
HAL Id: hal-00749181
https://inria.hal.science/hal-00749181

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Architecture-based Management of Platforms
in Cloud

Gang Huang, Xing Chen, Ying Zhang, Xiaodong Zhang

To cite this version:
Gang Huang, Xing Chen, Ying Zhang, Xiaodong Zhang. Towards Architecture-based Management of
Platforms in Cloud. Frontiers of Computer Science, 2012, 6 (4), pp.388-397. �hal-00749181�

https://inria.hal.science/hal-00749181
https://hal.archives-ouvertes.fr

Towards Architecture-based Management of Platforms in Cloud

Gang Huang, Xing Chen, Ying Zhang, Xiaodong Zhang

Key Laboratory of High Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

hg@pku.edu.cn; { chenxing08, zhangying06, zhangxd10 }@sei.pku.edu.cn

Abstract—System management becomes increasingly complex

and brings high costs, especially with the advent of Cloud

Computing. In a Cloud, numerous platforms like Virtual

Machines (VMs) and Middleware have to be managed to make

the whole system work cost-effectively after an application is

deployed. For controlling the management cost, in particular

the manual management cost, many computer programs have

been developed to take over manual management tasks or

reduce their complexity and difficulty. These programs are

usually hard-coded by languages like Java and C++, which

bring enough capability and flexibility but also cause high

programming effort and cost. This paper proposes an

architecture based approach to developing the management

programs in a simple but powerful enough manner. First of all,

the manageability (such as APIs, configuration files and scripts)

of a given platform is abstracted as a runtime model of the

platform’s software architecture, which can automatically and

immediately propagate any observable runtime changes of the

target platforms to the corresponding architecture models, and

vice versa. Then the management programs will be developed

using modeling languages, instead of those relatively low-level

programming languages. Such architecture-level management

programs bring many advantages related to the performance,

interoperability, reusability and simplicity. The experiment on

a real-world cloud and the comparison with the programming

language approach demonstrate the feasibility, effectiveness

and benefits of the new approach for management program

development.

Keywords - Cloud Management; Software Architecture;

Models at Runtime.

I. INTRODUCTION

Nowadays, more and more software applications are

built or migrated to run in a cloud, with the goal of reducing

IT costs and complexities. The layers of cloud computing

can be divided into three kinds, including Infrastructure-as-

a-Service, Platform-as-a-Service and Software-as-a-Service,

which sit on top of one another. Other “soft” layers can

be added on top of these layers as well, with elements like

cost and security extending the size and flexibility of the

cloud [1]. This trend brings unprecedented challenges to

system management of Cloud. The increasingly efforts of

platform (note that there’s no consensus on the definition of

platforms in cloud, while we consider the virtual machines,

operating systems and middleware as platforms in this paper)

management mainly come from the following two aspects:

On one hand, the virtualization makes the physical

resources easier to share and control but increases the

complexity of management mainly because the virtualized

resources are much more and less reliable than the physical

ones. For instance, given an application that uses 10 nodes,

cloud administrators have to manage the required 10 VMs

as well as the physical nodes hosting these VMs. On the

other hand, the service oriented natures of cloud make the

management much more complex than the product centric

natures of traditional datacenters because cloud applications

can use different types of platforms and require resources on

demand. For instance, a 3-tier JEE (Java Enterprise Edition)

application typically has to use the web server, EJB server

and DB server. These servers have different management

mechanisms. An EJB server should comply with JMX

management specification and rely on the JMX API, while a

DB server is usually managed through the SQL-like scripts.

In addition, the EJB server can usually sustain the running

of several applications simultaneously. What’s more, all of

the platforms are in a resource sharing and competing

environment. Administrators have to carefully coordinate

each part to make the whole system work correctly and cost

effectively.

