
HAL Id: hal-00749048
https://inria.hal.science/hal-00749048

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pareto-based Metaheuristic for Scheduling HPC
Applications on a Geographically Distributed Cloud

Federation
Yacine Kessaci, Melab Nouredine, El-Ghazali Talbi

To cite this version:
Yacine Kessaci, Melab Nouredine, El-Ghazali Talbi. A Pareto-based Metaheuristic for Scheduling
HPC Applications on a Geographically Distributed Cloud Federation. Cluster Computing, 2012, 16,
pp.451-468. �10.1007/s10586-012-0210-2�. �hal-00749048�

https://inria.hal.science/hal-00749048
https://hal.archives-ouvertes.fr

Cluster Computing journal manuscript No.
(will be inserted by the editor)

A Pareto-based Metaheuristic for Scheduling HPC
Applications on a Geographically Distributed Cloud Federation

Yacine Kessaci · Nouredine Melab · El-Ghazali Talbi

Received: date / Accepted: date

Abstract Reducing energy consumption is an increas-
ingly important issue in cloud computing, more specif-

ically when dealing with High Performance Comput-

ing (HPC). Minimizing energy consumption can signif-

icantly reduce the amount of energy bills and then in-

crease the provider’s profit. In addition, the reduction
of energy decreases greenhouse gas emissions. There-

fore, many researches are carried out to develop new

methods in order to make HPC applications consuming

less energy. In this paper, we present a multi-objective
genetic algorithm (MO-GA) that optimizes the energy

consumption, CO2 emissions and the generated profit

of a geographically distributed cloud computing infras-

tructure. We also propose a greedy heuristic that aims

to maximize the number of scheduled applications in
order to compare it with the MO-GA. The two ap-

proaches have been experimented using realistic work-

load traces from Feitelson’s PWA Parallel Workload

Archive. The results show that MO-GA outperforms
the greedy heuristic by a significant margin in terms of

energy consumption and CO2 emissions. In addition,

MO-GA is also proved to be slightly better in terms of

profit while scheduling more applications.

Keywords scheduling, cloud computing, green

computing, resource allocation, multi-objective opti-

mization, genetic algorithm

INRIA Lille Nord Europe - LIFL/CNRS UMR 8022 - Uni-
versité Lille 1
40 avenue Halley, 59650 Villeneuve d’Ascq Cedex FRANCE.
E-mail: Yacine.Kessaci@lifl.fr, Nouredine.Melab@lifl.fr, El-
Ghazali.Talbi@lifl.fr

1 Introduction

Cloud computing appears nowadays to be increasingly

adopted in many areas. The field of high performance

computing (HPC) does not derogate to this rule. How-

ever, computers use a significant and growing portion of
energy in the world. Therefore, energy-aware comput-

ing is crucial for large-scale systems that consume con-

siderable amount of energy. A recent study [16] shows

that in 2005, the power used by servers represents about
0.6% of total U.S. electricity consumption. That pro-

portion grows to 1.2% when cooling and auxiliary in-

frastructures are included. In the same year, the ag-

gregate electricity bill for operating those servers and

associated infrastructure was about $2.7 billions and
$7.2 billions for the U.S. and the world, respectively.

The total electricity consumed by servers doubled over

the period 2000 to 2005 in worldwide and this increase

was further confirmed in the last 5 years (2005-2010)[4].

On the other hand, green house gas emission is reach-

ing a critical limit. A recent work [12] estimates that

the global Information and Communications Technol-
ogy (ICT) industry accounts for approximately 2% of

global carbon dioxide emissions. This is equivalent to

the amount emitted by the aviation. To face this phe-

nomenon different governments are fixing limits to (ICT)
industries.

Energy consumption has another drawback by af-

fecting the profit of the providers. Indeed, according to
Amazon’s estimate [13], the energy-related costs amount

represents 42% of the total data center budget, and in-

cludes both direct power consumption 19% and cooling

infrastructure 23%, these values are normalized with a
15 years amortization. It clearly appears that all the

issues cited before are somehow related and thus have

to be dealt with simultaneously.

2 Yacine Kessaci et al.

Unlike our work, most of existing works tackle the

energy aware allocation problem focus on individual

data centers or on centralized architectures like in [17,

28].Moreover, these works [14, 26], propose methods

only for specific tightly coupled applications. In addi-
tion, the works dealing with the energy aware schedul-

ing topic are either mono-objective or multi-objective.

The former follows two approaches, heuristic ones [17]

and genetic algorithm ones [20]. In the latter, we find
also heuristics and genetic algorithms. The heuristics

use either the lexicographic or the aggregation method

to deal with an additional objective like in [18, 8], while

the genetic algorithms treat the multi-objective issue

with a Pareto approach as proposed in [21]. Other works
in cloud computing focus only on profit maximization

and do not pay attention to the energy consumption

[19, 10, 30, 6].

Our work differs from the previous studies in plenty
aspects. First, it deals with both computing and cool-

ing energy consumptions in the energy model. It uses

a multi-objective evolutionary algorithm in the meta-

scheduler in order to do not favor any of the objec-

tives. This allows one to obtain a Pareto set of solutions
and show the trade-off between all the tackled criteria.

Finally, the experiments in our work are realistic and

performed on a long period of workloads composed of

heterogenous HPC applications in order to avoid the
tightly coupled applications issue.

In this paper, we propose a new Pareto resource al-

location approach for clouds based on three criteria:

energy, green house gas emission and profit. Indeed,

as previously said a meta-scheduler that uses a multi-
objective genetic algorithm (MO-GA) is proposed in

order to find the best scheduling according to those

three objectives. The main contribution of our approach

is the benefits that the meta-scheduler can draw from
the geographical distribution of the clouds to find the

best meta-scheduling since energy, CO2 and profit can

be different over the world. In fact, each area in the

world has characteristics, such as: temperature, elec-

tricity price, workloads, green house gas emissions rates,
hardware specifications, etc.

Our approach also aims to give the best Quality of

Service (QoS) to the clients by meeting the maximum

application’s deadlines. In addition, our approach sat-

isfies also the provider by using a mechanism that gives
him/her the ability to make a dynamic choice among

the Pareto set of the proposed solutions according to

his/her real time needs in order to improve the results.

This paper is an extended version of the work pre-
sented in [15]. Indeed, in this paper the related work,

the considered model and the algorithm features are

more detailed, a deeper evaluation process is applied

and more experiments with new instances and different

comparison aspects are realized.

The remainder of the paper is organized as follows.

In Section 2, we present the works related to our ap-

proach. Section 3 presents the application, system and
energy models used in our problem modeling. Our ap-

proach is presented in Section 4. The results of our ex-

perimental study are reported and discussed in Section

5. The conclusion is drawn in Section 6.

2 Related Work

After a race to performance, utility and cloud com-

puting paradigm are facing an energy problem. Hence,
several works have been proposed in the field of the

energy aware computing. However, most of those ap-

proaches tackle this topic by referring to single data

center and focusing on scheduling dedicated applica-

tions. In [18, 23] for example a hardware technique
(DVFS) is proposed, it consists of varying the CPU fre-

quency in order to minimize the energy consumption.

The drawback of this type of methods is the assump-

tion that they make about a tight coupling between
the tasks and the resources. Another way of reducing

cloud computing energy footprints is proposed in [17].

This work uses the possibilities offered by the virtual-

ization in order to apply a task consolidation through

two heuristics in order to maximize the resource utiliza-
tion. In [28] the author presents a reinforcement learn-

ing approach to deal with the optimization of two main

aspects, performance and power consumption. All the

previous presented works aim to reduce the energy con-
sumption on single data center or on multiple servers

geographically concentrated, except the work proposed

in [22] which deals with energy consumption reduc-

tion in large-scale computational grids like Grid5000,

by switching off idle nodes in a clever way.
Other approaches treat the economic side of cloud

computing, like in [19], where two algorithms based on

a pricing model are proposed. They both use proces-

sor sharing in order to balance between conflicting ob-
jectives (profit and resource utilization). In [6] Burge

et al describe a method for heterogeneous machines

that maximizes the profit by assigning the requests to

the machines according to their energy cost. Other ap-

proaches based on genetic algorithms and dealing with
profit are presented in [30] and [10]. In [10] a linear

programming driven genetic algorithm is proposed. In

fact, this work aims to give the best meta-scheduling in

a utility grid based on the idea of minimizing the com-
bined costs of all users in a coordinated way. Yu and

Buyya in [30] present a genetic algorithm approach to

address scheduling optimization problems in workflow

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 3

applications with two QoS constraints (deadline and

budget).

