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Abstract— Face recognition from a single image per person is
a challenging problem because the training sample is extremely
small. We study a variation of this problem. In our setting, only
a single image of a single person is labeled, and all other people
are unlabeled. This setting is very common in authentication on
personal computers and mobile devices, and poses an additional
challenge because it lacks negative examples. We formalize our
problem as one-class classification, and propose and analyze an
algorithm that learns a non-parametric model of the face from
a single labeled image and a stream of unlabeled data. In many
domains, for instance when a person interacts with a computer
with a camera, unlabeled data are abundant and easy to utilize.
We show how unlabeled data can help in learning better models
and evaluate our method on 43 people. The people are identified
90% of the time at nearly zero false positives. This is 15% more
often than by Fisherfaces at the same false positive rate. Finally,
we conduct a comprehensive sensitivity analysis of our method
and provide a guideline for setting its parameters.

I. INTRODUCTION

Face recognition from a single image per person is a hard
problem because the training sample is extremely small [1].
Yet this setting is very common in practice and therefore has
been of great interest. For instance, extensive databases with
one labeled image per person already exist, such as those for
ID cards, and face recognition from these data could enable
population-wide security screening at airports. The challenge
in learning from a single labeled image is that the appearance
of the face changes due to many factors, such as aging, facial
expressions, or growing a mustache. In general, such changes
are hard to model, especially from a single image per person.

Face recognition research has made many advances due to
learning discriminative projections [2] and all state-of-the-art
methods employ them in one way or another. Unfortunately,
learning of high-quality discriminative projections requires a
lot of labeled data. Therefore, it is not surprising that state-of-
the-art face recognition methods perform poorly when only a
single image per person is labeled (Section II). This problem
becomes even more challenging when only a single person is
labeled, and all other people are unlabeled. This is the setting
considered in our paper.

We study face recognition from a single labeled image per
person in the online setting. In addition to the labeled image,
we observe a stream of unlabeled data, for instance recorded
by a video camera. In this setting, the lack of labeled images
can be compensated for by a large amount of unlabeled data.
Computer vision problems usually exhibit a low-dimensional
manifold structure [3] and these data can be used to learn it.
We propose a new face recognition method, online manifold
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tracking (OMT), that learns the structure of the manifold on-
the-fly and can adapt to changes in data. The time and space
complexity of our approach are bounded and do not increase
with time. We compare our approach to several baselines and
demonstrate its superiority. Finally, we evaluate its sensitivity
to the setting of the parameters and discuss how to set them.

Online manifold tracking has several advantages. First, the
algorithm is relatively easy to implement. Second, it does not
require extensive offline training and is sufficiently fast to run
in real time. In Sections IV-D and IV-E, we show that OMT
recognizes faces in as little as 0.05 second on average. Third,
our approach is non-parametric. We make no assumptions on
recognized faces, and can adapt to various facial expressions
and poses. Finally, our method is by design robust to outliers
and thus suitable for open-world domains.

Non-parametric learning tends to be viewed as an alterna-
tive to learning with sophisticated features. We want to stress
that our approach is complementary and benefits from better
features (Section IV-C). Similarly, we believe that most face
recognition algorithms, which rely on discriminative features,
could benefit from adaptation and handling the concept drift.
This work shows how to incorporate such features into these
algorithms.

II. FACE RECOGNITION FROM A SINGLE LABELED FACE

Face recognition from a single image per person is a diffi-
cult problem [1] because all state-of-the-art face recognizers
rely on a large number of training data, which are unavailable
in this setting. In Fisherfaces [4], two or more images of the
person are needed to estimate the within-class variance. This
problem is ill posed when only one training face is available.
In Laplacianfaces [3], several images of the same person are
necessary to estimate the low-dimensional manifold of faces.
When only one image per person is available, Laplacianfaces
reduce to maximizing the between-class variance [1] and are
similar to eigenfaces. Eigenfaces [5] are maximum variance
projections of data obtained by principal component analysis
(PCA).

In this work, we study a variation of face recognition from
a single image. In our setting, only one image of one person
is labeled, and many other people are unlabeled. This setting
is common in open-world domains, where the class of other
people is hard to model explicitly. For instance, in face-based
authentication on a computer, the owner of the computer has
to be modeled but it is hard, even impossible, to individually
model all other people. A major challenge in this problem is
the lack of negative examples. Therefore, the problem cannot



be directly formulated as learning a discriminator of positive
and negative examples, as is common in face recognition [2].