To tame the complexity of manual system management,

many programs are built to carry out management tasks

automatically. Such a management program usually uses

with the four-stage autonomic loop proposed by IBM [2]:

monitor the runtime system and collect the critical data

concerned, analyze the collected data to find if the system

needs a reconfiguration, plan a proper reconfiguration

procedure, and execute reconfigurations on the system. Such

a management program is usually implemented in general

purpose programming languages like Java and C/C++,

which can bring enough power and flexibility but also cause

high programming effort and cost. For instance, the existing

VM and middleware platforms have already provided

adequate proprietary APIs (e.g., JMX) to be used by

monitoring and executing related codes. Administrators first

have to be familiar with these APIs and then build programs

upon them. Such a work is not easy due to the heterogeneity

of platforms and the huge numbers of APIs provided. In a

management program, proper APIs have to be chosen for

use and different types of APIs (e.g., JMX and scripts) have

to be made interoperable with each other. Such “boring”

work is not the core of the management logics comprised by

analyzing and planning related codes, but it has to be done

to make the whole program run effectively. During this

procedure, the irrelevant APIs as well as the collected low-

level data can sometimes make administrators exhausted

and frustrated. Furthermore, as the programs are built on the

codes that directly connect with the runtime systems, they

are not easy for reuse. Administrators have to write many

different programs to manage different cloud applications

and their platforms even the management mechanisms are

the same. In addition, hard-coding the analyzing and

planning related codes will also bring high costs. Although

many advanced techniques such as model checking [3] can

help to mitigate the complexity, administrators have to adapt

the codes to the requirements of various model checkers.

Therefore, the finally generated codes are very long and

difficult to understand.

The fundamental challenge faced by the development of

management tasks is the conceptual gap between the

problem and the implementation domains [4]. To bridge the

gap, using approaches that require extensive handcraft

implementations such as hard-coding in general purpose

programming languages like Java will give rise to the

programming complexity. Software architecture acts as a

bridge between requirements and implementations. It

describes the gross structure of a software system with a

collection of managed elements and it has been used to

reduce the complexity and cost mainly resulted from the

difficulties faced by understanding the large-scale and

complex software system recently [5]. So it is a natural idea

to understand management tasks through modeling the

architecture of the cloud. Current research in the area of

model driven engineering (MDE) supports systematic

transformation of problem-level abstractions to software

implementations [6]. The complexity of bridging the gap

could be tackled through developing automated programs

based on the model that describes the architecture of the

cloud and through the automated support for transforming

architectural models to running systems and vice versa.

What’s more, many model-centric analyzing and planning

methods and mechanisms are already developed for use [6],

such as architecture styles, constraints and model checkers.

Programs based on models can benefit from these

techniques to build their own analyzing and planning parts.

This paper proposes a runtime architecture-based

approach to managing the platforms such as middleware and

VMs of the cloud. We construct an architecture-based

model of the cloud for platform management and ensure the

proper synchronization between the system and its model.

Any change of the runtime model will be immediately

propagated into the runtime system and vice versa. Then we

evaluate our approach by comparing it to the hard-coding

approach in terms of the performance, interoperability,

reusability and simplicity. The evaluation results prove that

the runtime architecture-based management is cost-effective

and promising in the cloud environment.

The rest of this paper is organized as follows: Section II

presents an example to show the importance and necessity

of architecture-based management of platforms in Cloud.

Section III and IV describe our approach in detail. Section V

and VI report the evaluation and related work of our

approach. Section VII concludes this paper and identifies

our future work.

II. MOTIVATING EXAMPLE

Many automated programs have been built to tame the
complexity of manual management and most of them are
hard-coded in general purpose languages like Java. However,
it may result in several difficulties to develop management
programs in such general purpose languages. For instance,
platforms in the cloud consist of different types of resources
which need to be managed collaboratively. Administrators
have to be familiar with the management APIs and then
build programs upon them. While developing a management
program, they have to choose proper APIs for use and make
different types of APIs interpretable with each other, as
shown in Figure 1.

