)0/\(2)1\/’1)2)/\’03

A vo N\ U1 A\ V2 N\ U3
4 vo A (v1 V v2) A U3 vo A (v1 V v2) A T3

P>
! !
To AT1 A Ta Avs Nz, N1 To AT1 A Ta Avs Nz, N2

Vo N\ U2 A\ U3
A

N27N(l)

vo N U1 A\ V2 vo N U1 A\ V2 N\ U3 'UO/\(Ul '02)/\1_}3
V V

_ _ A _ _ _
4 ’Uo/\’Ul/\UQ/\’U3 A A ’Uo/\Ul/\’Uz/\U3
vo N\ U1 A\ V2 A\ v3

Fig. 19.The LTS modeling the joint behavior of the two tanks.

This model assumes that, if the right tank is empty (sféteN)), then it is not possible to empty the left
tank without temporarily filling the right tank. In other was, transitions fromV;, N/ to N;_;, N/, are forbidden.
Furthermore, this model forbids two level changes in a raw:ifistance, to move fronVy, V) to Na, N, the
system must before go infl¥;, V. Finally, to avoid too complex drawings, the self-trarmit that make the LTS
reactive have been omitted in Figur®e.

The plant is therefore the synchronous product of the LTSh@fdouble tanks (Figur&9) and of the four
valves (Figurel8). It is show in Figure20.

19

Vo A vz Avs

v2 V (’Uo A 1}1)

vo A\ U1 A V2

Vo N\ U2 A v3
vo A (v1 V v2) A D3
D

vo AN U1 AN U2 A\ U3
vo A\ (’Ul \ ’Uz) A U3

F
|
|
|
|
I

Fig. 20. Complete system made of the tanks and the four valves.

The problem we want to address for our two-tanks system igrithesize a controller guaranteeing the two
following functions:

LV1: No tanks over-floods. This is achieved 8Yy= make_invariant (S, = \/f’=O N3V N|) Note that, because of

the physical configuration of the two tanks and the two pigiesright tank can over-flood only if the left tank

does so too. In other words, it suffices to prevent the system §oing in the staté's, instead ofN5 V N.
LV2: The level in the left and right tanks must be regulated reypay at N, and N7. This is achieved by

S" = keep_reachable (S’,{(Na, N{)}).

Unfortunately, if the valvd/, fails while it is open, and at the same time either the valydails while it is
closed, or both valvel; andV; fail while they are closed, then the objectiyé 1 becomes impossible to satisfy.
This intuition is confirmed by &AL that fails to synthesize the required controller. The funeatal reason for
this is the low level of redundancy offered by the fault iet@int system.

One solution would be to strengthen the fault hypothesisadsuming that only one valve can fail. In terms
of our system model, this would result in adding an LTS sintitathe one of Figuré&(a). Rather, we choose to
condition the synthesis objectiveaccording to the faults of the valves. Our synthesis fumstio/ 1 andLV 2
therefore become:

LV1': If the valveVj is not stuck in the faulty and open state, then no tank oved8oThis is achieved by
S’ = make_invariant (S, -FOq = _\\/?:O(Ng, N{))

LVv2': If the four valves work fine, then the level in the left andhtiganks must be regulated respectively\at
andNj. This is achieved by (see SectiérBfor the explanations about conditioned reachability ofbjes)

S’ = make_invariant (S, /\?ZO(Oi V C;) = reachable_under_control (S, {(Na, N{)}))
This two-tanks system has been implemented iU by Safouan Taha[l]. The controlled system syn-

thesized by 8ALI with the objectivedV 1’ andLV 2’ behaves as expected: while the four valves work fine, it
regulated the liquid level &V in the left tank and aiv; in the right tank.

20

We believe that this approach (DSC with conditioned syni@sgectives) is very useful to design fault tolerant
systems. It guarantees by construction a specified leveluif tolerance, and offers a very elegant way to specify
degraded modes in a system.

7.2 The Byzantine generals revisited

In this section, our goal is to model Byzantine faults by nseahL.TSs and uncontrollable events, and to obtain
with DCS the same result as Lamport et &l/][in the particular case of 4 generals. Note that the reslBih

is parametric fom generals and hence much more general than what we achievdth@ould be interesting in
future work to extend our DCS framework to handle such pataowodels.

In [37], Lamport et al. define th8yzantine generals problemin the following way:n divisions of the
Byzantine army, each commanded by its own general, are choyiside an enemy city. The generals must decide
on a common plan of action, eithattack or retreat, by communicating with one another only by oral messages.
The problem is that some generals &nators who try to prevent the loyal generals from reaching agreeémen
One of the generals is tltommander of the army, while the: — 1 remaining ones are higutenants

The commander first sends an order (attack or retreat) to-his lieutenants. If he is loyal, then he must send
the same order to all his lieutenants; but if he is a trait@nthe can send different orders to his lieutenants, that
is, incoherent orders. It was after this article that inecehevalue faults have been callBgizantine faults.

