]. A. Ab05 and . Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul, vol.4, pp.447-459, 2005.

A. Andres, J. Deuschel, and M. Slowik, Invariance principle for the random conductance model in a degenerate ergodic environment, The Annals of Probability, vol.43, issue.4
DOI : 10.1214/14-AOP921

V. V. Anshelevich, K. M. Khanin, and Y. G. Sina?-i, Symmetric random walks in random environments, Communications in Mathematical Physics, vol.113, issue.3, pp.449-470, 1982.
DOI : 10.1007/BF01208724

]. T. Ar00 and . Arbogast, Numerical subgrid upscaling of two-phase flow in porous media In Numerical treatment of multiphase flows in porous media, Lecture Notes in Phys, vol.552, pp.35-49, 1999.

M. T. Barlow and J. Deuschel, Invariance principle for the random conductance model with unbounded conductances, The Annals of Probability, vol.38, issue.1, pp.234-276, 2010.
DOI : 10.1214/09-AOP481

N. Berger and M. Biskup, Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields, pp.83-120, 2007.

M. Biskup and T. M. Prescott, Functional CLT for Random Walk Among Bounded Random Conductances, Electronic Journal of Probability, vol.12, issue.0, pp.1323-1348, 2007.
DOI : 10.1214/EJP.v12-456

M. Biskup, M. Salvi, and T. Wolff, A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts, Communications in Mathematical Physics, vol.86, issue.5-6
DOI : 10.1007/s00220-014-2024-y

X. Blanc and C. L. Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings, Networks and Heterogeneous Media, vol.5, issue.1, pp.1-29, 2010.
DOI : 10.3934/nhm.2010.5.1

URL : https://hal.archives-ouvertes.fr/inria-00387214

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.40, issue.2, pp.153-165, 2004.
DOI : 10.1016/j.anihpb.2003.07.003

P. Caputo and D. Ioffe, Finite volume approximation of the effective diffusion matrix: The case of independent bond disorder, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.39, issue.3, pp.505-525, 2003.
DOI : 10.1016/S0246-0203(02)00016-X

R. Costaouec, C. L. Bris, and F. Legoll, Variance reduction in stochastic homogenization: proof of concept, using antithetic variables, SeMA Journal, vol.27, issue.4, pp.9-27, 2010.
DOI : 10.1007/BF03322539

URL : https://hal.archives-ouvertes.fr/inria-00457946

A. De-masi, P. A. Ferrari, S. Goldstein, and W. D. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, Journal of Statistical Physics, vol.38, issue.1, pp.3-4, 1989.
DOI : 10.1007/BF01041608

E. Weinan, Principles of multiscale modeling, 2011.

W. E. , P. B. Ming, and P. W. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc, vol.18, pp.121-156, 2005.

W. E. and X. Yue, The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size, Journal of Computational Physics, vol.222, issue.2, pp.556-572, 2007.
DOI : 10.1016/j.jcp.2006.07.034

Y. Efendiev and A. Pankov, Numerical Homogenization of Monotone Elliptic Operators, Multiscale Modeling & Simulation, vol.2, issue.1, pp.62-79, 2003.
DOI : 10.1137/S1540345903421611

Y. Efendiev and T. Y. Hou, Multiscale finite element methods, of Surveys and Tutorials in the Applied Mathematical Sciences Theory and applications, 2009.

A. Gloria, An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies, Multiscale Modeling & Simulation, vol.5, issue.3, pp.996-1043, 2006.
DOI : 10.1137/060649112

URL : https://hal.archives-ouvertes.fr/inria-00070230

A. Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.1, pp.1-38, 2012.
DOI : 10.1051/m2an/2011018

URL : https://hal.archives-ouvertes.fr/inria-00510514

A. Gloria, Numerical homogenization: survey, new results, and perspectives Esaim Proc, pp.50-116, 2012.

A. Gloria and J. Mourrat, Spectral measure and approximation of homogenized coefficients. Probab. Theory Related Fields, pp.287-326, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00510513

A. Gloria and J. Mourrat, Quantitative version of the Kipnis???Varadhan theorem and Monte Carlo approximation of homogenized coefficients, The Annals of Applied Probability, vol.23, issue.4, pp.1544-1583, 2013.
DOI : 10.1214/12-AAP880

URL : https://hal.archives-ouvertes.fr/inria-00579424

]. A. Gnoa, S. Gloria, F. Neukamm, and . Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics

]. A. Gnob, S. Gloria, F. Neukamm, and . Otto, Approximation of effective coefficients by periodization in stochastic homogenization

. A. Gn, J. Gloria, and . Nolen, Quantitative central limit theorem for the effective diffusion An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab, vol.39, issue.3, pp.779-856, 2011.