Such code fragments are not the core of management
logics compared with the analyzing and planning related
codes, but it has to be developed to make the whole program
run effectively. Many similar code fragments are required
for a simple task. As shown in Figure 1, the code fragment
for fetching the value of the “maxThreads” attribute in a
JOnAS (a popular open source Java application server)
through JMX API is more than 20 LOC (Line of Code).

Figure 1. An Example for Programming in Java

What’s more, administrators have to construct the adapters to
invoke the different types of management interfaces such as
JMX and Script.

When using our approach, the programs become much
simpler and shorter. Figure 2 shows the architecture-based
program doing the similar management task, which is written
in QVT [7], a widely adopted modeling language. The
architecture-based model can shield programmers from the
relatively low-level details of the managed platforms.

With the help of the runtime architecture-based model,
administrators can focus on the management targets (e.g.
VMs and middleware) and program in the architecture level,
without developing code fragments to invoke management
APIs. The architecture-based model is abstracted from the
underlying infrastructure of Cloud as shown in Figure 3, and
the synchronization engine is needed to reflect the cloud into
a model and ensures a bidirectional consistency between the
system and the model. For instance, in this scenario, the
synchronization engine must build a model element for the
JOnAS platform in the runtime model. When the
management program deletes the model element of JOnAS,
the synchronization engine must detect this change, identify
which platform this removed element stands for and finally
invoke the script to shut down the JOnAS platform.

III. AN ARCHITECTURE-BASED MODEL FOR PLATFORM

MANAGEMENT IN CLOUD

A. Approach Overview

We provide an architecture-based runtime model for
administrators to develop automated programs of platform

management in the architecture level, and the correct
synchronization between the model and the runtime system
is ensured. The inputs of our approach include a meta-model
for platform management specifying what kinds of elements
can be managed in Cloud and an Access Model of the
configurations specifying how to use the management APIs
to monitor and modify those manageable elements. Then the
runtime software architecture of the target system is
automatically constructed by the code generated by SM@RT
tool, which is proposed in [8].

The approach is applicable on the following premises.
First, the SM@RT tool is not intrusive, that is, neither
instructs non-manageable systems nor extends inadequate
APIs. As a result, the managed elements in Cloud such as
virtual machines, operating systems and middleware should
provide their own management mechanisms, API or script.
This premise is feasible for the popular and well-developed
platforms. Second, we reflect a direct model for the cloud
(that means the model is homogeneous with the architecture
of the cloud: each model element stands for one managed
element in the runtime system). Note that SM@RT supports
automatically just-in-time synchronization between two
heterogeneous models [23] and then cloud administrators can
define their own architectural models and the mapping to our
built-in models.

B. The Architecture-based Meta-Model

As shown in Figure 3, physical nodes are the basic
elements to compose the foundation of the cloud. The
virtualization handles how images [1] of operating systems,
middleware, and applications are pro-created and allocated to
the given physical machines. The images could be moved
around and put into production environment on demand. The
virtual machines occupy resources such as computing power,
memory and so on from physical machines. Upon them,
different types of operating systems organize resources to
support the basic environment for software running and
network accessing. There is always only one middleware
product in a virtual machine for the reason of isolation. The
virtualized resources, operating system and middleware
compose the platform and several platforms are organized
properly to provide the runtime environment for a whole
system. These elements above should be managed
collaboratively. Therefore, we construct an architecture-
based meta-model of the cloud for platform management as

Figure 2. An Example for the Languages of QVT

Figure 3. A Common Structure of the Synchronization Engine between the Architectural Model and Runtime System

shown in Figure 4, whose instantiation is the runtime model.
The NodeList class (lower left) represents the list of

physical nodes in the cloud, which compose the shared
infrastructure. The Node class and the VirtualMachine class
separately represent physical nodes and virtual machines.
Different types of virtualization products such as Xen and
KVM are similar in management APIs, although they are
different in implementations. So the Xen class and the KVM
class (lower right) may be regarded as the subclasses of the
VirtualMachine class. Therefore, the elements of nodes and
virtual machines, and the relations between them in the
model reflect the working conditions of the shard
infrastructure in the cloud.