One-class classification [6] is a natural way of formulating
our problem. In one-class classification, the goal is to learn a
hypersphere that covers positive examples. Nearest-neighbor
(NN) classification with one positive example is the simplest
instance of such techniques. This classifier can be written as:

myy |1 dxx)<R
R (%)= { 0 otherwise, M

where x; is the labeled example, d(-, ) is a distance function,
and R is the radius of the hypersphere. In this work, we refer
to R as a generalization radius and assume that the distance
d(-,-) is Euclidean.

The accuracy of one-class classifiers is typically measured
by the true positive (TPR) and false positive (FPR) rates. The
TPR is the fraction of positives classified as positives and the
FPR is the fraction of negatives classified as positives. In the
NN classifier f}"(x), both rates monotonically increase with
the generalization radius R. The radius R should be set such
that the classifier has high TPR and acceptably low FPR.

III. FACE RECOGNITION FROM A STREAM OF
UNLABELED FACES

Many face recognition algorithms can be viewed as batch-
mode NN classifiers in some metric space d(-, -) (Section V).
This space is defined by discriminative features. In principle,
it is hard to learn good discriminative features when only one
example is labeled (Section II). So instead, we take advantage
of the structure of unlabeled data and learn which part of the
feature space belongs to the same person as the labeled face
Xj.

In particular, we learn a non-parametric predictor of a face
from a single labeled face and a stream of unlabeled images.
This problem is challenging for a few reasons. First, the data
are unlabeled and may contain images of other people. As a
result, it is necessary to be cautious when generalizing. This
is why state-of-the-art face recognizers often perform poorly
in practice. Second, the sequence of unlabeled faces may be
long, and even infinite. Therefore, our non-parametric model
should be compact and sublinear, or constant, in the number
of observed faces.

Formally, our learning problem is modeled as a repeating
game against a potentially adversarial nature. At each step ¢
of this game, we observe an example x; and then predict its
label based on all observations X1, ...,x; up to time ¢. This
problem is challenging because only one example is labeled.
Therefore, if we want to learn in this setting, we have to rely
on indirect forms of feedback, such as the similarity between
the observations Xy, ..., X;.

This section is organized as follows. In Section III-A, we
show how to compactly represent a potentially infinite stream
of data. In Sections III-B and III-C, we discuss how to infer
the identity of a person based on our compact representation.
In Section III-D, we discuss how to set the parameters of our
algorithm.

Algorithm 1 Online manifold tracking.

Input:
Representative faces
Observed face x;
Generalization radius R
Cover radius r

if (d(x¢,%x;) < R) then
if (Vi € uy (d(x¢,%;) > r)) then
Upp1 < U U {t}
else
U1 < Ut
end if
while (ju¢11| =%+ 1) do
T 2r
Uold < Ut41
Greedily select face indices usy1 C uolq such that:
Vi € Uold 3j € wpyr (d(x4,%x5) <)
Vi € upyr Vi € (upr \7) (d(x4,%;5) > 1)
end while
end if

Output:
Representative faces w1
Cover radius r

A. Online manifold tracking

One way of summarizing data is by mapping each example
to the closest representative example. This approach is known
as data quantization [7] and the representative examples can
be found by various techniques, such k-means clustering and
random sampling. In our setting, we want to summarize data
on-the-fly. Two popular methods for online data quantization
are online k-center clustering [8] and cover trees [9].

In this paper, we quantize faces by online k-center cluster-
ing [8]. At time ¢, all previously seen faces are summarized
by indices u; of up to k representative faces. The indices are
updated as follows. If the face x; at time ¢ is at least » away
from all representative faces us, ury1 = uy U{t}. Otherwise,
Ut41 = ug. Finally, when |u; 1| = k + 1, the cover radius r
is doubled and the representative faces are repartitioned such
that no two faces are closer than 7.

Our implementation of online k-center clustering is shown
in Algorithm 1. Note that the example x; is quantized only if
it is sufficiently close to the labeled example x;, d(x:,x;) <
R. Therefore, the generalization radius R essentially controls
how much space is covered. In practice, it should be set such
that we do not cover parts of the space that are too far away
from the labeled example x; and may be irrelevant when we
extrapolate from it. More discussion on how to set the value
of R can be found in Section III-D.