Then, each lieutenant transmits the received order to @lbther lieutenants. Again, a loyal lieutenant must
transmit the order he has received from his commander thalbther lieutenants, but not if he is a traitor.

The goal is to find an algorithm guaranteeing that the loyakgals will reach &onsensudor their plan of
action. Formally, the two following interactive consistgrconditions must be satisfied:

IC1: All the loyal lieutenants obey the same order.
IC2: If the commander is loyal, then each loyal lieutenant olibgsorder sent to him.

The algorithmsl.1 and 1.2, proposed by Lamport et al., are respectively the action®peed by the com-
mander and by the — 1 lieutenantsm is the number of potential traitors (the actual number dfdra is not
known),v is the initial order, and is the number of the lieutenant.

Algorithm 1.1 Byzantine Commanddim, v)
1 Send my ordev to then — 1 lieutenants;

Algorithm 1.2 Byzantine Lieutenantm, 4)
1 v, :=value received from the commander;
2 if m = 0then

3 Use as order the valus;

4 else

5 Sendv; to then — 2 other lieutenants;

6 forall j # i do

7 v; = value received from the lieutenajit

8 end do

9 Use as order the majorityaj (v1, va, ..., Un-1);
10 end if

Lamport et al. demonstrate by induction owvetthat, to accommodate the presence of at mogtitors, there
must be at leastm + 1 generals to guarantee that all the loyal generals reachotiseasus. Three hypotheses on
the exchanged messages are necessary: each messagemeatily ceceived, the receiver knows the sender, and
the absence of a message can be detected. In terms of cospatere, these hypotheses can be satisfied by a fully
connected point-to-point network, and with synchronizkegies. Moreover, the functiomayj (v1, ve, ..., v,—1)
is such that if a majority of the values is equal tov, then the result is.

The problem we want to address in this section is the follgwamong the: Byzantine generals, how many
at most can be traitors? In order to answer to this questioim RS, we model the environment as timest
permissive possiblETS, having as inputs,, €1, e2, andes (respectively the betrayal of the commander and the
three lieutenants), and producing as outpui$,, t2, andts (each of those will be used as input respectively by
the LTS of the commander and the three lieutenants; seed=zdurWe noteLoy. andT'ra. respectively the state
where the commander is loyal or traitor, ahdy; andT'ra; the state where theth lieutenant is loyal or traitor.
The following LTS is therefore the most permissive enviremtnmodel:

<L0yc Solte, Trac> I <L0y1 TN Tra1> [l <Loy2 falta, Tra2> I <L0y3 alts, Tra3>

21

Our idea is that DCS wiltonstrainthis environment model bpreventingsome generals to be traitors, that is
by inhibiting some of its transitions. In contrast with Sectibr, the events., e, ea, andes must therefore be
controllable In other words, we want to obtain by DCS the most permissiMg guaranteeing that the generals
will reach the consensus in any circumstances. Note thahwdoéing so, we limit in fact thexctual number
of traitors instead of th@otentialnumber of traitors. In other words, our model considers thas the actual
number of traitors instead of thpotentialnumber of traitors.

We noteAtt. and Retr. respectively the state where the commander attacks oatstt@ndA¢t; and Retr;
the state where theth lieutenant attacks or retreats.

Environment

te
t1 ta
Lieutenant Lieutenant Lieutenant

U1 VIl V3

1 2 3
Uy ug Uy

1 2 - 3
u3_ ul_ ’LL2_

Fig. 21.Complete system made of the environment model, the commander, atidgbdieutenants.

The LTS of the commander receives, as input, the initial oodee is supposed to send to the three lieutenants
(v being an uncontrollable event):= true means attack while = false means retreat. To model the fact that,
if he is a traitor, then he can send incoherent messages,dwh@ uncontrollable inputaS, ug, andug (as we
have shown in SectioB.3 and in Figurell). In his normal mode of operation, his three outputs are leigue.
But when he is a traitor, his three outputs are each equalémbhis three uncontrollable inputs. Similarly, the
LTS of lieutenant receives, as input, the order sent by the commander, and which he is supposed to transmit
to the two other lieutenants, via his outputsandv;. To model the fact that, if he is a traitor, then he can send
incoherent messages, we add two uncontrollable inpdtandug. Finally, the LTS of lieutenantmust compute
the majority of the three received values, v? andv?, in order to determine if he must go to the stalté; or
Retr;.