All of the last presented approaches take into ac-

count the profit or the energy in their study but they

do not consider the relationship between energy, green
house gas emissions and profit. They also do not pay at-

tention on how each one of those criteria can affect the

others. The work presented by Garg et al in [11] deals

with those points, by proposing a new energy model
that includes gas emissions and pricing. Several heuris-

tics are proposed to find a good tradeoff between the

objectives. However, this approach is an aggregation of

objectives (i.e. it can only optimize one objective at

time).
Therefore, to deal with all the misses mentioned be-

fore, we propose a meta-scheduler using a multi-objective

genetic algorithm to optimize the whole three objectives

at the same time. In other words, our new approach
provides a set of Pareto solutions (i.e. non-dominated

solutions) rather than a single solution.

Table 1 summarizes and locates our approach among

the other ones.

3 Distributed Cloud Scheduling Model

3.1 System model

Our cloud model is an Infrastructure As A Service (IAAS).
More precisely, we are dealing with a two-tier architec-

ture: on one side the distributed cloud provider and,

on the other side, the clients. The clients have access

to the cloud by requesting resources to the provider.
The service proposed by the cloud provider in our ap-

proach is offering infrastructures to the clients in or-

der to run their HPC applications. The role of this

work is to help the provider to optimize a certain num-

ber of criteria while proposing its service. The model
of our architecture is a cloud federation which is ge-

ographically distributed over the world inspired from

the Open Cirrus project [24]. The originality of this ap-

proach is to propose a meta-scheduling algorithm that
uses a multi-objective genetic algorithm in order to find

the best meta-scheduling to the applications over the

time. Three objectives are considered: energy, carbon

emissions and profit. The client’s QoS constraints in-

clude the execution time, the number of CPUs and the
respect of the applications’ deadlines. To meet those

constraints, the meta-scheduler has to ask each cloud

over the world about information concerning the CPU’s

states and their availability. In addition to optimizing
the previously cited three objectives and thus helping

the provider to maximize his profit, the meta-scheduler

algorithm aims also to give the best Quality of Service

(QoS) for the client by meeting the maximum appli-

cations deadlines and respecting model’s constraints.

The optimization of the objectives is due to the charac-

teristics offered by the geographical distribution of the

clouds (Cloud Federation). Indeed, the profit is related
to the difference between the electricity prices over the

world and the gas emissions due to the used methods in

those places to produce the electricity power. This will

generate different amounts of green house gas emissions
from an area to another. The role of each third of our

model is detailed in the following:

– User side:The requests submitted by the distributed

cloud’s users are HPC applications. This means that

the service is computation-intensive. Hence, we do
not pay attention in this work to data transfers. In

our approach the clients submit HPC applications

by informing the meta-scheduler about their exe-

cution time and the number of processors needed.

The information about execution time is deductable
by two factors. As a first factor we can take the

real world submission. With this method the exe-

cution time represents the reservation time of the

user. Hence, for his/her interest the client has to re-
serve enough time for his/her application, otherwise

his/her application will be aborted. Therefore, the

user has some time to overestimate the execution

time of his/her request and pays for longer than the

real execution time of his/her application. The sec-
ond factor is prediction. Indeed, nowadays predict-

ing an execution time of an application is starting

to be possible by using benchmarks and historical

data for instance. This last technique is the one that
we use in our work. Concerning the deadlines, they

are specified by the client and are represented as a

strong constraint in our model. In other words, if the

meta-scheduler is not capable to find a slot of time

to satisfy the request by respecting the deadline, the
reservation for the application will not happen. Each

HPC application has to be hosted in one and only

one data center. This constraint helps to respect

the configuration of our cloud federation which is
a loosely coupled cloud (i.e. no possibility of com-

munication between the clouds). All the requests

have the same priority (i.e. there is no preemption

in our model). The only priority is the order of the

request’s arrival. Another reason of not dealing with
the distribution of the applications is that in our

work we focus on high level scheduling and thus,

the distribution of the application’s tasks is let to a

lower level like in [18].
– Provider side: In our approach the provider is

the owner of all the data centers over the world.

For instance Amazon [3], one of the world leader in

4 Yacine Kessaci et al.

Table 1 Classification of the related work.

Greenhouse gas Energy Genetic Pareto
Approach emission/Energy cost aware algorithm optimization

consumption scheduling schedulers
Rizvandi et al.[23] yes no no no
Lee and Zomaya[17] yes no no no
Tesauro et al.[28] yes no no no
Orgerie et al.[22] yes no no no

Lee et al[19] no no no no
Burge et al.[6] yes yes no no

Yu and Buyya[30] no no yes no
Garg et al.[10] no no yes no
Garg et al.[11] yes yes no no

Our work yes yes yes yes

HPC Distributed Market-oriented
Approach workload data schedulers

centers
Rizvandi et al.[23] no no no
Lee and Zomaya[17] no no no
Tesauro et al.[28] yes no no
Orgerie et al.[22] yes yes no

Lee et al[19] no no yes
Burge et al.[6] yes no no

Yu and Buyya[30] no yes yes
Garg et al.[10] no yes yes
Garg et al.[11] yes yes yes

Our work yes yes yes

the field of cloud computing, has clusters deployed
in three different continents, North America (USA:

California and Virginia), Europe (Ireland) and Asia

(Singapore). In our model after each request the

meta-scheduler asks all the data centers about their

states in order to choose the best possible schedul-
ing. The information provided by the clouds is the

number of processors available during the requested

time (i.e. the users’ request is compared with the

available slots of each cloud). Each slot is a period of
time that satisfies the request for one processor. The

cloud has to provide a set of slots equal to the speci-

fied number of processors needed by the client. Each

time a cloud satisfies this condition and other speci-

fications, it will be chosen by the meta-scheduler and
its state will be updated. Those other specifications

are given by the local scheduler of each cloud to

the meta-scheduler helping it to find the best meta-

scheduling. Those specific cloud information are the
execution price, the carbon emission rate, the Coef-

ficient of Performance (COP), the electricity price,

the CPU power, the CPU frequency and the num-

ber of CPUs. All the processors within a cloud are

homogeneous, this can be justified by using virtual-
ization techniques such as VMware Fusion, Xen and

Linux KVM. The gas emission rates are provided

by multiple agencies such as ADEME (Agence de

l’Environnement et de la Mâıtrise de l’Énergie) in

France and EIA (Energy Information Administra-
tion) in the USA.

3.2 Energy model

The energy consumption of a data center (cloud) results

from IT equipments (network, storage and computing)

and auxiliary equipments (lighting, cooling ...). In our

work, we do not consider lighting consumption among
the auxiliary equipment since its impact is negligible.

Regarding IT equipments, we deal only with comput-

ing energy consumption. Indeed, since our approach is

focused on HPC applications, the largest amount of en-

ergy is consumed by the intensive computation. Our ap-
proach also does not pay attention to how the energy is

optimized within the cloud but between the federated

clouds.

Our energy model is derived from the power con-
sumption model in Complementary Metal-Oxide Semi-

conductor (CMOS) logic circuits. The power consump-

tion of a CMOS-based microprocessor is defined as the

summation of capacitive, short-circuit and leakage power.

The capacitive power (dynamic power dissipation) is
the most significant factor of the power consumption.