The RuntimeEnvironment class (upper) represents the
runtime environment for a whole system, which may contain
more than one platform. The Platform class represents the
platform which is the main managed element in the model.
Platform, OS and VM consist of VM appliance [9] which
may be regarded as one entire managed element. Therefore,
the Platform class inherits the OperatingSystem class and the
VirtualMachine class. Through the model elements of
Platform, the attributes of the operating system and the
virtualized resources may be accessed as well. And the
subclasses of the Platform class represent different types of
middleware products such as JOnAS and Apusic, whose
architecture we have discussed in [8].

The architecture-based meta-model specifies what kinds
of elements can be managed in Cloud and would help
administrators understand their management tasks.

C. Runtime Changes

Given the architecture-based meta-model, we also need
to identify the changes enabled by the model. Depending on
the nature of the initiating agent, the changes can be
classified as external changes (initiated by external entities)
or internal changes (applied by the management system). For
example, it is an external change that a node in the cloud
does not work properly. Then the internal changes should be
adopted to adjust it.

In this context, it becomes clear that for management
purposes it is important to provide a comprehensive
identification of the internal changes in Cloud, as they define
the scope of potential actions that can be applied by the
automated programs. The cloud platform can be managed at
the levels of middleware, operating systems and virtualized
resources. Figure 5 provides a short list of the primitives
which includes several main types of management operations.
For each operation we detail the management operation
names, the required arguments and the changes it causes to
the configuration when applied (including value changes and
the existence or not of the elements) and the management
operations. It is possible to remove existing elements, and

Figure 4. The Architecture-based Meta-model for Platform Management in Cloud

Figure 5. Definition of some Runtime Changes

instantiate new runtime elements defined. The attributes of
the existing units can also be adjusted, with controlling over
their property configurations.

Although there are hundreds of management APIs in the
cloud, we could model them into the Access Model [8]
through specifying how to invoke the APIs to manipulate
each type of elements. Where meta-element is the set of all
the elements in the architecture-based meta-model (classes,
attributes, etc.), the manipulation is the set of all types of
manipulations, which are summarized in Figure 6. The
management operations in Figure 5 are also classified
according to the rules.

IV. IMPLEMENTATIONS OF THE RUNTIME ARCHITECTURE-

BASED MODEL

We define the architecture-based meta-model and the
Manipulation on the Eclipse Modeling Framework (EMF)
[10], and then generate the synchronization codes to
maintain the causal links between model and system through
our SM@RT tool [8]. The tool is an extension of EMF, and
it generates the model listener, model proxy, and system
proxy specific to the target system. Specifically, it generates
a Java class for each of the MOF classes in the system meta-
model, implementing the EObject interface defined by Ecore.

We have also constructed some architecture-based
runtime model of virtualization products like Xen and JEE
servers like JOnAS and Apusic, as shown in Figure 7. It
should be noted that the size of these models just reflects the
manageability, not the size or functionality, of these products.
Using these architecture-based models, administrators can
cost-effectively develop automated programs in modeling
languages for platform management in Cloud.

V. EVALUATION

The previous sections have given the detailed description
of our runtime model of the cloud. In this section, we present

a set of experiments to evaluate our approach. The
experiment is done on a cloud environment: Internetware
Test Bed [11]. It is a research cloud project supported by the
Nation Key Basic Research and Development Program of
China. The Internetware Cloud provides on-demand VMs as
well as middleware infrastructures (e.g. JEE server and DB
server) for cloud users. We have applied the architecture-
based model to the cloud and written a set of automated
programs in QVT on the model.

We evaluate our approach by comparing it with the hand-
coding approach in two scenarios. In the first experiment, we
take anti-pattern detection [12] for example to prove that our
approach has advantages related to the performance and the
reusability. In the second experiment, we take VM states
checking for example to validate the advantages of our
approach on the interoperability and simplicity.