In terms of DCS, the propertié€ 1 andIC 2 translate into:

— PropertylC 1 = unreachability of the states such that the predivatg j, Loy; A Loy; A ((Atti A Retr;j) vV
(Retr; A Att;)) is true, that is:

S’ = make_invariant (S, Vi # j, Loy; N\ Loy A ((Atti A Retr;) V (Retr; A Att]—)) = false)

— PropertylC 2 = unreachability of the states such that the predic¢at&oy.A Loy; A ((Attc/\Retri)v (Retr A
Att;)) is true, that is:

S" = make_invariant (S, Vi, Loy. A Loy; N ((AttC A Retr;) V (Retr. A Atti)) = false)

With Nour Brinis we have implemented the system of Figettén MATOU. By asking to $GALI to synthesize
a controller with the two properties above, we have obtaiaembntrolled system of four Byzantine generals
tolerating the presence of one traitor among thén].[This result is consistent with the theorem of Lamport
et al. The originality of our approach lies in the usage ofamimllable inputs to model incoherent values, as
well as in the usage of DCS to determine the maximal numberyatBtine admissible faults, by producing the
environment model that is the most permissive and still giotes that the generals reach the consensus whatever
the circumstances.

22

8 Related work

To the best of our knowledge, although they do not mentionsafiware implementation, Cho and Lim have
been the first ones to develop the idea of making a systemtfaalant thanks to DCS, by considering faults
as uncontrollable events]. Their results are based on the framework of supervisontrobof discrete event
systems of Ramadge and Wonhaid][First, the set of event&' is partitioned inta¥ = X, U X, = X, U X,
respectively the subsets of controllable, uncontrollabtgmal, and abnormal events; moreovey,, C X..
With respect to a marker set of stat@s, (the objective for the control), they defineecurrent event to be such
that@,,, can be reached from its originating state, either througtirotiable or other recurrent events. Then, a
fault event is an abnormal event that does not prevent the system froohirep?,,,, otherwise it is dailure
event Their guideline is that a fault is a malfunction while a tmé is a total breakdown. Finally, a system is
fault tolerant w.r.t. Q,,, if, when any abnormal event occurs during the executiohgeithere must exist another
event sequence which can reagh,, or the path to this abnormal event can be eliminated. Anyptesequence,
which consists of normal events or fault events and whichedrthe initial state t@),,, is called aolerant fault
event sequenc€TFES) if, for each normal event, all the possible eventlofdhg the corresponding states are
either controllable or other recurrent events. The setlofRES is then taken as the legal langudgewhich is
achievable by construction, i.e., both controllable anseotable. Finally, the plant is constructed as the parallel
composition of several finite state automata. The diffeeene.r.t. our own work reside in:

— their usage of a set of states as control objective insteaagvafiance or reachability properties, which are
easier to use in practice, all the more when in conjunctidh wisynchronous observer;

— their usage of the basic parallel product instead of thelsymous product: the latter limits the combinatorial
explosion, without avoiding it entirely though;

— the absence of clear definition of their fault hypothesisilevtve model it as an LTS, which is both more
formal and more flexible;

— our usage of optimal DCS that provides more possibilitiesyothesis as well as to limit the non-determinism
of the controlled system;

— finally, our usage of a DCS software tool while Cho and Lim domention such a tool.

In [45], Marchand and Samaan exemplify the use of DCS in the spegfie of a power transformer. Like
them, we model failure events with uncontrollable boolegsuts. Their modeling is very specific to their case
study: for instance, the fault propagation is influencedHgydpening and closing of circuit-breakers. In contrast,
our framework covers a much wider range of fault toleransesés.

The technique proposed by Kulkarni and Arora &3]} and improved in $4,35,9], is close to our own work.

It involves synthesizing automatically a fault toleranbgiram starting from an initial fault intolerant program. In
their model, a program is a set of processes, each with itd l@riables. Each program’s state is a valuation of
the program’s variables. Two execution models are consiti¢hehigh atomicity model, where the program can
read and write any number of its variables in one atomic step {t can make a transition from any one state
to any other state), and thew atomicity model, where it can not (actually, each process can writg itsbwn
variables, and can read only its own variables and its neigs)b The initial fault intolerant program ensures that
its specification is satisfied in the absence of faults, biguarantees are provided in the presence of faults. Then,
a fault is a subset of the set of transitions. The authorsidenthree levels of fault tolerance:

— thefailsafe ft: even in the presence of faults, the synthesized programagtees safety;

— thenon-masking ft.: even in the presence of faults, the synthesized prograovees to states from where its
safety and liveness are satisfied;

— and themasking ft: conjunction of the two above mentioned levels.