The power dissipation P is defined as:

P = ACV 2f + IleakV + Pshort (1)

where A is the number of switches per clock cycle, C is

the total capacitance load, V is the supply voltage, f is

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 5

the frequency, Ileak is the leakage current and Pshort is

the power dissipation resulting from switching between

a voltage to another. The power dissipation is not in-

fluent in our study since we do not use the Dynamic

Voltage Scaling (DVS) method to be able to perform
voltage switching. Notice that A and C are constant

values, let α be their product. The second part of the

equation represents the static consumption, this value is

also constant, let it be β. In CMOS processors the volt-
age can be expressed as a linear function of frequency,

V 2f is replaced by f3. The new equation becomes:

P = αf3 + β (2)

In addition, another source of energy consumption

needs to be taken into account. In fact, the energy used
for cooling each cloud’s data center is consequent and

has to be integrated in our energy model. Energy ded-

icated to cooling is tightly related to the geographical

area where the data center is situated since the tem-

perature changes from an area to another. To compute
cooling energy amount, each data center has a coeffi-

cient called COP which represents the ratio between

the energy dedicated for the execution of the request

and the energy used for cooling the system. The meta-
scheduler is informed about the COP value by each

cloud’s local scheduler while submitting the first re-

quest or if COP value changes during the time. By

using COP the meta-scheduler is able to deduce the

energy consumed by each data center for cooling their
devices. This is given by Equation (3).

Eh = Ec/COP (3)

where Eh represents the total energy consumed for

cooling the data center and Ec represents the energy
used by the CPUs.

The pricing model is directly related to the energy

model, since the less energy the provider consumes the

more important his/her profits will be. However, an-

other parameter affects the result of the profit: elec-
tricity price. Indeed, the electricity price changes from

a site to another. The profit is then the difference be-

tween the fixed price that the client pays and the price

that the provider has to pay for his/her electricity con-
sumption (Equation (4)).

Profit = pru − pre (4)

where pru is the price that the user pays for the

service and pre is the electricity price that the provider

pays to provide the service.

3.3 Problem formulation

In our cloud model, we deal with a two-tier architecture.

The first tier is the cloud provider which has N clouds

geographically distributed over different areas in the

world. The second tier represents clients with J HPC

applications that have to be executed on the clouds.

The problem consists of scheduling J applications on

N clouds. We know that the task scheduling problem
in general is NP-hard [9]. Therefore our multi-objective

scheduling problem is NP-hard as well. Thus, a meta-

heuristic algorithm appears to be the most appropriate

approach to be adopted.
In our formulation the provider has to pay the execu-

tion price of the used cloud i, this price is the result

of the electricity consumption during the computation

and is noted pei ($/kW h). According to pei the provider

fixes a price for the clients. We designate the fixed client
price per hour by pc ($/CPU/hour). The CO2 amount

of each cloud i is calculated from a ratio noted rCO2

i .

This ratio is an average value that varies according to

the way the cloud’s electricity is produced (i.e. type of
energy used for the electric power generation: fuel, wa-

ter, nuclear, wind ...).

During the scheduling process, the user submits a re-

quest for an HPC application j. A request is defined

by a triplet (ej , nj, dj), all the triplet’s information are
given by the user during the reservation, except the

starting time of the application tj which is deduced

from the submission time. The elements of the triplet

(ej , nj, dj) represent for ej , the execution time (reser-
vation time) of the application, for nj , the number of

processors needed by the user for his application and

finally dj , for the deadline after what the application

will be considered as failed. Our triplet is inspired from

Amazon EC2 [3] which requires from the user to pro-
vide the duration time of his/her application. Thus, the

user has sometimes to pay for a longer reservation time

to ensure the completion of his/her application, even if

this application finishes before the end of the reserva-
tion time.

In the following, we present the mathematical formal-

ism of our problem and the used functions for comput-

ing the fitness of each candidate solution (scheduling).

– Energy consumption of the CPUs is given by:

Ec
ij = (αi(f

3
ij) + βi)× njej (5)

– From Equation (5) and the Coefficient of Perfor-

mance (COP) the total consumed energy is deduced

as:

Eij =
COPi + 1

COPi

× Ec
ij (6)

– The total carbon emission is given by:

(CO2E)ij = rCO2

i × Eij (7)

6 Yacine Kessaci et al.

– The profit is given by:

(Profit)ij = njejp
c − Ce

ij (8)

where the client’s bill for the execution of an ap-

plication j is the product between the fixed price unit

pc, the number nj of used processors by the application

j and the execution time ej of the application j. Ce
ij

is the price that the provider has to pay for the used
resources in the cloud i for executing the application j.

Equation (6) uses COP in order to add the cooling

energy to the CPU energy. Indeed, (COP +1/COP)×

Ec equals Eh+Ec can be proven easily in the following:

From Equation (3)

E = Ec + Eh = Ec + Ec

COP

= Ec × (1 + 1

COP
) = COP+1

COP
× Ec

(9)

The objective functions of our approach are formu-

lated as follows:

Minimizing the energy consumption =
N
∑

i

J
∑

j

(E)ij(10)

Minimizing Carbon Emission =
N
∑

i

J
∑

j

(CO2E)ij(11)

Maximizing Profit =
N
∑

i

J
∑

j

(Profit)ij (12)

with the following constraints:

– The application j has to finish before dj otherwise

the scheduling is rejected,

– Each application j can be assigned to one and only

one cloud j.

The objective functions aim respectively to mini-

mize the energy consumed by the entire distributed
cloud for the Equation (10), to reduce the distributed

cloud’s carbon emissions for the Equation (11) and to

maximize provider’s profit for the Equation (12). The

Equation (11) could be wrongly considered similar to

the Equation (10), but they are different and contradic-
tory. Indeed, the carbon ratio rCO2

i has no relationship

with the energy consumption and thus a cloud with a

good energy features is not necessary good for the CO2

emissions. The correlation coefficient between those two
objectives on a sample of 1000 solutions is 0.57.

4 MO-GA for Meta-scheduling

In this section, we describe in details the steps of our ap-

proach and thus the multi-objective genetic algorithm

(MO-GA) proposed in our study.

4.1 Multi-objective combinatorial optimization

A multi-objective optimization problem (MOP) con-

sists generally in optimizing a vector of nbobj objec-

tive functions F (x) = (f1(x), ..., fnbobj (x)), where x is

an d-dimensional decision vector x = (x1, ..., xd) from

some universe called decision space. The space the ob-
jective vector belongs to is called the objective space.

F can be defined as a cost function from the decision

space to the objective space that evaluates the quality

of each solution (x1, ..., xd) by assigning it an objective
vector (y1, ..., ynbobj), called the fitness. While single-

objective optimization problems have a unique optimal

solution, a MOP may have a set of solutions known as

the Pareto optimal set. The image of this set in the

objective space is denoted as the Pareto front. For min-
imization problems, the Pareto concepts of MOPs are

defined as follows (for maximization problems the defi-

nitions are similar):

– Pareto dominance: An objective vector y1 domi-

nates another objective vector y2 if no component

of y2 is smaller than the corresponding component
of y1, and at least one component of y2 is greater

than its correspondent in y1 i.e.:
{

∀i ∈ [1..nbobj], y
1
i ≤ y2i

∃j ∈ [1..nbobj], y
1
j < y2j .

(13)

– Pareto optimality: A solution x of the decision space
is Pareto optimal if there is no solution x′ in the

decision space for which F (x′) dominates F (x).

– Pareto optimal set : For a MOP, the Pareto optimal

set is the set of Pareto optimal solutions.

– Pareto front : For a MOP, the Pareto front is the im-
age of the Pareto optimal set in the objective space.

Graphically, a solution x is Pareto optimal if there

is no other solution x′such that the point F (x′) is in

the dominance cone of F (x). This dominance cone is

the box defined by F (x), its projections on the axes
and the origin (see Fig. 5).

4.2 Problem encoding

In order to formulate our problem without overriding

the previous constraints (i.e. finishing the application

before its deadline and scheduling each application on
one and only one cloud), we propose an encoding for

the MO-GA individuals (see Fig. 1).