A. Anti-pattern Detection

A pattern is a kind of conclusion of well-known
experience, which describes an effective solution to repeated
problems. As an extension, an anti-pattern describes a
commonly occurring solution that generates decidedly
negative consequences. With the architecture-based model,
administrators can easily develop programs of anti-pattern
detection in a simple way compared with hard-coding in the
languages like Java. As shown in Figure 8, six classic anti-
patterns about JSP and Servlet in JEE applications are
concluded and classified. We separately develop
management programs in Java and QVT to detect these anti-
patterns in benchmark JEE application “Ecperf”. The results
and the executing time are also shown in the figure.

The two groups of automated programs have the same
results of anti-pattern detection. It is easy to see that the
executing time of the Java programs is less than the QVT
ones. The main reason for this is that the two sets of
programs are based on the same management APIs and there
are some extra operations in architecture-based approach,
which are aimed to ensure the synchronization between the
model and the runtime system. There are complex factors
that affect the performance of synchronizers: first, the
execution time of synchronization process is constituted of
the time spent on QVT transformation and the API
invocations. Second, the performance is affected by both the
complexity and the scale of the runtime system architecture.

Figure 6. All Kinds of Manipulations

Figure 7. Information about Some Architecture-based Models

However, their difference in executing time is very small and
it could be ignored from the aspect of system management.

The logics to detect these anti-patterns are not complex,
since they just check a few attributes of JSP or servlet in the
system. For example, the automated program to detect the
forth anti-pattern is aimed to check if there are too many
codes about data processing in any JSP and it is just needed
to count the times how many the pattern of
“session.setAttribute” appears in one JSP. From the
fragments of the Java program, it is easy to see that most of
codes are aimed to deal with data accessing, which is not the
core of the management logics, compared with less than 10
percent of codes to express management logics. What’s more,
the similar codes of data access have to be repeated in
different automated programs, which make administrators

exhausted. By contrast, the QVT programs reduce about 80
percent of LOC. The runtime architecture-based model is
modeling those management APIs, which reuses the codes of
data access. Then administrators can develop programs
based on the architecture-based model and do not have to
invoke specific management APIs any more, which reduces
programming costs. It is easy to see that our approach has the
advantages related to the reusability.

B. VM States Checking

Load balance management in the cloud requires resource
provision (e.g., CPU and memory) to be both stable and
reliable, which is an important problem and a challenge in
system management. The fundamental solution to this issue
is to integrate and coordinate the resources in a global view.

Figure 8. Programs of Anti-pattern Detection in the Languages of Java and QVT

Many automated programs are aimed for this problem [13].
One of the key challenges is to find if the current states of
the cloud platform satisfy some specific conditions. In this
experiment, we develop the automated program to check if
there are physical nodes which are in a free or busy condition.
Figure 9 describes some code fragments in Java and QVT
programs.

As the figure shows, in the Java program, we traverse the
list of physical nodes to check the conditions of each node in
the first function, where the second function is invoked to
count the memory utilization of a node. In the second
function, a script is invoked to retrieve the information about
memory allocation in a node and the result needs to be
parsed. The administrators have to cope with the detailed
implementations while hard-coding in Java, including the
interaction between the Java program and the script, and the
relatively low-level logics of data processing. Therefore,
administrators need to understand the details of the managed
system, which may make them exhausted.

By contrast, with the help of the architecture-based
model, administrators focus on the logics of management
tasks without handling the different types of APIs like scripts
and low-level data processing. In addition, the modeling
language provides operations in the model level, such as
“select”, “sum” and so on, which make it simpler to do
programming.