To address their two models of atomicity and their threeltewé fault tolerance, the authors propose a sound
and complete algorithm that is polynomial in the state spddbe source fault intolerant program for the high
atomicity model (resp. exponential for the low atomicitydae@. In the low atomicity model, the transformation
problem is NP-complete, except for non-masking ft for whteh complexity is unknown. Each transformation in-
volves recursively removing bad transitions. However, sdransitions cannot be removed (like the uncontrollable
transitions in DCS), but this is the case only of fault tréinsis (while in DCS, any event can be uncontrollable,
not only faults). An efficient BDD-based algorithm has beesspnted in{] and implemented in the X RAFT

tool [10].8

8 SycrAFT: htt p: // ww. cse. nsu. edu/ ~bor zoo/ sycraft

23

http://www.cse.msu.edu/~borzoo/sycraft

Attie et al. have also proposed an automatic synthesis rdétindault tolerant programs3]. In their approach,

a system is a set of concurrent processes, each consistiaglioécted graph, where states are connected by
transitions labeled by guarded commands. At each execstEm one process is randomly chosen to fire an
enabled transition from its current state. To specify syshesns, the temporal logic CTL is used as a specification
language. Such a specification allows to distinguish beatwieesafety part and theliveness partof the system.
Faults are modeled as guarded commands that perturb tleersystate. The occurrence of a fault is modeled as
a directed graph whose transitions are labeled by faultdgbcommands. Attie et al. use the same fault tolerance
properties as Kulkarni and Arora: masking tolerance both the safety and the liveness parts are respected; in
fail-safe tolerance only the safety part but not necessarily the liveness gartspected; and inon-masking
tolerance, the liveness part is always respected but the safety pantyseventually respected.

The fault tolerance synthesis problem starts with a probsgmacification (a CTL formula of the form
iniat_spec A AG(global _spec)), a fault specification (a CTL formul&), a problem-fault coupling specification (a
CTL formula AG(coupling_spec)), and a type of tolerancBO L (either masking, fail-safe, or non-masking). The
goal is to synthesize a concurrent program that satigfi@sspec A AG(global_spec) in the absence of faults, sat-
isfies AG(coupling_spec) in the absence of faults, and78) L-tolerant toF" for init_spec A AG(global_spec).

The authors use the decision proceduredf o solve this problem, i.e., to synthesize the recoveryair
that conforms to the required tolerance properties. Theativiime complexity is exponential in the size of the
specification (i.e., the size of the problem specificatiarspthe size of the problem-fault coupling specification).

There are three important differences between our appraadlihe ones of Kulkarni and Arora and Attie et
al. Firstly, their model of computation (MoC) is the non-<gtinistic interleaving, while ours is the synchronous
deterministic parallel composition. We believe that, whesigning safety critical distributed systems, a determin
istic MoC is better suited than a non-deterministic one @kes debugging easier and facilitates formal model-
based methods). This claim is supported by the successevedtby the synchronous MoC][in particular
in avionics [L1]. Secondly, only fault transitions are uncontrollable,i@hve use uncontrollable events to model
fault events but also any event decided non-determinitiby the environment. And finally, our method can
handle some form of optimality w.r.t. costs associateddtestof the system.

Based on the work of Kulkarni and Aroraa@ner and Jhumka propose a way to deal also with non fusion
closed tracesq]. A specification isfusion closediff the entire history of every trace is present in everyestait
the trace (hence the next state of the systems depends oitly @anrent state and on the inputs, i.e., not on the
sequence of previous events). The usual way to transforrmdusion closed specification into a fusion closed
one involves addingistory variables to the states, in order to remember the sequence of passirpavever, in
general this is exponential. The authors propose a polyaaméthod, which involves splitting fusion paths (here
a new state is added), and then removing the bad fusion slfateis the number of state of the initial non fusion
closed specification, then, at worst, the number of statebenfesulting equivalent fusion closed specification
is O(n?). This result has later been generalizeddd]|

Kamach et al. have applied DCS to a system with several mddegenations $7]. Their approach allows
the user to specify, for instance, oneminal mode and onedegraded modefor a subsystem, and to switch this
subsystem between those two modes according to two undabteoevents, calledommutation events They
present a case study consisting of a small industrial pngéamenduction line, with two jack cylinders and one
pump. The horizontal jack cylinder has a degraded mode,anvihean no longer move. The commutation events
associated to the horizontal jack cylinder argailure) andr (repair). This case study has been implemented with
the TCT tool of Ramadge and Wonham.

There are also works in the domain of hardware synthesissh@duler synthesis, in co-design. Similarities
with our work exist, at least in the informal statement ofineblems: the use of discrete event dynamical systems
as formal models of reactive systems, be it Petri nets or td §ynthesize sequences in the presence of constraints
of different kinds, with controllable and uncontrollableguts. Hardware synthesis is an elaborate optimization
and constraints process. It can involve notions relatecatoegtheory. However, there are differences with our
work, which can be hidden by similarities of vocabulary. Egample Cortadella et al. distinguish uncontrollable
and controllable inputs by the constraints on the momentnwthey can be read, the objective being to avoid
blocking schedules1f]. They make the relation with the notions, in the synchreantanguage BTEREL, of
“signal” (uncontrollable) and “sensor” (controllable).