Fig. 1 represents one possible scheduling among plenty

that proposes the genetic algorithm. This scheduling is
the result of processing a pool of requests arrived during

the last waiting time period presented later and called

scheduling cycle. In the proposed example we identify

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 7

Fig. 1 A representation of a solution in the meta-scheduling problem (individual in MO-GA’s population).

Fig. 2 A flowchart representing the meta-scheduling algorithm’s steps.

three major specifications. The indexes of the table de-

pict the applications that are scheduled, the number in

each table cell identifies the cloud on which the appli-
cation is allocated. In other words, the first cell repre-

sents the first application of the pool that is currently

handled by the MO-GA, in this case this application is

allocated to the cloud 5. The second application is allo-
cated to the cloud 0 and so on. This encoding informs

about the number of applications contained by the pool,

which is 10 in our example. This encoding helps us also

to deal with the characteristics of our problem. Indeed,

it allows to schedule all the applications of the pool by
assigning each one to only one cloud. But a cloud is able

to handle more than one application. Note that not all

the clouds are necessarily used in each solution. The

last constraint of our model which can not be handled
by the proposed encoding is the deadline constraint.

We deal with this constraint in the algorithm by reject-

ing the requests (applications) that do not respect the

deadlines. In other words, all the requests that com-

pose each individual of the MO-GA at each processing
cycle, satisfy all the requirements on the current feder-

ation cloud state (i.e. it exists at least one cloud in the

federation, at the current time, which can handle the

request in term of number of processors and respect of

the deadline).

4.3 Population initialization

The initialization of the population in a genetic algo-

rithm is an important phase. In fact, this step affects

the quality of the future results. The initialization of the
population is done according to a combination of two

methods. The first method rely on a greedy algorithm

and the second is a random initialization method. The

initialization is decomposed into three steps as follows:

– The first step reads the pool of applications with
the greedy method.

– The second step initializes either one or two ele-

ments of the population by the result of the first

step.
– The third step initializes the rest of the population

with a random method.

The greedy method read the application that ar-

rive during the scheduling cycle and allocate them to
the clouds. The allocation follows the order of the ap-

plications arrival with as only constraint, meeting the

deadline of each application. Each application that can

8 Yacine Kessaci et al.

not be allocated by the greedy method is considered

as failed and will not be a part of any of the future

scheduling pools of applications. This first step of the

initialization process helps to avoid having a total failed

scheduling because of only one application that can not
meet its deadline. In other words, this step makes sure

that there is at least one feasible solution (scheduling)

in the algorithm population. Otherwise, the genetic al-

gorithm rejects a big number of applications among the
entire pool only because of one unmet deadline’s ap-

plication. Having this greedy method coupled to the

random method to initialize the rest of the population

helps to add diversity to the initial population and thus,

do not bias the search of MO-GA. The size of the pool
of applications is equal to all the applications arrived

during the scheduling cycle minus the ones eliminated

in the initialization phase. The ratio between the indi-

viduals initialized by the greedy algorithm and those
initialized by the random method is 1/15 (i.e. 14 ran-

dom for each 1 greedy).

4.4 Meta-scheduling algorithm steps

Before each scheduling, the meta-scheduler waits a fixed

period called scheduling cycle. This period helps to gather

a pool of applications in order to have a larger choice
and thus, optimize the scheduling. Once this phase done

the pool is managed by the MO-GA to find the best

schedulings possible over the different clouds which com-

pose the distributed cloud. The result of the execution

is stored as a Pareto archive. Once the set of Pareto so-
lutions (schedulings) is proposed, the algorithm chooses

one scheduling according to the user’s (provider) choice.

The chosen solution from the Pareto set is used as a

state for the cloud federation. This state will be a ba-
sis from which the next iteration of the algorithm will

make another execution on a new pool of applications.

The algorithm keeps iterating and proposes schedulings

for each new pool of applications (see Fig. 2).

4.5 Genetic algorithm

Genetic Algorithms (GAs) are meta-heuristics based on
the iterative application of stochastic operators on a

population of candidate solutions. In the Pareto-oriented

multi-objective context, the structure of the GA re-

mains almost the same as in the mono-objective con-

text. However, some adaptations are required like in our
MO-GA.

The MO-GA starts by initializing the population as

indicated in Section 4.3. This population like said be-

fore is used to generate offsprings using the mutation

and crossover operators. Each time a modification is

performed by those operators on each individual, an

evaluation operator (fitness) is called to evaluate the

offsprings. The fitness in MO-GA is deduced from the

energy consumption, CO2 emissions and the generated
profit of each scheduling (solution). The method used

in the MO-GA to rank the individuals of the popu-

lation, because of the multi-objective context, is the

dominance depth fitness assignment. Hence, only the
individuals (solutions) with the best rank are stored in

the Pareto archive. This archive contains the different

non-dominated solutions generated through the gener-

ations. The next step of the MO-GA is the selection

process. It is based on two major mechanisms: elitism
and crowding. They allow respectively the convergence

of the evolution process to the best Pareto front and

maintaining some diversity of the potential solutions.

The elitism mechanism makes use of the population in
the Pareto archive. Such an archive is updated at each

generation and used by the selection process. Indeed,

the individuals on which the variation operators are ap-

plied are first, selected according to their rank using the

non-dominance concept, either from the Pareto archive,
from the population or from both of them. In the second

step, the crowding process gets involved, it maintains

diversity in the solutions by ranking again the individ-

uals according to the crowding distance. This is done
on the basis of the similarity degree of each individual

compared to the others. The similarity (diversity) in

crowding is defined as the circumference of the rectan-

gle defined by its left and right neighbors, and infinity if

there is no neighbor. These mechanisms are the same as
the ones used in the NSGA-II algorithm. More details

about these techniques are given in [27].

When new solutions (offsprings) are generated a re-

placement of the old solutions is necessary in order to
keep constant the number of individuals in the popula-

tion. The selection operator in the replacement process

is based on a tournament strategy. Tournament selec-

tion consists in randomly selecting k individuals, where

k is the size of the tournament group. The replacement
of the old solutions follows an elitist strategy where

the worst individuals of the population are replaced by

the new ones (offsprings). The algorithm stops when

no improvement on the best solutions is performed af-
ter a fixed number of generations. Once this number

of iteration reached, the external Pareto archive of the

meta-scheduler is updated by the last Pareto archive of

the MO-GA.

Regarding the principle of the stochastic variation
operators of MO-GA we have: in one hand, the muta-

tion operator which is conventional. Indeed, the oper-

ator chooses randomly two integers i and j such that

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 9

Fig. 3 The mutation operator mechanism used in MO-GA to reassign two applications by swapping two clouds.

1 ≤ i < j ≤ n. Then, the operator swaps the two ap-

plications i and j like in Fig. 3. In the other hand, the

crossover operator which uses two solutions s1 and s2

to generate two new solutions s1′ and s2′. The oper-

ator picks also two integers on each solution to make
the crossover. The full mechanism is explained bellow

and illustrated in Fig. 4. However, these operations are

done only if the number of the scheduled applications

is greater than 2 for the mutation and than 3 for the
crossover. Indeed, when no operator can be applied (i.e.

only one application to schedule), the diversity is ob-

tained from the number of the individuals of the popu-

lation resulting from the initialization.

To generate s1′, the operator:

– considers s1 as the first parent and s2 as the second

parent.

– randomly selects two integers i and j such that 1 ≤

i < j ≤ N .
– copies in s1′ all tasks of s1 located before i or after j.

These tasks are copied according to their positions

(s1′k = s1k if k < i or k > j).

– copies in a solution s all tasks of s2 that are not yet

in s1′. Thus, the new solution s contains (j − i+1)
tasks. The first task is at position 1 and the last

task at the position (j − i+ 1).

– and finally, copies all the tasks of s to the positions

of s1′ located between i and j (s1′k = sk−i+1 for all
i ≤ k ≤ j).

The solution s2′ is generated using the same method by

considering s2 as the first parent and s1 as the second

parent.