A. Gloria and F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, The Annals of Applied Probability, vol.22, issue.1, pp.1-28
DOI : 10.1214/10-AAP745

URL : https://hal.archives-ouvertes.fr/inria-00457020

A. Gloria, F. Otto, A. Gloria, and F. Otto, Quantitative theory in stochastic homogenization Esaim Proc Quantitative results on the corrector equation in stochastic homogenization

W. Hebisch and L. Saloff-coste, Gaussian Estimates for Markov Chains and Random Walks on Groups, The Annals of Probability, vol.21, issue.2, pp.673-709, 1993.
DOI : 10.1214/aop/1176989263

T. Y. Hou and X. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, Journal of Computational Physics, vol.134, issue.1, pp.169-189, 1997.
DOI : 10.1006/jcph.1997.5682

T. Y. Hou, X. H. Wu, and Z. Q. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Mathematics of Computation, vol.68, issue.227, pp.913-943, 1999.
DOI : 10.1090/S0025-5718-99-01077-7

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, 1994.
DOI : 10.1007/978-3-642-84659-5

. T. Klo, C. Komorowski, S. Landim, and . Olla, Fluctuations in Markov processes, Grundlehren der mathematischen Wissenschaften, vol.345, 2012.

S. [. Kanit, I. Forest, V. Galliet, D. Mounoury, and . Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

C. Kipnis and S. R. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications in Mathematical Physics, vol.28, issue.1, pp.1-19, 1986.
DOI : 10.1007/BF01210789

S. M. Kozlov, The method of averaging and walks in inhomogeneous environments, English transl.: Russian Math. Surveys, pp.61-120, 1985.
DOI : 10.1070/RM1985v040n02ABEH003558

S. M. Kozlov, AVERAGING OF DIFFERENCE SCHEMES, Mathematics of the USSR-Sbornik, vol.57, issue.2, pp.351-369, 1987.
DOI : 10.1070/SM1987v057n02ABEH003072

R. Künnemann, The diffusion limit for reversible jump processes onZ d with ergodic random bond conductivities, Communications in Mathematical Physics, vol.80, issue.1, pp.27-68, 1983.
DOI : 10.1007/BF01209386

P. Mathieu, Quenched Invariance Principles for Random Walks with??Random Conductances, Journal of Statistical Physics, vol.129, issue.2, pp.1025-1046, 2008.
DOI : 10.1007/s10955-007-9465-z

P. Mathieu and A. Piatnitski, Quenched invariance principles for random walks on percolation clusters, Proc. R. Soc. A, pp.2287-2307, 2007.
DOI : 10.1098/rspa.2007.1876

J. Mourrat, Marches aléatoires réversibles en milieu aléatoire. Ph.D. thesis, available at tel. archives-ouvertes, p.484257, 2010.

J. Mourrat, Variance decay for functionals of the environment viewed by the particle, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.47, issue.1, pp.294-327, 2011.
DOI : 10.1214/10-AIHP375

URL : https://hal.archives-ouvertes.fr/hal-01271688

J. Mourrat, On the rate of convergence in the martingale central limit theorem, Bernoulli, vol.19, issue.2
DOI : 10.3150/12-BEJ417

J. Mourrat, A quantitative central limit theorem for the random walk among random conductances, Electronic Journal of Probability, vol.17, issue.0
DOI : 10.1214/EJP.v17-2414

J. Mourrat, Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients, Probability Theory and Related Fields, vol.129, issue.2
DOI : 10.1007/s00440-013-0529-5

A. Naddaf and T. Spencer, Estimates on the variance of some homogenization problems, 1998.

J. Nolen, Normal approximation for a random elliptic equation. Probab. Theory Relat. Fields, 10, pp.440-453, 1007.

H. Owhadi, Approximation of the effective conductivity of ergodic media by periodization, Probability Theory and Related Fields, vol.125, issue.2, pp.225-258, 2003.
DOI : 10.1007/s00440-002-0240-4

URL : https://hal.archives-ouvertes.fr/hal-00138275

G. Papanicolaou, Diffusions and random walks in random media, The mathematics and physics of disordered media, pp.391-399, 1983.
DOI : 10.1007/BF01646091

G. C. Papanicolaou and S. R. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, pp.835-873, 1979.

]. V. Pe and . Petrov, Limit theorems of probability theory. Oxford studies in probability 4, 1995.

M. [. Revuz and . Yor, Continuous martingales and Brownian motion, 1999.

]. R. Ro12 and . Rossignol, Noise-stability and central limit theorems for effective resistance of random electric networks

V. Sidoravicius and A. Sznitman, Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields, pp.219-244, 2004.

]. V. Yu and . Yurinskii, Averaging of symmetric diffusion in random medium, Sibirskii Matematicheskii Zhurnal, vol.27, issue.4, pp.167-180, 1986.

A. Egloffe and M. Laboratoire, Brussels, Belgium, and Project-team MEPHYSTO, INRIA Lille -Nord Europe, Villeneuve d'Ascq, France E-mail address: agloria@ulb.ac.be J.-C. Mourrat, Unité de mathématiques pures et appliquées -UMR 5669 -UMPA