In contrast, we use the words controllable and uncontridlabthe different meaning of Ramadge and Won-
ham, which is very classically accepted in the communityupfesvisory control, also called Discrete Controller
Synthesis48]. There, the synthesis involves computing the constrainbé value of controllable variables of a
system (and not the moment of their “reading”), as a functibancontrollable values and current state, so that
the paths that can be taken in the controlled LTS do respedgtritperties given as synthesis objectives, and this

24

whatever the values of uncontrollable variables (and m@ntloment of their “reading”). Controllable events are
used to inhibit some behaviors, through a constraint om tfadiie so that the transitions they are labeling cannot
be taken by the controlled system. Controllable eventsrgret$ of the uncontrolled system, but not of the final
system once the controller is integrated. The control wlisciynthesized in supervisory control concerns the
values, not the moments of reading operations. Anotheifgignt difference with the work of Cortadella et al. is
that the questions of fault tolerance, which we are treatioghot seem to be explicitly addressed there.

Another research area close to DCianning, a technique that has emerged from artificial intelligence.
Results on the automatic generation of fault tolerant pleve been obtained by Jensen et@l].[After defining
the general problem of finding 5afault tolerant plan, the authors concentrate on 1-faddéirémt planning and
present two algorithms based on Ordered BD2§.[The main limitation of their results is that they toleratay
one fault, while our model can accommodate an arbitrary rarrabfaults.

Timed Game-Automata (TGA) can also be used in a framewor&dtmmating the addition of fault-tolerance.
Quite naturally, one player could be the environment produthe faults, while the other player could be the
controller trying to keep the system in a subset of safe s{#tés subset being formally specified as a reachability
or safety property). Although there exists an efficient loe-ly algorithm to verify safety and reachability prop-
erties for TGAs [6], implemented in the BPAAL-TIGA tool°, this appealing idea has never yet been applied to
fault-tolerance.

Formal approaches to the design of fault tolerant systenae haostly considered the problem fafrmal
verification, in the context of process algebr&[13,7]. They verify that an existing, hand-made design (replicas
interaction control, voters, etc) satisfies a certain esjaivce with the nominal functionality specification, even i
case of faults. What distinguishes these approaches fromi®&08 fact that fault tolerance properties are verified
a posteriori In contrast, DCS approachsgnthesizautomatically a controller that will insure the requiredlfa
tolerance properties by construction, thaaigriori.

9 Conclusion and future work

9.1 Contribution

After introducing discrete controller synthesis (DCS) disdapplication to the automatic addition of fault tol-
erance in systems, we have presented in details how to gpeaif handle the failures of hardware components
(processors, communication links, actuators, and sensdien we have shown how to specify and handle sev-
eral kinds of failures (crash, value, and Byzantine). Fjnale have demonstrated with two case studies how our
framework for fault tolerance can be used in practice. Tlrase studies share the fact that the plant is specified
as the synchronous product of several LTSs, with one LTSsgmiting the fault hypothesis, and that the synthesis
objective is specified as reachability and invariance jpagds on states. Our research results are supported by a
tool chain [L] (developed by us and by other research labsAT®U to program LTSs in an easy way, ants3LI

for the DCS tool. The great advantages of our framework folt talerance are:

— It is automatic, because DCS produces automatically a fault tolerant isyftem an initial fault intolerant
one.

— Theseparation of concernsbecause the fault intolerant system can be designed indep#y from the fault
tolerance requirements.

— Theflexibility , because, once the system is entirely modeled, it is easy $evteral fault hypotheses, several
environment models, several fault tolerance goals, skdegraded modes, and so on.

— The safety, because, in case of positive result obtained by DCS, thefigakfault tolerance properties are
guaranteed by construction on the controlled system.

— Theoptimality when optimal synthesis is used, modulo the potential nuieakeiqualities (hence a non strict
optimality).

If DCS fails w.r.t. the fault tolerance objective, then @radl the state space is traversed during the synthesis
(be it exhaustively or symbolically), it means that no siolatexists for the required objective, fault hypothesis,
environment model, and partition of the events into the radlatble and the uncontrollable ones. The solution is
then to relax one of these constrains, for instance to tidéesas failures.

® UPPAAL-TIGA: htt p: // www. cs. aau. dk/ ~adavi d/ ti ga

25

http://www.cs.aau.dk/~adavid/tiga

9.2 Discussion on complexity

The main drawback of our framework is thembinatorial explosion This is a general drawback of DCS. Con-
cretely, for large systems, the state space is too big toaversed by a synthesis tool in a reasonable time. For
some classes of problems, DCS can even be undecidabie’].

For the decidable part, our opinion is that DCS is today as#ree level as model checking was 15 years ago,
that is, it is a promising technique, but due to its algoritheomplexity it cannot be applied yet to industrial size
systems. However, it must be noted that DCS does benefit figonitamic and tools progress occurring in the
model-checking area.

Furthermore, in our applicative setting, the problem ofdlgorithmic complexity can be tackled by defining
appropriate methodologies. Our approach is to focus ondhe&d kernel of a system, abstracting from the rest
(e.g., numerical computations). Even though identifyimg tight level of description is more of a practical than a
theoretical essence, it can have a vital impact on the ctsamplicability of the techniques].