Because online k-center clustering provides guarantees on

the error of its approximation [8], we can bound the error of
Algorithm 1. In particular, at any time ¢, the distance between
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Fig. 1: An illustration of the face manifold tracked by OMT.
The labeled example x; is shown in the middle.
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any previously seen face and the closest representative face:

dbac(uy) =  max  mind(x;,x;) )
1<t JEUL
d(x;,%x)<R

is bounded by 2r. The error of the cover dt, (u;) is always

smaller than 8 times of that of the optimal cover. The optimal
cover of cardinality ¥ minimizes d’ () and its computation
is NP hard.

Because the error d',, (u;) is bounded, we can also bound
the error of our identify inference algorithm in Section III-B.

This proof would proceed along the lines of Valko et al. [10].

B. Inference

Identity inference on a manifold of faces can be formulated
as a random walk on a graph, where the vertices are the faces
and the edges are weighted by the similarity w;; of the faces
[11]. This random walk starts at an unlabeled face x;, jumps
to neighboring faces x; proportionally to their similarity w;;,
and is absorbed at labeled faces. The absorption probabilities
F € [0, 1]**I1l can be computed as:

F= (Luu)ilwula (3)

where W € R™*™ is the matrix of pairwise face similarities,
L is its combinatorial Laplacian, [ is the set of labeled faces,
u is the set of unlabeled faces, and n is the number of faces.
Equation 3 is well known as the harmonic solution (HS) and
is a basis for many semi-supervised learning algorithms [12].

The main challenge in computing the harmonic solution in
our setting is that we have only one labeled positive example
x; (Section II). Therefore, all random walks on the graph W
ultimately terminate in this example and the HS F' = 11
is meaningless. Note that our result is mathematically correct
and is due to not modeling any other identity than that of x;.

We do not want to explicitly represent negative examples.
This is because we want to model how the person looks and

Algorithm 2 Identity inference.

Input:
Representative faces w1
Observed face x;
Generalization radius R
Recognition threshold e

if (d(x¢,%x;) < R) then
U < U]
v uU{l}
W < |v| x |v| similarity matrix of faces v
D « |v| x |v| diagonal matrix s.t. D;; = >, Wi;
L+~D-W
Compute the probability that the faces v are positives:
f (Luu + ’)Ju)_lwul
J « arg min;e,, d(x¢,X;)
g < L{f; > ¢}
else
Py < 0
end if

Output:
Identity ¢, of the face x;

do not want to waste our resources on modeling other people.
However, we need to introduce some notion of dissimilarity.
For instance, if the vertex x; cannot be reached from another
vertex X; in a small number of random jumps, these vertices
may not be similar. To achieve this behavior, we introduce a
special sink vertex xo. This vertex absorbs all random walks
that reach it and is connected to all unlabeled vertices ¢ € u
by weighted edges w;o = v, where « is a tunable parameter.
Therefore, not all random walks get absorbed by the labeled
vertex X;. The probability of being absorbed depends on the
structure of W, v, and the starting point of the random walk.
Similarly to the HS (Equation 3), the absorption probabilities
f € [0, 1]/**1 can be computed in a closed form [13]:

f= (Luu + IVIu)_lwuly (4)

where I, is a |u| X |u| identity matrix. Our identity inference
method is outlined in Algorithm 2.

C. Algorithm

Our solution is an online learning algorithm. At time ¢, we
quantize the face x; (Algorithm 1) and then infer its identity
(Algorithm 2). We refer to our technique as online manifold
tracking (OMT) because it approximately tracks the manifold
of faces and then utilizes it to build a better face recognizer.
An illustration of the tracked manifold is shown in Figure 1.

Each step of our algorithm consumes O(k?) time because
online k-center clustering takes O(k) time and the harmonic
solution can be computed in O(k?) time, by solving k linear
equations. As a result, the time complexity of our algorithm
is independent of time ¢. Note that when the similarity matrix
W is O(k) sparse, the time complexity of computing the HS



on W is O(k?). In addition, many fast approximate solutions
exist.

D. Parameterization

Our method has several tunable parameters. In this section,
we discuss how to set these parameters and explain how they
affect the behavior of our algorithm. In Section IV, we show
that many of these parameters do not have to be set perfectly
to achieve good performance.

The generalization radius R controls extrapolation to unla-
beled data. Larger values of R result in farther extrapolation.
Technically, the radius R determines the maximum TPR and
FPR of our method. Note that these are the same as the TPR
and FPR of the classifier f3"(x) (Equation 1) with the same
radius R. In practice, R should be set to the minimum value
such that the maximum TPR and FPR are high and relatively
low, respectively. In Section IV-D, we conduct an experiment
that shows how the generalization radius R impacts learning.