4.6 Cloud federation state selection

The results obtained using MO-GA are stored in a Pareto

archive. Hence, starting the process of a new pool of

application with several solutions from the Pareto set

becomes difficult. Therefore, in our meta-scheduling al-

gorithm there is a meta-selection step which comes right

after the end of the MO-GA. This step aims to pick up

a solution among the external Pareto archive in order

to set the distributed cloud state. This state will be the
starting point from which the next execution of MO-

GA will schedule a new pool of applications. The idea

behind choosing a Pareto approach in our work is to

propose to the provider as many compromise solutions
as possible. Each one of these solutions is better than

the other regarding a certain objective. The mechanism

of meta-selection of the solution can be seen in different

ways. The first and trivial mechanism is a manual choice

done at each step by the provider according to his/her
choices. The second one is a decision making algorithm

that makes the adequate choice favoring the objectives

to promote. Finally, our solution which uses a vector as

an input parameter in order to automate the progres-
sion of the experimentations. Our vector parameter is

a three dimensional vector. Indeed, since we deal with

three objectives each dimension represents a weighting

for a particular objective. In the meta-selection state

step, the vector has a direction on which it points to.
This direction is set by the provider. The solution that

is the nearest to the vector’s direction is the one which

is chosen among the others in the Pareto set. In Fig. 5

we give an example with three two-dimensional vectors.
In Fig. 6 we give an example of transition from an old

state to a new one. The example concerns a four pro-

cessors data center within a cloud federation where the

applications are represented by Ai and the processors

by Pj.

5 Experiments

This section presents the results obtained from our com-

parative experimental study. The experiments aim to

10 Yacine Kessaci et al.

Fig. 4 The crossover operator mechanism used in MO-GA between two parent solutions s1 and s2 to generate two offspring
solutions s1′ and s2′.

Fig. 5 The vector meta-selection mechanism applied to a bi-objective Pareto set in order to choose a particular solution.

demonstrate and evaluate the contribution of the multi-

objective evolutionary approach with different meta-

selection policies. It also aims to compare the obtained

results of the MO-GA based meta-scheduler to a maxi-
mum application scheduling heuristic and to a random

approach.

5.1 Experimental settings

The experimental settings concern both sides of our

model, client side with its applications and provider
side with the hardware configuration of the distributed

cloud.

– Application settings: Since our approach deals

with HPC applications, we use realistic workloads

traces from Feitelson’s Parallel Workload Archive

(PWA) [7]. The workload traces stretch over a pe-

riod of five months of applications (January 2007

to June 2007) for the first instance which uses the
traces of the Lawrence Livermore National Labora-

tory (LLNL) from the Thunder cluster, and for a

duration of two months (June 2010 to August 2010)

for the RICC (RIKEN Integrated Cluster of Clus-
ters) instance. We used those two traces because of

their high rate of resources utilization 87.6% for the

first and 87.2% for the second. This helps to sim-

ulate a heavy workload scenario. The reason why

we choose the traces between June 2010 to August
2010 in the RICC instance is because of the high

utilization rates and the offered load that offers this

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 11

Fig. 6 The cloud state transition within a data center after the end of the MO-GA execution.

period. The information that we extract from both

instances are the submit time, the execution time

and the number of required processors. The traces
have no information about the applications dead-

lines. We used the method presented in [29] to gen-

erate synthetically the deadlines for the needs of our

experiments. The applications are classified into two
classes named High Urgency (HU) and Low Urgency

(LU). The generation of the deadlines of each class is

performed according to a normal distribution. In or-

der to have a distribution in both HU and LU classes

we used a bimodal distribution in which, 80% of the
generated values belong to LU and 20% to HU. The

obtained results from this generation represent the

ratio between deadlinej/runtimej of an application

j. The application’s deadline is deduced from such
ratio and the execution time of the application. The

used parameters for the bimodal distribution have

in both classes a variance of 2, and a mean value of

12 for the class LU and 4 for the class HU. In other

words, a HU application has three times less time
on average to finish its execution than LU applica-

tion. The HU and LU applications are distributed

randomly in the sequence of the applications arrival.

– Cloud federation settings: In our approach we
use 8 clouds geographically distributed with the same

specifications as in [11]. The COP of each cloud is

given by a uniform distribution between [0.6,3.5] as

indicated in [25]. Table 2 shows the characteristics

of the clouds which compose the cloud federation.

The electricity prices and carbon emission rates are

taken from respectively US Energy Information Ad-

ministration (EIA) report [2] and US Department of
Energy (DOE) [1]. Since we are dealing with a meta-

scheduler we do not use energy reducing techniques

within the clouds (data centers). Hence, the optimal

frequencies of the processors in the clouds are not
used.

5.2 Algorithm parameters

In our experiments we use some parameters such as the

meta-selection state vector, the arrival rate of appli-

cations, the client execution price and the scheduling
cycle. The meta-selection state vector presented in Sec-

tion 4.6 is used in order to make the suitable choice

while picking a solution in the external Pareto set and

let the experiments continue from a pool of applica-
tions to another. We performed experiments with four

different vectors. The first vector does not favor any

of the three objectives, the second advantages the en-

ergy criterion, the third is more for the CO2 criterion

and the last one gives the maximum favors to the profit
criterion. Regarding the arrival rate variation, we vary

the original workload by changing in each arrival rate

the submit time of the applications. We used four ar-

rival rates in our experiments (Low, Medium, High and
Very high). Each move from an arrival rate to another

represents ten times more applications arrival during

the same period of time. In other words, each time we

12 Yacine Kessaci et al.

Table 2 Characteristics of the clouds which compose the cloud federation.

COP CO2 Electricity CPU: CPU: Max Optimum Number
Location rate rate price α β frequency frequency of

(kg/kW h) ($/kW h) CPUs
New York, USA 3.052 0.389 0.15 65 7.5 1.8 1.630324 2050

Pennsylvania, USA 1.691 0.574 0.09 75 5 1.8 1.8 2600
California, USA 2.196 0.275 0.13 60 60 2.4 0.793701 650

Ohio, USA 1.270 0.817 0.09 75 5.2 2.4 1.93201 540
North Carolina, USA 1.843 0.563 0.07 90 4.5 3.0 2.154435 600

Texas, USA 1.608 0.664 0.1 105 6.5 3.0 2.00639 350
France 0.915 0.083 0.17 90 4.0 3.2 2.240702 200

Australia 3.099 0.924 0.11 105 4.4 3.2 2.285084 250

switch from an arrival rate to another we divide the

submission time by 10. Thus, by shortening the submit

time of the applications we increase the workload. The

client price is fixed as the twice of the average energy

cost of the clouds in the federation. Scheduling cycle
in our algorithm is set to 50s. Table 3 summarizes the

parameters used in our experiments.

Table 3 Experimental parameters.

Parameter Value
Total number of applications 119849 + 115855

State selection vector

(√
2

2
,
√

2

2
,
√

2

2

)

(1,0,0) (0,1,0) (0,0,1)
Arrival rate Low, Medium

High, Very high
Client execution price $0.40/CPU/h

Scheduling cycle 50s

Table 4 MO-GA parameters.

Parameter Value
Population size 30

Number of generations 2000
Crossover rate 1
Mutation rate 0.35

Tournament group size 2

5.3 Maximum applications scheduling heuristic and

random approach

To the best of our knowledge, there is no approaches

dealing with the problematic of a Pareto multi-objective

meta-scheduling on a geographically distributed cloud

infrastructure. Therefore, we present briefly a heuristic
and the random approach that we have used to com-

pare our evolutionary approach to. The heuristic aims

to assign the applications according to their arrival rate

(First fit). After the scheduling cycle and the arrival of

a new pool, the heuristic aims to maximize the QoS of

the client (the number of scheduled applications). To

do so, it chooses randomly a cloud among the federa-

tion and fills it by the maximum number of requests,
when the cloud could not support the application re-

quirements the heuristics chooses another cloud and so

on until it finds a cloud who satisfies the requirements.

If no cloud is found to handle the client request, the
request is rejected. The objective of this heuristic is to

avoid both rejecting requests and introducing free slots

inside each cloud. Indeed, reducing the number of slots

and maximizing the usage of each cloud minimize the
total energy consumption by saving the cooling energy

of all the unused cloud.