Finally, the synthesis of controllers is a constructiveragien, so the complexity comparison should be made
with the manual writing of controllers, followed by theirnification and debugging. It is from that perspectives
that we think that, in the case of the algorithms we use, ttwirplexity remains reasonable, in the sense that they
can be used for systems of a size where manual design woulkerpéard.

Regarding the results we have presented in this articleptvimts that can be improved w.r.t. scalability:

1. The DCS tool that we useJ&aLl, is very powerful thanks to its usage of a tri-valued lodig §Z), but this
comes at the price of less computational efficiency. Thisibadied by two drawbacks: firstly the translation
from Mode Automata (our language to specify LTSs) iiBZ (the input format of 8ALI), and secondly
the symbolic state space traversal bg &1, currently performed with TDDs, the ternary equivalent &f[Bs,
but alas less efficient. Nonetheless, DCS being a consteuttéthod (in contrast with model-checking which
is a diagnosis methd®), we advocate that it is well worth spending some computatioe to obtaircorrect-
by-construction fault tolerant systems

2. We would like to combine our results with abstract intetption P0] to achieve the control of systems
with both numerical and discrete data; this would allow upucsue further our work on handling the value
and Byzantine failures. Tools that implement efficientlystafct interpretation on LTSs exist, for instance
NBAc [30].

9.3 Future work

In the framework we have presented so far, the result of th8 3@ centralized controlled system, fault tolerant
provided that the synthesis objective includes a faultrémlee requirement (e.g., no task should be active on a
faulty processor). However, it remains a centralized systeecause it consists of a single global LTS, which is
the result of the synchronous product of the plant and ththegized controller. This can be a problem w.r.t. fault
tolerance, since most fault tolerant systems must intrailsi be distributed to offer redundancy4]. In particular,

the controlled system should be tolerant to the failuresefdontroller.

The automatic generation of local controllers achievirmpgl control objectives is a more difficult task, also
known asdecentralized supervisory control[38,18], among which we distinguish two cases: First the case
where the local controllers do not communicate at run time, second the case where the local controllers can
exchange information at run time. However, there are twesaeathat prevent us from using this technique. On the
one hand, distributed DCS is not fault tolerant, since tlilariof one local controller (e.g., following the failure
of the processor it is running on) can lead to the failure efttnole system. And on the other hand, the distributed
DCS problem without communication between local contrslleas been shown to be undecidakilg?].

Rather, we propose to distribute afterwards the contrdtlean also be distributed manually when it is small
enough, as demonstrated in3]. The controller being an LTS, classical LTS distributiolgaithm like [15]
can be used. Without entering into the details, startingnfeo centralized LTS, this algorithm produces a set
of communicating LTSs, one for each desired computing lonaguaranteed to be semantically equivalent to
the initial centralized LTS. Then, classical fault tolecartechniques can be used to make the communications
between the local LTSs tolerant to the failures of the preaesand the communication links.

Another track that we are considering currently involvedradsing specifically software faults. Indeed, soft-
ware faults could be addressed by modeling with behaviazh as n-version programming and voting mecha-
nisms, and then by adapting the fault tolerant policy to plaidicular case.

10 Some even say “autopsy’”!

26

Finally, our framework and tool chain could be integratedhwmi the NEmo compiler 1], which nicely
integrates DCS as a compilation step of the domain-speaifiguage for multi-task systemsMo. This would
provide a more integrated and easy to use fault tolerantenaork.

Acknowledgments

Many thanks to Her@ Marchand for his expertise on discrete controller symghasd on the &ALI tool, to
Karine Altisen for her work on the integration of&L1 and Mode Automata (in particular theG\L Simu tool),

to Emil Dumitrescu for his work on optimal discrete conteolsynthesis and his case study on the failures of
communication links, to Huafeng Yu for his case study on wtdaks conducted with synchronous observers,
to Safouan Taha for his case study on water tanks conductbccamditioned synthesis objectives, and to Nour
Brinis for taming the Byzantine generals.

References

1. K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controllemtBgsis techniques to build property-enforcing
layers. InProceedings of the European Symposium on Programming, ESORi@®er 2618 in LNCS, Warsaw, Poland,
April 2003.

2. K. Altisen, G. Gssler, and J. Sifakis. Scheduler modeling based on the controlleesi;ffaradigmJournal of Real-
Time System23(1/2):55-84, 2002.

3. P.C. Attie, A. Arora, and E.A. Emerson. Synthesis of fault-tolecamtcurrent programsACM Trans. Programming
Languages and Systen®6(1):125-185, 2004.

4. A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its threatzxonomy. IrFIP World Computer Congress
pages 91-120, Toulouse, France, August 2004. Kluwer Acaderbi¢c Rimgham, MA.

5. R. Bellman.Dynamic ProgrammingPrinceton University Press, 1957.

6. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. LerByand R. de simone. The synchronous languages
twelve years laterProceedings of the IEE®1(1):64—-83, January 2003. Special issue on embedded systems.

