N

N

AN EXPERIMENTAL TOOLCHAIN BASED ON
HIGH-LEVEL DATAFLOW MODELS OF
COMPUTATION FOR HETEROGENEOUS MPSOC
Julien Heulot, Karol Desnos, Jean Francois Nezan, Maxime Pelcat, Mickaél

Raulet, Hervé Yviquel, Pierre-Laurent Lagalaye, Jean-Christophe Le Lann

» To cite this version:

Julien Heulot, Karol Desnos, Jean Frangois Nezan, Maxime Pelcat, Mickaél Raulet, et al.. AN EX-
PERIMENTAL TOOLCHAIN BASED ON HIGH-LEVEL DATAFLOW MODELS OF COMPUTA-
TION FOR HETEROGENEOUS MPSOC. DASIP, Oct 2012, Karlsruhe, Germany. hal-00749175

HAL Id: hal-00749175
https://ensta-bretagne.hal.science/hal-00749175
Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://ensta-bretagne.hal.science/hal-00749175
https://hal.archives-ouvertes.fr

AN EXPERIMENTAL TOOLCHAIN BASED ON HIGH-LEVEL DATAFLOW MODELS OF
COMPUTATION FOR HETEROGENEOUS MPSOC

J. Heulot, K. Desnos
J.-F. Nezan, M. Pelcat, M. Raulet

IRISA, Univ. Rennes 1
6 rue de Kerampont
22300 Lannion

INSA, IETR, UMR 6164, UEB
20 av. Buttes de Coésmes 35708 Rennes

ABSTRACT

A chain of three state-of-the-art tools is demonstrated to gener-
ate efficient code for Multi-Processors System-on-Chips (MPSoCs)
from a high-level dataflow language. The experimental platform is
based on a 5-core Texas Instruments OMAP4 heterogeneous MPSoC
running an image processing application.

Index Terms— Embedded software, Multicore processing,
Data flow computing, Signal processing

1. EXTENDED ABSTRACT

High-level languages respecting dynamic dataflow Models of Com-
putation (MoCs) are convenient to specify an algorithm in a user-
friendly fashion. However, static dataflow MoCs provide more
compile-time knowledge of an application parallelism. This knowl-
edge is necessary to produce efficient code for a MPSoC. In this
paper, we demonstrate a transformation flow that eases the design of
retargetable applications for heterogeneous MPSoC by transforming
a high-level specification based on a dynamic datafiow MoC into an
MPSoC-optimized application based on a static dataflow MoC. This
flow consists of three dataflow-based tools: Modaé Studio, Open
RVC-CAL Compiler (Orcc), and Preesm. The demonstrated hard-
ware is based on a 5-core Texas Instruments OMAP4 heterogeneous
MPSoC.

2. INTRODUCTION

Modern handheld embedded systems offer an increasing number
of functionalities and processing capabilities while respecting a
fixed power budget of a few Watts. Recent improvements in em-
bedded systems are due to MPSoCs that combine general purpose
cores, dedicated cores, and hardware accelerators within a single
chip. Generating efficient code for heterogeneous MPSoCs remains
a complex and error-prone task. This demonstration illustrates
how dataflow MoCs, having precise semantics, favor interoperabil-
ity between tools and can be used to program MPSoCs. Three
dataflow-based tools (Section 3): Modaé Studio, Orcc, and Preesm,
are combined to program a heterogeneous MPSoC from a high-
level retargetable code with Kahn Process Network (KPN) MoC
semantics [1]. The demonstrator is then presented in Section 4.

This work was supported by the ANR COMPA project
*J.-C. Le Lann is now with Labsticc-ENSTA Bretagne

H. Yviquel

P-L. Lagalaye, J.-C. Le Lann*

Modaé Technologies
16, Rue Isaac Le Chapelier
35000 Rennes

3. MODEL TRANSFORMATION FLOW

The transformation flow presented in Figure 1 is performed by a tool
chain composed of: Modaé Studio, Orcc, and Preesm. Each of these
tools is successively used on a high-level description of the applica-
tion in order to introduce more behavioral knowledge into its MoC.
The transformation flow both offers a high-level front-end to the ap-
plication designer, and generates an efficient mapping of the appli-
cation on the targeted architecture.

Modaé Studio' is the first tool of this chain and is used as a
schematic entry tool: a system is described as a set of interacting
processes, communicating via channels, usually depicted as boxes
and arrows. Channels link ports point-to-point. Different MoCs can
be tagged on channels. Processes are organized as KPNs: processes
communicate via infinite FIFOs, with blocking read semantics.

Fig. 1. Transformation Flow

The main novelty of Modaé approach relies on the resort to Ruby
and Python interpreted languages to describe the algorithmic content
of the processes. These languages are dynamically typed and user-
friendly. Processes are described using an internal Domain Specific
Language (DSL), a technique that popularized Ruby-on-rails web

Uhttp://www.modae-tech.com



framework. Such an internal DSL facilitates a seamless integration
of domain specific concepts into the host language. The object-
oriented nature of Ruby and Python also simplifies the design of
high-level libraries. Modag Studio provides libraries for image and
signal processing, but also for simple probe displays (xy plots, pixel
grids, ...).