VI. RELATED WORK

Our architecture based runtime model is a general
approach to platform management in Cloud. There are
several industry cloud products to provide platform resources
as a service, which are similar in architecture. For instance,
Windows Azure [14] adopts Windows server to provide
runtime environment to applications and relies on VM ware.
Oracle Public Cloud [15] adopts the products of WebLogic
Server and its infrastructure depends on Oracle VM. Though
the products above support different types of applications,

Figure 9. Programs of Load Balance Management in the Languages of Java and QVT

they all contain virtualization based infrastructure and
middleware software products.

Platform management is a key problem in Cloud.
Although there are some relative administrative tools, such
as Tivoli [16] and Hyperic [17], which are aimed to the
factors of heterogeneity and distribution; the management
still costs a lot, for the infrastructure fundament and
middleware software products should be managed
collaboratively and there are too many metrics of different
types to manage manually. But there are no effective
administrator tools to do the management automatically at
present and automated programs are needed.

Other efforts have been made to improve the
development of automated management programs.
OpenStack Compute [18] is a cloud computing fabric
controller. It is written in Python and utilizes many external
libraries. It is easy to express management tasks in Python
but programmers still need to be familiar with the
management APIs and understand the architecture of runtime
system. In previous work [19], we propose the solution of
“Management as a Service” (MaaS) from the reuse point of
view. We encapsulate functions, processes, rules and
experiments in IT management into web services and regard
them as reusable assets, which is to be presented, used and
collaborate in a service-oriented style. However,
programmers are hard to express complex management tasks
in BPEL (Business Process Execution Language) and still
need to deal with the operations on attributes.

Architecture-based approach is usually used in system
management. For example, they are applied for
automatically obtaining valid configurations of network
equipment such as routers and bridges [20]. By modeling the
relevant characteristics of every manageable element and
defining their restrictions using propositional logic, these
engines can automatically find correct configurations for
each element, or diagnose the correctness of a preset
configuration. We will mention another interesting
application of architecture-based approach, in this case for
generating test cases of a complex system configuration [21].
This work highlights how this technique can be applied to
find efficiently solutions to a search space where multiple
constraints over the correct solution are defined. However,
none of the analyzed initiatives addresses the problem of
automating platform management in Cloud, although it has
been successfully applied to some relative problems.

We have made many researches in the area of model
driven engineering. For a given meta-model and a given set
of management interfaces, SM@RT [8] can automatically
generate the code for mapping models to interfaces with
good enough runtime performance. If users change the meta-
model, SM@RT can re-generate the mapping code. More
details can be found in our previous works [22]. If the
management interfaces support remote invocations, the RSA
can invoke them. In our previous work [23], we encapsulate
hundreds of management interfaces of WebSphere, JOnAS,
Tomcat, MySQL, Apusic, etc. into SOAP-based web
services for the remote management. In addition, for the
situation of incomplete formalized of modeling languages,
our previous work [24] has provided an MOF meta-model

extension mechanism with support for upward compatibility
and automatically generates a model transformation for
model integration, and the work we implemented on
architecture-level fault tolerance [25] can also compensate
for this to a degree. Our RSA is also able to translate system
logs into elements of RSA and users should analyze the root
cause based on RSA. An example can be found in our
previous work [26]. We translate JEE application server's
system logs into sequence diagrams and then use the
automata to detect anti-patterns that cause the poor
performance. The approach in this paper is built on our
previous resources.

VII. CONCLUSION AND FUTURE WORK

Platform management in Cloud brings high costs. Many
automated programs thus have been built to tame the
complexity of management. Hard-coding these programs in
languages like Java can bring enough power and flexibility
but also cause high programming effort and cost. It is trivial
for administrators to be familiar with different types of APIs
and understand the detailed implementations of the cloud
environment. This paper proposes a runtime architecture-
based approach to managing the platform facilities such as
the middleware and VMs of Cloud. We construct an
architecture-based model for administrators to develop
automated programs of platform management at the
architecture level, and the correct synchronization between
the model and the runtime system is ensured. Then
administrators may develop automated programs of
management tasks in modeling languages. The cloud
providers are the target users of our approach. Moreover,
some cloud-based applications need to customize or even re-
invent the management functions provided by the cloud. The
developers of such applications can also use our approach to
do their own management. We evaluate the approach by
comparing it to the hard-coding approach in two
management scenarios and the results prove that the
architecture-based management is effective and promising in
the performance, the interoperability, the reusability and the
simplicity.