7. C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifyagtftolerant system designshe Computer Journal
43(3), 2000.

8. B. Bonakdarpour and S.S. Kulkarni. Exploiting symbolic techniquesitomated synthesis of distributed programs with
large state space. International Conference on Distributed Computing Systems, ICDC3&@nto, Canada, June 2007.

9. B. Bonakdarpour and S.S. Kulkarni. Revising distributed UNIT Ygpams is NP-complete. limternational Conference
on Principles of Distributed Systems, OPODIS'08lume 5401 of NCS pages 408-427, Luxor, Egypt, December 2008.
Springer-Verlag.

10. B. Bonakdarpour and S.S. Kulkarni. SYCRAFT: A tool for sysihimg distributed fault-tolerant programs. limter-
national Conference on Concurrency Theory, CONCURW@8ume 5201 ofLNCS pages 167-171, Toronto, Canada,
August 2008. Springer-Verlag. Tool paper.

11. D. Briere, D. Ribot, D. Pilaud, and J.-L. Camus. Methods and specificatiotssftr Airbus on-board systems. Avionics
Conference and Exhibitigr.ondon, UK, December 1994. ERA Technology.

12. N. Brinis. Syntkse d’'un confileur pour le prol#me des gréraux byzantins. Master's RepoEtcoIe Nationale des
Sciences de I'Informatique, La Manouba, Tunisie, July 2005.

13. G. Bruns and I. Sutherland. Model checking and fault toleralmckternational Conference on Algebraic Methodology
and Software Technology, AMAST,®idney, Australia, 1997.

14. R.E. Bryant. Graph-based algorithms for boolean function marnipnldEEE Trans. ComputC-35(8):677-691, 1986.

15. P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactisesys for asynchronous networks of processors.
IEEE Trans. Software Engin25(3):416-427, May 1999.

16. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. igfficon-the-fly algorithms for the analysis of timed games.
In International Conference on Concurrency Theory, CONCURW@ume 3653 oLLNCS pages 66—80, San Francisco
(CA), USA, August 2005. Springer-Verlag.

17. K.-H. Cho and J.-T. Lim. Synthesis of fault-tolerant supervisorautomated manufacturing systems: A case study on
photolothographic procestEEE Trans. Robotics and Automatidiv(2):348-351, April 1998.

18. R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Superv@gorirol of discrete-event processes with partial observa-
tions. IEEE Trans. Automatic Contrp83(3):249-260, March 1988.

19. J. Cortadella, A. Kondratyeyv, L. Lavagno, C. Passerone, adhifatabe. Quasi-static scheduling of independant tasks for
reactive systemslEEE Trans. Computer-Aided Design of Integrated Circuits and Syst24($0):1492-1514, October
2005.

20. P. Cousot and R. Cousot. Abstract interpretation: A unified latticeehfodstatic analysis of programs by construction
or approximation of fixpoints. Idith Symposium on Principles of Programming Languages Angeles (CA), USA,
January 1977. ACM SIGPLAN.

27

21

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.
47.

48.

. G. Delaval and E. Rutten. A domain-specific language for multi-tgstems, applying discrete controller synthesis.
EURASIP J. on Embedded Systeg8G07. Article ID 84192.

E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten. Optimal disarontroller synthesis for modeling fault-tolerant
distributed systems. IWorkshop on Dependable Control of Discrete Systems, DCDfdlyes 23—-28, Cachan, France,
June 2007. IFAC, New-York.

E. Dumitrescu, A. Girault, and E. Rutten. Validating fault-tolerant bieia of synchronous system specifications by
discrete controller synthesis. Morkshop on Discrete Event Systems, WODESR®Ims, France, September 2004.
IFAC, New-York.

E.A. Emerson and E.M. Clarke. Using branching time temporal togsgynthesize synchronization skeletoSsience of
Computer Programming2:241-266, 1982.

F. Gartner. Fundamentals of fault-tolerant distributed computing in asynolienvironmentACM Computing Surveys
31(1):1-26, March 1999.

F. Gartner and A. Jhumka. Automating the addition of fail-safe fault-toleraBegond fusion-closed specifications. In
Joint Conference on Formal Modelling and Analysis of Timed System&@mnaal Techniques in Real-Time and Fault
Tolerant System, FORMATS-FTRTFT,®4lume 3253 oL NCS Grenoble, France, September 2004. Springer-Verlag.
A. Girault and E. Rutten. Discrete controller synthesis for fault-tatedéstributed systems. Iimternational Workshop
on Formal Methods for Industrial Critical Systems, FMICS'@&lume 133 ofENTCS pages 81-100, Linz, Austria,
September 2004. Elsevier Science, New-York.

A. Girault and H. Yu. A flexible method to tolerate value sensor failutesinternational Conference on Emerging
Technologies and Factory Automation, ETFA'Gges 86-93, Prague, Czech Republic, September 2006. IEEE, Lo
Alamitos, CA.