The maximum number of representative faces k trades off
the error of the cover (Equation 2) for the computational cost
of inference. In general, as k increases, the error of the cover
decreases and the time complexity of our approach increases,
cubically with k. In Section IV-E, we conduct an experiment
that illustrates these trends.

The main parameter that controls the TPR and FPR of our
algorithm is the recognition threshold ¢ (Algorithm 2). Both
the TPR and FPR increase as € decreases. So the ROC curve
for our method can be generated by varying €. We adopt this
methodology in the experimental section.

Graph-based inference algorithms [12] tend to be sensitive
to the choice of the graph and our method is not an exception.
In our domain, the similarity of faces x; and x; is computed
as:

wij = exp [~d*(x;,%;)/(207)] , )

where o is the heat parameter and d(x;, x,) is the distance of
the faces. The distance is defined as d(x;,x;) = [|[x; — x;|[,,
where x; and x; denote pixel intensities in 96 X 96 images of
faces. The intensities are rescaled such that maxy ||x|[|, = 1.
So the maximum distance between any two faces is two. The
distance between consecutive faces in our datasets is usually
less than 0.1. We set the heat parameter ¢ to 0.03 and so this
distance is about 3o. Our setting is motivated by a statistical
rule that events that are 30 away from the mean are unlikely.
We experimented with other values o, both 0.025 and 0.035,
and all trends in our experiments remained the same.

The similarity to the sink is v = exp[—32/2]. This setting
can be interpreted as follows. When two faces are closer than
30, the probability that a random transition between the faces
terminates in the sink xg is less than:

g Y 1

< = —. 6

v+w;; — y+exp[—32/2] 2 ©)
On the other hand, when two faces are more than 40 and 50
away, the probability of terminating in the sink xg is at least:

TS g
v+wij — v+ exp[—4?/2]

~ 0.9707 @)

and:

2 > 2
¥4 wi; v+ exp[—52/2]

~ 0.9997, (8)

respectively. In other words, faces that are more distant than
30 are likely to be perceived as different, and the probability
of being different increases exponentially with their distance.

IV. EXPERIMENTS

We evaluate our method on video recordings of 43 people
(Section IV-A). Our experimental results support two claims.
First, we show that online learning from a single labeled face
and unlabeled faces performs better than supervised learning
(Section IV-C). Second, we demonstrate that our approach is
complementary to learning with better features. In particular,
we show that OMT with Fisherfaces outperforms both OMT
and Fisherfaces when used separately. Finally, we conduct a
comprehensive sensitivity analysis of our method and discuss
how to parameterize it (Sections IV-D and IV-E). We observe
that OMT performs robustly even when its parameters are not
set optimally.

A. Dataset

The VidTIMIT dataset [14] is comprised of video and the
corresponding audio recordings of 43 people (Figure 2a) that
recite short sentences. The dataset was recorded in 3 sessions.
The delay between Sessions 1 and 2 is 7 days, and the delay
between Sessions 2 and 3 is 6 days. Each person is asked to
recite ten sentences: 6 in Session 1, 2 in Session 2, and 2 in
Session 3. The recording was done in an office environment
using a broadcast quality digital video camera. The video of
each person is a sequence of 512 x 384 images. The average
length of the video is 1062 images. The primary variations in
our data are in facial expressions and time, since the dataset
is comprised of three separate recordings.

Faces in the images are detected by OpenCV [15], turned
into grayscale, resized to 96 x 96 pixels, cropped, and finally
we equalize their histograms. We label one image per person
(Figure 2b).

B. Methodology

All experiments are conducted on 43 video traces from the
VIidTIMIT dataset (Section IV-A). In each video, one person
recites 10 sentences and no other person appears. This setting
does not seem challenging because the identity in each video
frame can be predicted by tracking the face from the labeled
image. To make the videos more realistic, we add outliers to
them. In particular, after each frame in the video (Figure 2c),
we insert a randomly selected image from the remaining 42
videos (Figure 2d). The new videos are challenging because
a half of the frames are negatives, people that do not belong
to the modeled class. Moreover, two consecutive faces never
belong to the same person, and therefore face recognition by
tracking would perform poorly in this setting. However, note
that the videos are still temporarily smooth in the sense that
two consecutive positives are similar. OMT can identify this
pattern and learns from it.
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(d) A noisy sequence of faces. The odd faces belong to the original video (Figure 2c) and the even ones are chosen randomly from the

videos of the remaining 42 people.

Fig. 2: Images and faces in the VidTIMIT dataset.