Once this closed system is captured, Modaé compiler and simu-
lators retrieve the bit-accurate type of each variable, hence filling the
gap between user representations and machine-oriented representa-
tions. In the experimental tool chain described here, the transfor-
mation engine generates a Dataflow Process Network (DPN) [1] in
RVC-CAL dataflow language syntax [2].

Orcc?, the second tool of the transformation flow, is an open
source compiler for applications modeled with RVC-CAL and a
DPN. When converted into DPNs, processes from KPN are replaced
with actors that still communicate via infinite FIFOs. Contrary to
KPN processes, actors have a set of firing rules that dictate when an
actor is fired and how many data tokens are exchanged[1]. DPNs
actors also have the ability to peek in FIFOs, i.e. they can read
data-tokens in input FIFOs without consuming them.

The main purpose of Orcc in the flow is to analyze the behavior
of the actors generated by Modaé¢ Studio and classify their behavior
as Synchronous Dataflow (SDF), Cyclo-Static Dataflow (CSDF) [3],
or DPN. CSDF is a restriction of DPN where actor firings follow a
cyclic fashion and SDF is a restriction of CSDF where the exchanged
tokens are constant over firings. The advantage of CSDF and SDF
is that they both have a strong predictability, thus opening the way
to efficient compile-time optimizations. If the DPN is classified as
CSDF, Orcc is asked to convert the graph into a SDF graph before
generating the tool’s outputs. Applications classified as DPN are
currently not supported by this tool chain. Orcc outputs C files, each
implementing the internal behavior of an actor, and a SDF graph
interconnecting the actors.

Preesm’, the last element of the tool chain, is an open source
rapid prototyping tool that automatically maps and schedules hier-
archical SDF graphs on heterogeneous MPSoCs. Beside the SDF
graph provided by Orcc, another input of Preesm is a graphically
edited System-Level Architecture Model (S-LAM) of the targeted
architecture. Using what is called a scenario, the user can also spec-
ify a set of parameters and constraints for the mapping and schedul-
ing tasks, restricting for instance the mapping of an actor on a subset
of cores of the architecture.

Before mapping the actors on the heterogeneous MPSoC,
Preesm performs a set of conversions on the application model
S0 as to reveal the parallelism embedded in the MoC. Once a static
mapping and schedule are obtained, Preesm generates a specific C
file for each core of the architecture, handling inter-core communi-
cation and synchronization, and containing ordered calls to the C
functions of the actors generated by Orcc.

4. DEMONSTRATOR

Developed by Texas Instruments, Open Multimedia Applications
Platform (OMAP) is a family of MPSoC designed for embed-
ded handheld multimedia applications. OMAP devices include a
general-purpose ARM processor core with one or more specialized
co-processors. The 4th generation OMAP processors are based
on a dual-core ARM Cortex-A9 as main processing unit. The
OMAP4460 additionally contains two Cortex-M3 microcontrollers

Zhttp://orce.sourceforge.net
3http://preesm.sourceforge.net

Fig. 2. Demonstrator material including a Pandaboard, a computer,
a camera, and a projector

increasing power efficiency as well as a c64xT Digital Signal Pro-
cessor (DSP) that can be used to speed-up some DSP-friendly
algorithms. Hardware coprocessors are not covered by this demon-
stration. In this processor, 5 different cores can thus run simultane-
ously, each running a different program. Inter-core communications
are possible through a shared Level-3 memory.

The demonstrator (Figure 2) consists of:

e acamera that captures a video stream,

e a Pandaboard ES, including an OMAP4460 MPSoC, that re-
ceives the video stream and computes an image processing
algorithm distributed on up to 5 cores,

e a handheld projector that displays the resulting video, and

e a PC that generates and reloads code on each of the 5 cores,
connected to the Pandaboard ES via Ethernet.

During this demonstration, high-level programming of an
OMAP4 MPSoC is shown. A Sobel filter application is described,
simulated and exported as RVC-CAL code using the Modaé Studio
tool. Then, the application MoC is converted into the SDF MoC
by the Orcc compiler. The algorithm is automatically mapped and
scheduled by the Preesm tool, based on knowledge of the applica-
tion SDF MoC and of the architecture model. Finally, an executable
is built for each MPSoC core, then loaded and run on the OMAP4
processor. The dual-core ARM Cortex-A9 main processing unit of
the OMAP4 processor runs a Linux operating system and drives the
3 other cores. The obtained process is highly customizable and, yet,
most of the steps are fully automated and performed within seconds.
The mapping constraints of actors, as well as the actors themselves,
are modified during demonstration, resulting in a different code,
mapped and scheduled efficiently on all cores of the OMAP4 pro-
cessor. Intermediate generated codes and architecture model are
demonstrated.

5. REFERENCES

[1]1 E. A. Lee and T. M. Parks, “Dataflow process networks,” Pro-
ceedings of the IEEE, vol. 83, no. 5, pp. 773-801, 1995.

[2] Matthieu Wipliez, Compilation infrastructure for dataflow pro-
grams, Ph.D. thesis, INSA de Rennes, 2010.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,

“Cycle-static dataflow,” Signal Processing, IEEE Transactions
on, vol. 44, no. 2, pp. 397408, 1996.