As future work, we plan to give more support for
administrators to manage platforms in Cloud. At present, our
approach has the bottle net of performance as other
centralized management frameworks. We are searching the
model-based solutions to this issue and have made some
progress. We also plan to perform further analysis such as
model checking to ensure a deeper correctness and
completeness of the generated causal link between
management tasks. In addition, our approach is an
abstraction of any target system and supports any types of
operations if there are corresponding management interfaces
[27]. We will extend our architecture-based model to fulfill
more requirements in cloud management, such as data
storage managements and cloud application developments.

ACKNOWLEDGMENTS

This work is sponsored by the National Basic Research
Program of China under grant no. 2009CB320703; the
National Natural Science Foundation of China under grant

http://openstack.org/projects/compute/
http://en.wikipedia.org/wiki/Python_%28programming_language%29

no. 61121063, 60933003; the High-Tech Research and
Development Program of China under Grant No.
2012AA011207; the European Commission Seventh
Framework Programme under grant no. 231167; and NCET.

REFERENCES

[1] Evangelos Kotsovinos, Morgan Stanley. Virtualization:

Blessing or Curse? Managing Virtualization at a large

scale is fraught with hidden challenges.

Communications of the ACM, 2010, 54(1): 61-65.

[2] Jeffrey O.Kephart, David M.Chess. The Vision of

Autonomic Computing. IEEE Computer Society, 2003.

36(1): 41-50.

[3] J. M. Rushby. Model Checking and OtherWays of

Automating Formal Methods. In Position paper for

panel on Model Checking for Concurrent Programs,

Software Quality Week, San Francisco, May/June 1995.

[4] Garlan, D. Software Architecture: A Roadmap.

Proceeding ICSE’00 Proceedings of the Conference on

The Future of Software Engineering, pp. 91-101.

[5] Gang HUANG, Hong MEI, Fu-qing YANG. Runtime

Recovery and Manipulation of Software Architecture of

Component-based Systems. International Journal of

Automated Software Engineering, 2006, 13(2): 251-278.

[6] Robert France, Bernhard Rumpe. Model-driven

Development of Complex Software: A Research

Roadmap. Future of Software Engineering, 2007, pp.

37-54.

[7] Object Management Group. Meta Object Facility (MOF)

2.0 Query/View/Transformation (QVT).

http://www.omg.org/spec/QVT

[8] Gang Huang, Hui Song, Hong Mei. SM@RT: Applying

Architecture-based Runtime Management of

Internetware Systems. International Journal of Software

and Informatics, 2009, 3(4):439~464.

[9] Wikipedia. Virtual appliance.

http://en.wikipedia.org/wiki/Virtual_appliance

[10] Eclipse. Eclipse Modeling Framework Project (EMF).

http://www.eclipse.org/modeling/emf/

[11] Peking University. Internetware Test Bed. http://edu-

icloud.internetware.org

[12] LAN Ling, HUANG Gang, WANG Wei-Hu, MEI

Hong. Anti-Pattern Based Performance Optimization

for Middleware Applications. Journal of Software, 2008,

19(9): 2167-2180.

[13] Ying Zhang, Gang Huang, Xuanzhe Liu, and Hong Mei.

Integrating Resource Consumption and Allocation for

Infrastructure Resources on-Demand. 2010 IEEE 3rd

International Conference on Cloud Computing, pp. 75-

82.