The quality of solutions is measured by their TPR and FPR
at various operating points on the ROC curve. The operating
points of the NN classifier are obtained by varying the radius
R (Equation 1). The operating points of OMT are computed
by varying the recognition threshold e (Algorithm 2). In each
video, we compute the TPR and FPR, and then average them
over all videos. The generalization radius R and the number
of representative faces k in OMT are by default 0.3 and 300,
respectively. The sensitivity to the setting of these parameters

is studied in Sections IV-D and IV-E.

C. Quality of solutions

In the first experiment, we compare our algorithm to three
baselines. The first baseline is a 1-NN classifier (Equation 1)
and we compare to it to illustrate the benefit of learning from
unlabeled faces. The second baseline is a 5-NN classifier and
it shows how much labeled data are needed to learn as good
predictor as using our algorithm. The last baseline is a 1-NN
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Fig. 4: Comparison of the NN and OMT recognizers that are
trained from 1 and 5 labeled faces.

classifier in the space of 64 Fisherfaces. The Fisherfaces are
computed from 43 labeled faces (Figure 2b), one per person.
Note that the within-class scatter matrix in our problem is all
zeros. Therefore, it cannot be used in Fisherfaces (Section II)
and we substitute it for an identity matrix. We experimented
with various numbers of Fisherfaces and 64 yields the largest
area under the ROC curve in Figure 4. Our results are shown
in Figures 4 and 5. We observe four major trends.

First, OMT learns a pretty accurate predictor. The TPR of
OMT at 10~* FPR is 0.89. In other words, OMT recognizes
people most of the time at nearly zero false positives. A few
examples of correctly identified faces are shown in Figure 3.
Many faces are quite different from the original labeled face.
Each video is processed in 45 seconds on average. Therefore,
an average face is recognized in 45/(2-1062) ~ 0.02 second,
essentially in real time.

Second, OMT performs significantly better than the 1-NN
baseline. The TPR of OMT at 10~* FPR is 0.89, 50% higher
than that of the baseline. Note that both OMT and the 1-NN
classifier are trained using the same amount of labeled data.
So our comparison demonstrates the benefit of learning from
unlabeled data. Finally, we plot the ROC curve for the 5-NN
classifier (Figure 4) and note that it is similar to that of OMT.
As a result, we may conclude that OMT learns the equivalent

ROC curve
1 T T
O]
0.9 /O/O/O/QM
0.8f
0.7f —o— 1-NN

1-NN Fisherfaces
—0— 1-OMT
1-OMT Fisherfaces
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FPR

Fig. 5: Comparison of the NN and OMT recognizers that are
trained on pixel intensities and projections on 64 Fisherfaces.

of 5 labeled faces.

Third, OMT performs much better than the 1-NN baseline
on Fisherfaces. At low FPRs, the improvement in the TPR is
in double digits. In contrast, note that most holistic methods
outperform Fisherfaces and eigenfaces only in the low single
digits [1].

Fourth, OMT improves with more labeled faces and better
features, similarly to other face recognition algorithms. For
instance, Figure 4 shows that the NN baseline improves a lot
when the number of labeled faces increases from 1 to 5. The
TPR of OMT, which is already in the low nineties, increases
in this case by about 5%, and is higher than the new baseline
at all FPRs. Figure 5 shows that the 1-NN baseline improves
when the original feature space is substituted for Fisherfaces.
The TPR of OMT increases in this case by 2% at low FPRs,
and is higher than the new baseline at all FPRs.

D. Generalization radius R

In the second experiment, we study how the generalization
radius R affects the behavior of OMT. Our results are shown
in Figure 6. We observe several trends.

At all FPRs, the TPR for R = 0.3 is higher than the TPR
for R = 0.25. This trend can be explained as follows. About
8% of positives are farther from the labeled example x; than
0.25. Because the TPR for R = 0.3 is always higher than the
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Fig. 6: Varying the generalization radius R in OMT. For each
value R, we report the ROC curve, the computation time, and
the cover radius r.

TPR for R = 0.25, many of these positives can be classified
correctly at nearly zero false positives. So the generalization
radius of R = 0.25 is too restrictive.

At low FPRs, the TPR for R = 0.3 is higher than the TPR
for R = 0.35. This trend can be explained as follows. Barely
2% of positives are farther from the labeled example x; than
0.3. As a result, the potential increase in true positives when
the radius R increases beyond 0.3 is small, and in our results
it is outweighed by the increase in false negatives. Therefore,
R = 0.3 yields a higher TPR at low FPRs. Nevertheless, we
note that OMT performs acceptably well for all tested values
of R.