The random approach is based as its name indi-

cates on a random assignment of the applications on the
clouds composing the federation according to the arrival

rate in a multi-objective way. Indeed, the obtained as-

signment after the scheduling cycle and the arrival of

a new pool, is evaluated according to the number of
scheduled applications and the value that this schedul-

ing obtains in the three objectives. The final result for

each instance over the whole workload is the sum of the

results obtained during each scheduling cycle.

5.4 Performance evaluation

As said before, no previous approach deals with a Pareto

multi-objective genetic algorithm for a distributed cloud

meta-scheduler. Thus, we perform a bench of experi-

ments with different parameters. In addition of opti-

mizing the three objectives, the approach has first to
satisfy the maximum number of clients QoS. In other

words, the meta-scheduler has to handle the maximum

number of applications. A comparison between our ap-

proach, a maximum applications scheduling heuristic
and a random based approach, both presented in Sec-

tion 5.3 seems to be the best choice to evaluate our

work.

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 13

Fig. 7 How to integrate the MO-GA Meta-Scheduler in the cloud distribution StratusLab.

In order to switch from a cloud state to another

we used 4 different vectors (see Table 3). These vectors

help through their coordinates to choose the type of
the solution (scheduling) that will be used for the cloud

switching state. The vectors can help also to extract the

most suitable solution among the Pareto set for a given

objective and to compare our Pareto approach to a non

Pareto approach. The results are presented in Tables 5
to 12.

The results of each instance (LLNL and RICC), for
each arrival rate and for each meta-selection vector con-

figuration of the MO-GA have been deduced from 30

independent runs. Besides, both the random approach

and the heuristic have a part of randomness in their
implementation. Therefore, the related results of both

of those algorithms are deduced also respectively from

80 and 30 independent runs. The random part of the

heuristic concerns only the selection cloud phase. In

addition, the drawn values on the presented results are
the medians of the results samples. Indeed, because of

the non-normality of the distributions of the results

through the different runs, and in order to be able to

properly compare those values, we had to use the me-
dians instead of the statistical averages. The detailed

improvement rates of each objective in the comparison

done between our approach and the maximum applica-

tions scheduling heuristic are presented in the Tables

15 and 16.

Experiments show that MO-GA has different behav-

iors according to the vector settings. Indeed, when set
to Average, the meta-selection vector helps to have a

constant progression in the results according to the dif-

ferent arrival rates in both instances (LLNL and RICC)

and offers a large range of values on all the objectives
(see Table 11 and Table 12). We deduce from this vec-

tor setting that it helps the provider to control the pro-

gression of the results over the different arrival rates, we

also notice that the more the application rate is high the

worse are the results and the higher the number of failed

applications is. In addition, since this vector policy does
not favor any objective, we obtain results that are less

efficient compared to other vector orientations. On the

other hand, the vector orientations that favor a specific

objective obtain a significant improvement on this ob-

jective. Moreover, this improvement of solution quality
concerns more the Low and Medium arrival rates than

the High andVery high arrival rates. In other words, the

improvement of the objective is the overall best com-

pared to the other different orientation policies only for
the Low andMedium arrival rates. For the other heavier

arrival rates (High and Very high) the obtained results

are good but they are not always the best values for the

favored objective. The best value for a given objective

for those kind of arrival rates is obtained with another
orientation vector. This phenomenon can be explained

by the local optima. Hence, when the provider keeps

favoring the same objective during the arrival of a huge

number of requests, all the clouds which can satisfy
those requests by advantaging the considered objective

become saturated and busy at the same time. This will

conduce the future incoming applications to be assigned

on clouds with worse specifications, which could be not

interesting for optimizing the considered objective. An
example of this observation is drawn in the instance

LLNL for the oriented energy table Table 5. We obtain

in that table for a Very high arrival rate better CO2

emissions than in Table 9 where the vector is favoring
the CO2 criterion.

We notice this behavior more often in the experi-

ments using the RICC instance. This is caused by the

high utilization rate that proposes the RICC interval
on which we conduct our experiments (i.e. about the

same number of applications in both instances, despite

a longer time interval in the LLNL instance -6 months-

14 Yacine Kessaci et al.

compared to the interval of the RICC instance -2 months-

). Indeed, in Table 8 which favors the profit, the CO2

emissions are lower than in Table 10 which favors CO2,

always regarding the very high arrival rates. The same

behavior is noticed in Table 8 which is Profit oriented,
where the earned profit is lower for the Very high ar-

rival rates than in Table 10 which favors CO2. This is

due to the fact that changing the orientation of the vec-

tor helps the algorithm to extract it self from a local
optima when the clouds are saturated for a specific ob-

jective. It has the same effect as a kick move in a single

based meta-heuristic like ILS (Iterative Local Search).

We can conclude that ideal provider’s behavior is to

keep the vector orientation that favors the most wanted
objective to be optimized only for the Low and Medium

arrival rates. However, a more flexible orientation vec-

tor is suitable for the High and Very high arrival rates,

by changing the orientation according to the real time
algorithm behavior and to the targeted objective.

The comparison of the heuristic with the meta- sched-

uler MO-GA was done with an average orientation vec-

tor for the MO-GA, to be as fair as possible and do

not favor any of the criteria. The obtained results over
the different arrival rates on the LLNL instance show

an improvement of 26% for the energy objective, 25.9%

for the CO2 objective and 1.8% for the profit while

scheduling 2.2% more requests. For the second instance

RICC, the results show an improvement of 29.4% for
the energy consumption, 26.3% for the CO2 emissions

and 3.6% for the profit while scheduling 3% less appli-

cations. We notice that the improvement is more signif-

icant for RICC instance than for LLNL, this is due to
the density proposed by the short interval of the RICC

instance compared to LLNL interval (3 times shorter).

This density highlights more the advantage of MO-

GA compared to the heuristic, than on a longer well-

balanced instance like LLNL. Furthermore, the detail of
the improvement for each instance and for each arrival

rate are presented in Table 15 and Table 16. Thus, the

values in Table 15 for the LLNL Thunder instance show

an improvement not matter the arrival rates, of the
results obtained by the MO-GA meta-scheduler com-

pared to the maximum applications scheduling heuris-

tic. However, the improvement decreases according to

the arrival rate increase. The best improvement of 51%

concerns the CO2 emission reduction for the Low ar-
rival rate. Regarding the RICC instance results in Ta-

ble 16, the improvement concerns all the arrival rates

except the Very high arrival rate. Indeed, this deteri-

oration is explained by the local optima phenomenon.
When a high rate of application arrives, the MO-GA

tends to optimize the criteria for this only applications’

arrival regardless the next application arrivals. In fact,

because of the real time arrival, the MO-GA meta-

scheduler ignores their existence. However, on the other

side, the heuristic which does not saturate the good re-

sources because of a less optimal solution can benefit

from those resources later during the next applications’
arrivals and obtain therefore better final results. Same

explanation goes for the increase in the failed appli-

cation rate for the heavy arrival rates in the MO-GA.

Moreover, the best improvement rate for the RICC in-
stance obtained by MO-GA, concerns the energy re-

duction, by up to 55% compared to the heuristic for

the Low arrival rate.

Concerning the time consumption of MO-GA, the

results show that the heuristic gives results faster than
MO-GA. However, that does not give any speed up to

the algorithm during a real meta-scheduling. Indeed,

between each processing, there is a waiting time schedul-

ing cycle, where the algorithm waits for gathering a
new pool of requests. The longest time taken by the

meta-scheduler driven by MO-GA to treat 6 months

of application requests for the LLNL instance, with-

out counting the waiting time at each scheduling cycle

(50 seconds), is roughly 19 hours and 40 minutes, while
scheduling the 2 months requests of the RICC instance

is done in less than 4 hours 42 minutes. We can deduce

then that the MO-GA’s processing time is covered by

the scheduling cycle time, and that each pool scheduling
is performed in less than 50 seconds.