N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous\aseand the verification of reactive systems. In M. Nivat,
C. Rattray, T. Rus, and G. Scollo, editohsternational Conference on Algebraic Methodology and Software Téaby,
AMAST’93 Twente, NL, June 1993. Springer-Verlag.

B. Jeannet. Dynamic partitioning in linear relation analysis. Applicationgwéhification of reactive system&ormal
Methods in System Desige3(1):5-37, July 2003.

R.M. Jensen, M. Veloso, and R. Bryant. Synthesis of fault-tolgrlans for non-deterministic domains. Workshop on
Planning under Uncertainty and Incomplete Informatidnento, Italy, June 2003.

O. Kamach, L. Pietrac, and E. Niel. Approche multi-raledpour les sysimesa évenements discrets: applicatianun
préhenseur pneumatique. Modélisation des Sysmes Ractifs, MSR'05pages 159-174, Autrans, France, September
2005. Hermes.

S.S. Kulkarni and A. Arora. Automating the addition of fault-tolemnt M. Joseph, editointernational Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTF/olume 1926 o£ NCS pages 82-93, Pune,
India, September 2000. Springer-Verlag.

S.S. Kulkarni and A. Ebnenasir. Automated synthesis of multitoberarn International Conference on Dependable
Systems and Networks, DSN'/®4renze, Italy, June 2004. IEEE, Los Alamitos, CA.

S.S. Kulkarni and A. Ebnenasir. Complexity issues in automatetiessis of failsafe fault-tolerancdEEE Trans. De-
pendable Secure Compu2(3):201-215, July 2005.

R. Kumar and V.K. Garg. Optimal supervisory control of disceatent dynamic systemsSIAM J. Control Optim.
33(2):419-439, 1995.

L. Lamport, R. Shostak, and M. Pease. The Byzantine genetepr. ACM Trans. Programming Languages and
Systems4(3):382-401, July 1982.

F. Lin and W.M. Wonham. Decentralized supervisory control afrdig-event systemiformation Science#4(3):199—
224, April 1988.

F. Lin and W.M. Wonham. On observability of discrete-event systémfisrmation Science€4(3):173-198, April 1988.

F. Maraninchi and Y. nond. Mode-automata: a new domain-specific construct for thdagement of safe critical
systems Science of Computer Programmird(3):219-254, 2003.

H. Marchand, O. Boivineau, and S. Lafortune. On the synthesiptohal schedulers in discrete event control problems
with multiple goals.SIAM J. Control Optim.39(2):512-532, 2000.

H. Marchand, O. Boivineau, and S. Lafortune. On optimal cowfralclass of partially observed discrete event systems.
Automatica 38:1935-1943, 2002.

H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic.tl&gis of discrete-event controllers based on the Signal
environment.Discrete Event Dynamic System: Theory and Applicatiaf§4):325-346, October 2000.

H. Marchand and E. Rutten. Managing multi-mode tasks with time cdsj@atity levels using optimal discrete controller
synthesis. IrEuromicro Conference on Real-Time Systems, ECRTSi8@na, Austria, June 2002.

H. Marchand and M. Samaan. Incremental design of a powesforamer station controller using a controller synthesis
methodologylEEE Trans. Software Engin26(8):729-741, August 2000.

R. Milner. Communication and Concurrencinternational Series in Computer Science. Prentice-Hall, 1989.

D. Powell. Failure mode assumption and assumption coverag@einational Symposium on Fault-Tolerant Computing,
FTCS-22 pages 386-395, Boston (MA), USA, July 1992. IEEE, Los Alamitds, Research report LAAS 91462.

P.J. Ramadge and W.M. Wonham. Supervisory control of a ofadiscrete event processeSIAM J. Control Optim.
25(1):206-230, January 1987.

28

49.

50.

51.

52.

53.

54.

H. Schepers and J. Hooman. Trace-based compositionalthemody for fault tolerant distributed system$heoretical
Computer Sciencd 28, 1994,

R. Sengupta and S. Lafortune. An optimal control theory for eis@vent system&IAM J. Control Optim.36(2):488—
541, March 1998.

S. Taha. Synt#rse de condileurs discrets pour sysnes embards toErants aux pannes. Master’s Report, Institut National
Polytechnique de Grenoble, Grenoble, France, June 2004.

S. Tripakis. Decentralized control of discrete event systems withded or unbounded delay communicatideEE
Trans. Automatic Control9(9):1489-1501, September 2004.

E. Tronci. Optimal finite state supervisory controlIFEE Conference on Decision and Control, CDC'%®be, Japan,
December 1996. IEEE, Los Alamitos, CA.

J.N. Tsitsiklis. On the control of discrete event dynamical systeMathematics of Control, Signals, and Systems
2(2):95-107, June 1989.

29

	Automating the Addition of Fault Tolerance with Discrete Controller Synthesis