Finally, note that as the generalization radius R increases,
the cover radius r and computation time increase. The radius
r increases since the covered space, x; such that d(x¢,x;) <
R, increases but the number of faces k that cover it remains
constant. The computation time increases because more faces
satisfy d(x¢,x;) < R, and must be quantized and classified.

E. Number of representative faces k

In the last experiment, we study how the behavior of OMT
changes based on the number of representative faces k. Our
results are reported in Figure 7. We observe several trends.

As the number of representative faces k increases, both the
accuracy of inference and computation time increase, and the
cover radius r decreases. The radius r decreases because the
covered space, x; such that d(x;,x;) < R, remains the same
but the number of faces k that cover it increases. As a result,
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Fig. 7: Varying the number of representative faces k£ in OMT.
For each value k, we report the ROC curve, the computation
time, and the cover radius 7.

the accuracy also increases. The computation time grows less
than quadratically with k, significantly slower than suggested
by the analysis of our method (Section III-C). The reason for
this trend is that our feature vectors x; are long, 962 entries,
and their quantization dominates the computational cost. The
amortized per-step cost of online k-center clustering is O(k),
which is in line with the observed trend.

We recommend that the number of representative faces k
be chosen as high as the computational resources allow. The
more variable the face and environment, the larger the value
of k. Finally, note that as few as 150 representative faces are
sufficient to learn interesting patterns.

V. RELATED WORK

In this section, we review related work on face recognition
and online semi-supervised learning.

A. Face recognition

The state-of-the-art in face recognition [2] advanced so far
that face recognition is available in consumer products. Face
recognition from a single image per person is still considered
to be a hard problem and we study a variation of this problem
[1]. According to Tan et al. [1], we propose a holistic method
because we identify faces based on the whole image, and do
not extract local features. Existing holistic methods [1] either
employ some form of PCA to extract features [16] or enlarge
the training set, for instance by novel views of the face [17].



The novel views are generated by transformations, which are
learned from a separate training set that comprises all views.

We take a very different approach in this paper. This is the
first work that shows how to learn computationally efficiently
a non-parametric model of a face from a stream of unlabeled
data and a single labeled face. Our method can be viewed as
learning novel views of the face from unlabeled data. Unlike
Beymer and Poggio [17], the method does not have an offline
training phase and can learn concepts that are hard to model,
such as aging or growing a mustache. The main disadvantage
of our method is that it is data driven. Therefore, it may need
a large amount of unlabeled data to learn. Such data may not
be available in all domains.

Note that our approach is complementary to learning from
more sophisticated features. In Section IV-C, we apply OMT
to Fisherfaces and demonstrate that the new approach yields
better results than each method separately.

B. Online semi-supervised learning

In machine learning, online learning from partially labeled
data is known as online semi-supervised learning. This prob-
lem has been formulated and solved in various ways, such as
boosting, regularization of support vector machines (SVMs),
and learning on graphs. Online semi-supervised boosting [18]
is a variation of boosting, in which unlabeled data are labeled
greedily using the data adjacency graph and then employed in
the standard boosting fashion. Online manifold regularization
of SVMs [19] regularizes a max-margin classifier by the data
adjacency graph. Online semi-supervised learning on a graph
[10] incrementally compresses the data adjacency graph and
then infers labels of unlabeled examples based on this graph.

All of the above methods assume that at least two classes
of examples are labeled and cannot be easily extended to our
setting. Valko et al. [10] and Balcan et al. [11] studied face
recognition on similarity graphs from multiple labeled faces.
This is the first work that studies face recognition on a graph
from a single labeled image.

VI. CONCLUSIONS

In this paper, we present online manifold tracking (OMT),
a new online face recognition algorithm which is suitable for
environments with minimal human supervision. In compari-
son to existing methods, which learn discriminative features,
OMT relies on unlabeled data as the main form of feedback.
We evaluate our method on a dataset of 43 people and show
that it produces superior results. In addition, we demonstrate
that OMT is complementary to learning with better features,
such as Fisherfaces. Finally, we discuss how to parameterize
our method and show that it is robust to a small perturbation
of its parameters.

In this work, OMT is presented as a holistic method, where
the whole face is treated as an input. In our future work, we
plan to extend OMT to local facial features, such as the nose,
eyes, and mouth. In the single-image-per-person setting, it is
accepted that local methods outperform holistic methods [1].
We strongly believe that we can improve these methods even
further by online adaptation, perhaps based on similarities in
consecutive video frames.
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