[14] Microsoft. Windows Azure.

http://www.windowsazure.com/

[15] Oracle. Oracle Public Cloud. http://cloud.oracle.com/

[16] IBM. IBM Tivoli Software. http://www-

01.ibm.com/software/tivoli/

[17] SpringSource. Hyperic. http://www.hyperic.com/

[18] OpenStack. The Open Source Cloud Operating System.

http://openstack.org/projects/

[19] Xing Chen, Xuanzhe Liu, Fuzhi Fang, Xiaodong Zhang,

Gang Huang. Management as a Service: An Empirical

Case Study in the Internetware Cloud. IEEE

International Conference on E-Business Engineering,

ICEBE 2010, pp. 470-473.

[20] S. Hallé, E. Wenaas, R. Villemaire, O. Cherkaoui, Self-

configuration of Network Devices with Configuration

Logic, Proceeding AN’06 Proceedings of the First IFIP

TC6 international conference on Autonomic

Networking, 2006, pp. 36-49.

[21] M.B. Cohen, M.B. Dwyer, J. Shi, “Constructing

Interaction Test Suites for Highly-Configurable

Systems in the Presence of Constraints: A Greedy

Approach”, IEEE Trans. on Software Engineering,

2008, 34(5): 633-650.

[22] Hui Song, Gang Huang, Franck Chauvel, Yingfei

Xiong, Zhenjiang Hu,Yanchun Sun, Hong Mei.

Supporting Runtime Software Architecture: A

Bidirectional-Transformation-Based Approach. Journal

of Systems and Software, Elsevier, 2011, 84(5): 711-

723.

[23] Xing Chen, Xuanzhe Liu, Xiaodong Zhang, Zhao Liu,

Gang Huang. Service Encapsulation for Middleware

Management Interfaces. International Symposium on

Service Oriented System Engineering, 2010, pp. 272-

279.

[24] Xiangping Chen,Gang Huang,Franck Chauvel,Yanchun

Sun,Hong Mei. Integrating MOF-Compliant Analysis

Results. International Journal of Software and

Informatics, 2010, 4(4):383-400.

[25] Junguo Li, Xiangping Chen, Gang Huang, Hong Mei

and Franck Chauvel. Selecting Fault Tolerant Styles for

Third-Party Components with Model Checking Support,

International SIGSOFT Symposium on Component-

based Software Engineering (CBSE), 2009, pp. 69-86.

[26] Weihu Wang, Gang Huang. Pattern-Driven

Performance Optimization at Runtime: Experiment on

JEE Systems. 9th Workshop on Adaptive and

Reflective Middleware (ARM2010), pp. 39-45.

[27] Hui Song, Gang Huang, Franck Chauvel, Wei Zhang,

Yanchun Sun, Weizhong Shao, Hong Mei. Instant and

Incremental QVT Transformation for Runtime Models.

14th international conference on Model driven

engineering languages and systems, 2011, pp. 273-288.

http://en.wikipedia.org/wiki/Virtual_appliance
http://edu-icloud.internetware.org/
http://edu-icloud.internetware.org/
http://www.windowsazure.com/
http://cloud.oracle.com/
http://www-01.ibm.com/software/tivoli/
http://www-01.ibm.com/software/tivoli/
http://www.hyperic.com/
http://openstack.org/projects/

Gang Huang was born in 1975. He received his Ph.D. in 2003 from the School of Electronics

Engineering and Computer Science of Peking University. He is a professor at Peking University.

Huang’s research interests include system software and software architecture.

Xing Chen was born in 1985．He is a Ph.D. candidate at Peking University. His research

interests include middleware, cloud management and software architecture.

ZHANG Ying was born in 1983．He received the PhD degree in Electronics Engineering and

Computer Science from Peking University in 2012．He is a research staff at Peking University．His

research interests are in the area of distributed computing with a focus on middleware, including the

construction and management of middleware, software engineering with a focus on component based

development, and mobile computing．

Xiaodong Zhang was born in 1989. He is a Ph.D. candidate at Peking University. His research

interests include middleware and cloud computing.