The experiments of the random algorithm offer for

both instances (LLNL and RICC) poor results. This

approach does not optimize the client’s QoS and there-

fore rejects a lot of feasible requests because of their
random assignment on the clouds. For the Very high

arrival rates it does not even give any results, and re-

jects all the requests, whether for the instance LLNL or

for RICC (see random part in Table 5 and Table 6).

6 Conclusion

In this paper, we have presented a new meta-scheduler

using a multi-objective genetic algorithm to minimize
energy consumption, gas emission and maximize the

profit while respecting applications’ deadlines. The en-

ergy saving of our approach exploits the geographical

distribution of the clouds that compose the cloud feder-

ation. Our work is considered as an optimization multi-
objective method with a Pareto approach.

Our new approach has been evaluated using real-

istic workload traces of different instances from Feit-

elson’s Parallel Workload Archive (PWA) [7]. Experi-
ments show that our multi-objective GA improves on

average the results obtained by the heuristic particu-

larly in reducing the energy consumption. Indeed, the

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 15

energy consumption is reduced by up to 29.4 %, the

CO2 emission by up to 26.3 % and the profit is maxi-

mized by up to 3.6%. In addition, our approach sched-

ules on average the same number of applications than

the heuristic that maximizes the number of scheduled
applications. Therefore, one of the main perspectives of

the work presented in this paper is to determine on one

hand a way to minimize more the energy consumption

by using DVS within the cloud’s data centers, and on
the other hand to modify the model by allowing delays

for the applications by introducing a new pricing model

with penalties. In addition, we can also imagine a dy-

namic meta-scheduler which will reassign applications

during a scheduling phase on different clouds to opti-
mize energy and/or profit. However, this will depend

on the flexibility, the data transfer cost and the CPU

time complexity of the applications since we deal with

HPC applications.

Regarding the application of our work in practice,

we are planning to collaborate with the StratusLab

project [5]. Therefore, our MO-GA based meta-scheduler

will take place as part of the modules that compose

StratusLab (see Fig. 7). In fact, our approach will be
integrated within the VM manager (OpenNebula) part

of StratusLab, more specifically in its scheduling part to

provide smarter assignments. Our approach will help to

make an optimum use of the geographically distributed
cloud offered by StratusLab through the EGI grid in-

frastructure. Thus, we will give the opportunity to ex-

ploit the European geographical dispersion offered by

EGI for economic, energetic and / or environmental
purposes.

References

1. (2007). US department of energy, volun-
tary reporting of greenhouse gases: Appendix

f. http://205.254.135.24/oiaf/1605/pdf/

Appendix%20F_r071023.pdf.

2. (2007). US Energy Information Administra-
tion (EIA) report. http://205.254.135.24/

electricity/monthly/pdf/chap5.pdf.

3. (2011). Amazon elastic compute cloud (amazon ec2).

http://aws.amazon.com/fr/ec2/.

4. (2011). L’augmentation du cout et de la consomma-
tion d’energie. http://www.efficap-energie.com/.

5. (2011). Stratuslab project. http://stratuslab.

eu/.

6. Burge, J., Ranganathan, P., and Wiener, J. (2007).
Cost-aware scheduling for heterogeneous enterprise

machines (cash em). In Cluster Computing., pages

481 –487.

7. Feitelson, D. (2009). Parallel workloads archive.

http://www.cs.huji.ac.il/labs/parallel/

workload.

8. Freeh, V. W., Kappiah, N., Lowenthal, D. K., and

Bletsch, T. K. (2008). Just-in-time dynamic voltage
scaling: Exploiting inter-node slack to save energy

in mpi programs. J. Parallel Distrib. Comput., 68,

1175–1185.

9. Garey, M. R. and Johnson, D. S. (1979). Comput-
ers and Intractability: A Guide to the Theory of NP-

Completeness . W. H. Freeman & Co., New York, NY,

USA.

10. Garg, S., Konugurthi, P., and Buyya, R. (2008).

A linear programming driven genetic algorithm for
meta-scheduling on utility grids. In Advanced Com-

puting and Communications,(ADCOM 2008), pages

19 –26.

11. Garg, S. K., Yeo, C. S., Anandasivam, A., and
Buyya, R. (2011). Environment-conscious scheduling

of hpc applications on distributed cloud-oriented data

centers. Journal of Parallel and Distributed Comput-

ing, 71(6), 732 – 749.

12. Gartner (2007). Gartner estimates ict industry ac-
counts for 2 percent of global CO2 emissions. http:

//www.gartner.com/it/page.jsp?id=503867.

13. Hamilton, J. (2009). Cooperative expendable

micro-slice servers (cems): Low cost, low power
servers for internet-scale services. In Proceedings of

4th Biennial Conference on Innovative Date Systems

Research (CIDR), Asilomar, California, USA, Jan-

uary.

14. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S.,
Boku, T., and Takahashi, D. (2006). Profile-based

optimization of power performance by using dynamic

voltage scaling on a pc cluster. In Parallel and Dis-

tributed Processing Symposium, 2006. IPDPS 2006.
20th International , page 8 pp.

15. Kessaci, Y., Melab, N., and Talbi, E.-G. (2011).

A pareto-based ga for scheduling hpc applications

on distributed cloud infrastructures. In High Per-

formance Computing and Simulation (HPCS), 2011
International Conference on, pages 456 –462.

16. Koomey, J. G. (2007). Estimating total

power consumption by servers in the U.S. and

the world. http://www.hitecair.com/downloads/

cooling_tech.pdf.

17. Lee, Y. and Zomaya, A. (2010). Energy effi-

cient utilization of resources in cloud computing sys-

tems. The Journal of Supercomputing, pages 1–13.

10.1007/s11227-010-0421-3.
18. Lee, Y. C. and Zomaya, A. Y. (2009). Minimiz-

ing energy consumption for precedence-constrained

applications using dynamic voltage scaling. In CC-

16 Yacine Kessaci et al.

GRID’09: Proceedings of the 2009 9th IEEE/ACM

International Symposium on Cluster Computing and

the Grid , pages 92–99.

19. Lee, Y. C., Wang, C., Zomaya, A. Y., and Zhou,

B. B. (2010). Profit-driven service request schedul-
ing in clouds. In Cluster, Cloud and Grid Computing

(CCGRID), pages 15 –24.

20. Lin, M. and Ding, C. (2007). Parallel genetic al-

gorithms for dvs scheduling of distributed embedded
systems. In R. Perrott, B. Chapman, J. Subhlok,

R. de Mello, and L. Yang, editors, High Perfor-

mance Computing and Communications , volume 4782

of Lecture Notes in Computer Science, pages 180–

191. Springer Berlin / Heidelberg. 10.1007/978-3-540-
75444-222.

21. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi,

E.-G., Zomaya, A., and Tuyttens, D. (2011). A paral-

lel bi-objective hybrid metaheuristic for energy-aware
scheduling for cloud computing systems. Journal of

Parallel and Distributed Computing, 71(11), 1497 –

1508.

22. Orgerie, A.-C., Lefevre, L., and Gelas, J.-P. (2008).

Save watts in your grid: Green strategies for energy-
aware framework in large scale distributed systems. In

Parallel and Distributed Systems, ICPADS ’08 , pages

171 –178.

23. Rizvandi, N. B., Taheri, J., Zomaya, A. Y., and
Lee, Y. C. (2010). Linear combinations of dvfs-

enabled processor frequencies to modify the energy-

aware scheduling algorithms. Cluster Computing and

the Grid , 0, 388–397.

24. Roy Campbell, Indranil Gupta et al HP Labs, I. I.
R. K. U. and Yahoo! (2009). Open cirrus tm cloud

computing testbed: Federated data centers for open

source systems and services research.

25. S. Greenberg, E. Mills, B. Tschudi, P. Rumsey,
B. Myatt. (2006). Best practices for data centers: re-

sults from benchmarking 22 data centers. In Proceed-

ings of the 2006 ACEEE Summer Study on Energy

Efficiency in Buildings, Pacific Grove, USA.

26. Springer, R., Lowenthal, D. K., Rountree, B., and
Freeh, V. W. (2006). Minimizing execution time

in mpi programs on an energy-constrained, power-

scalable cluster. In Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’06, pages 230–238,

New York, NY, USA. ACM.

27. Talbi, E.-G. (2009). Metaheuristics: From Design

to Implementation. Wiley Publishing.

28. Tesauro, G., Das, R., Chan, H., Kephart, J. O.,
Levine, D., III, F. L. R., and Lefurgy, C. (2007).

Managing power consumption and performance of

computing systems using reinforcement learning. In

(NIPS 2007).

29. Venugopal, S., Chu, X., and Buyya, R. (2008). A

negotiation mechanism for advance resource reserva-

tions using the alternate offers protocol. In Quality

of Service, IWQoS 2008., pages 40 –49.
30. Yu, J. and Buyya, R. (2006). Scheduling scientific

workflow applications with deadline and budget con-

straints using genetic algorithms. Scientific Program-

ming, 14(3-4), 217–230.

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 17

Table 5 Experimental comparison for the LLNL Thunder instance, between the MO-GA meta-scheduler algorithm the heuris-
tic and a random approach using an energy oriented selection vector according to the different application arrival rates.

MO-GA vector setting: Energy
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1835115 743149.5 4728480 1094 69054.5
Medium 1955660 871205.5 4705445 1563 18001
High 2622765 1262030 4636565 2406.5 1641

Very high 3076485 1380045 4582340 4157.5 149.5

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151
Medium 3168185 1431930 4588880 1937.5 18.5
High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76
Medium 371989 166044 388355 103123.5 12
High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

Table 6 Experimental comparison for the RICC instance, between the MO-GA meta-scheduler algorithm, the heuristic and
a random approach using an energy oriented selection vector according to the different application arrival rates.

MO-GA vector setting: Energy
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1623135 791343 3699395 66.5 16448.5
Medium 1683800 839701 3695270 97.5 8166.5
High 2349935 1257490 3649005 178 1989.5

Very high 3184630 1641285 3557795 866.5 454

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14
Medium 3431830 1575755 3502690 142.5 6
High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10
Medium 676372 306027 555748 91594 3
High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

18 Yacine Kessaci et al.

Table 7 Experimental comparison for the LLNL Thunder instance, between the MO-GA meta-scheduler algorithm, the
heuristic and a random approach using a profit oriented selection vector according to the different application arrival rates.

MO-GA vector setting: Profit
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 2081360 1184045 4805700 1110 70790
Medium 2151975 1207345 4765145 1630 20638.5
High 2795550 1411590 4639730 2817.5 1158

Very high 3099570 1457270 4579790 4437.5 170.5

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151
Medium 3168185 1431930 4588880 1937.5 18.5
High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76
Medium 371989 166044 388355 103123.5 12
High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

Table 8 Experimental comparison for the RICC instance, between the MO-GA meta-scheduler algorithm, the heuristic and
a random approach using a profit oriented selection vector according to the different application arrival rates.

MO-GA vector setting: Profit
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1749095 985186.5 3729270 109 16784
Medium 1854975 1040910 3714575 131.5 7792.5
High 2630490 1456940 3625195 567 1643

Very high 3248800 1648355 3544185 695 486.5

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14
Medium 3431830 1575755 3502690 142.5 6
High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10
Medium 676372 306027 555748 91594 3
High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 19

Table 9 Experimental comparison for the LLNL Thunder instance, between the MO-GA meta-scheduler algorithm, the
heuristic and a random approach using a CO2 oriented selection vector according to the different application arrival rates.

MO-GA vector setting: CO2

Value for each criterion
Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)
Low 2367775 710355.5 4632040 1093.5 64589.5

Medium 2261425 860452.5 4657870 1617 17150
High 2832295 1287525 4604370 2764 1497

Very high 3205265 1483115 4580650 4225.5 153.5

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151
Medium 3168185 1431930 4588880 1937.5 18.5
High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76
Medium 371989 166044 388355 103123.5 12
High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

Table 10 Experimental comparison for the RICC instance, between the MO-GA meta-scheduler algorithm, the heuristic and
a random approach using a CO2 oriented selection vector according to the different application arrival rates.

MO-GA vector setting: CO2

Value for each criterion
Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)
Low 2617685 766625.5 3527960 65.5 15575

Medium 2343105 799365.5 3587090 105 7462.5
High 2723655 1291920 3582755 387.5 2147.5

Very high 3303150 1806400 3551275 544 203

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14
Medium 3431830 1575755 3502690 142.5 6
High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10
Medium 676372 306027 555748 91594 3
High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

20 Yacine Kessaci et al.

Table 11 Experimental comparison for the LLNL Thunder instance, between the MO-GA meta-scheduler algorithm, the
heuristic and a random approach using an average orientation of the selection vector according to the different application
arrival rates.

MO-GA vector setting: Average
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1839645 744802.5 4728630 1094 66760
Medium 1975060 868983.5 4704360 1620.5 17234
High 2661580 1269990 4623960 2405.5 1347.5

Very high 3175135 1450690 4566185 4441.5 168

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151
Medium 3168185 1431930 4588880 1937.5 18.5
High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76
Medium 371989 166044 388355 103123.5 12
High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

Table 12 Experimental comparison for the RICC instance, between the MO-GA meta-scheduler algorithm, the heuristic and
a random approach using an average orientation of the selection vector according to the different application arrival rates.

MO-GA vector setting: Average
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1685740 823813.5 3700325 68.5 15692
Medium 1786950 888938 3691820 96.5 7871
High 2734555 1402205 3589570 330 1715.5

Very high 4349655 2033630 3393760 610.5 380

Used method: Heuristic
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14
Medium 3431830 1575755 3502690 142.5 6
High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random
Value for each criterion

Energy CO2 Profit Failed Time
Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10
Medium 676372 306027 555748 91594 3
High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation 21

Table 13 Comparison of the number of failed applications on the LLNL Thunder instance between the MO-GA meta-scheduler
algorithm (four different settings of the selection vector), the heuristic and the random approach according to the different
application arrival rates.

MO-GA vector settings Used method
Energy Profit CO2 Average Heuristic Random

Arrival rate
Low 1094 1110 1093.5 1094 1221.5 32303

Medium 1563 1630 1617 1620.5 1937.5 103123.5
High 1641 2817.5 2764 2405.5 3130 119828

Very high 4157.5 4437.5 4225.5 4441.5 3493.5 119849
Nb applications 119849

Table 14 Comparison of the number of failed applications on the RICC instance between the MO-GA meta-scheduler al-
gorithm (four different settings of the selection vector), the heuristic and the random approach according to the different
application arrival rates.

MO-GA vector settings Used method
Energy Profit CO2 Average Heuristic Random

Arrival rate
Low 66.5 109 65.5 68.5 66.5 24833.5

Medium 97.5 131.5 105 96.5 142.5 91594
High 178 567 387.5 330 324.5 115375

Very high 866.5 695 544 610.5 538.5 115855
Nb applications 115855

Table 15 Improvement rates on the LLNL Thunder instance between the MO-GA meta-scheduler algorithm using an average
orientation vector and the heuristic, according to the different application arrival rates.

Improvement according to criterion (MO-GA meta-scheduler vs heuristic)
Energy CO2 Profit Failed applications

Arrival rate (Minimization) (Minimization) (Maximization) (Minimization)
Low -45% -51% +2.9% -10%

Medium -37% -39% +2.5% -16%
High -16% -13% +1.3% -23%

Very high -3% +1% +0.4% +27%

Table 16 Improvement rates on the RICC instance between the MO-GA meta-scheduler algorithm using an average orienta-
tion vector and the heuristic, according to the different application arrival rates.

Improvement according to criterion (MO-GA meta-scheduler vs heuristic)
Energy CO2 Profit Failed applications

Arrival rate (Minimization) (Minimization) (Maximization) (Minimization)
Low -55% -53% +6% +3%

Medium -48% -43% +5% -32%
High -35% -27% +5% +1%

Very high +22% +19% -2% +13%

