M. Anguelova and B. Wennberga, State elimination and identifiability of the delay parameter for nonlinear time-delay systems, Automatica, vol.44, issue.5, pp.1373-1378, 2008.
DOI : 10.1016/j.automatica.2007.10.013

J. Anthonis, A. Seuret, J. Richard, and H. Ramon, Design of a Pressure Control System With Dead Band and Time Delay, IEEE Transactions on Control Systems Technology, vol.15, issue.6, 2007.
DOI : 10.1109/TCST.2006.890299

URL : https://hal.archives-ouvertes.fr/inria-00131415

L. Belkoura, J. Richard, and M. Fliess, Parameters estimation of systems with delayed and structured entries, Automatica, vol.45, issue.5, pp.1117-1125, 2009.
DOI : 10.1016/j.automatica.2008.12.026

URL : https://hal.archives-ouvertes.fr/inria-00343801

K. Bhat and H. Koivo, An observer theory for time delay systems, IEEE Transactions on Automatic Control, vol.21, issue.2, pp.266-269, 1976.
DOI : 10.1109/TAC.1976.1101180

M. Boutayeb, Observers design for linear time-delay systems, Systems & Control Letters, vol.44, issue.2, pp.103-109, 2001.
DOI : 10.1016/S0167-6911(01)00129-3

H. Ch, J. H. Cho, and . Park, Stable bilateral teleoperation under a time delay using a robust impedance control, Mechatronics, vol.15, issue.5, pp.611-625, 2005.
DOI : 10.1016/j.mechatronics.2004.05.006

H. H. Choi and M. J. Chung, Observer-based H??? controller design for state delayed linear systems, Automatica, vol.32, issue.7, pp.1073-1075, 1996.
DOI : 10.1016/0005-1098(96)00014-3

M. Darouach, Linear functional observers for systems with delays in state variables, IEEE Transactions on Automatic Control, vol.46, issue.3, pp.491-497, 2001.
DOI : 10.1109/9.911430

K. K. Fan and J. G. Hsieh, LMI Approach to design of robust state observer for uncertain systems with time-delay perturbation, IEEE ICIT, 2002.

M. Farza, A. Sboui, E. Cherrier, and M. M. Saad, High-gain observer for a class of time-delay nonlinear systems, International Journal of Control, vol.269, issue.2, pp.273-280, 2010.
DOI : 10.1504/IJMIC.2008.020997

URL : https://hal.archives-ouvertes.fr/hal-01059849

M. Fliess and H. Mounier, Controllability and observability of linear delay systems: an algebraic approach, ESAIM: Control, Optimisation and Calculus of Variations, vol.3, pp.301-314, 1998.
DOI : 10.1051/cocv:1998111

M. Fliess, C. Join, and M. Mboup, Algebraic change-point detection, Applicable Algebra in Engineering, Communication and Computing, vol.83, issue.2, pp.131-143, 2010.
DOI : 10.1007/s00200-010-0119-z

URL : https://hal.archives-ouvertes.fr/inria-00439226

E. Fridman, F. Gouaisbaut, M. Dambrine, and J. Richard, Sliding mode control of systems with time-varying delays via descriptor approach, International Journal of Systems Science, vol.228, issue.8-9, pp.8-9, 2003.
DOI : 10.1016/S0005-1098(03)00167-5

E. Fridman, Stability of Systems With Uncertain Delays: A New ???Complete??? Lyapunov???Krasovskii Functional, IEEE Transactions on Automatic Control, vol.51, issue.5, pp.885-890, 2006.
DOI : 10.1109/TAC.2006.872769

J. Fonde, Delay differential equation models in mathematical biology, 2005.

J. P. Gauthier, H. Hammouri, and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control, vol.37, issue.6, pp.875-880, 1992.
DOI : 10.1109/9.256352

M. Ghanes, J. B. Barbot, J. Deleon, and A. Glumineau, A robust sensorless output feedback controller of the induction motor drives: new design and experimental validation, International Journal of Control, vol.35, issue.1, pp.484-497, 2010.
DOI : 10.1007/978-3-642-84379-2

URL : https://hal.archives-ouvertes.fr/inria-00450963

A. Germani, C. Manes, and P. Pepe, An Asymptotic State Observer for a Class of Nonlinear Delay Systems, Kybernetika, vol.37, issue.4, pp.459-478, 2001.

M. Hou and R. T. Patton, An observer design for linear time-delay systems, IEEE Transactions on Automatic Control, vol.47, issue.1, pp.121-125, 2002.
DOI : 10.1109/9.981730

S. Ibrir, Adaptive observers for time-delay nonlinear systems in triangular form, Automatica, vol.45, issue.10, pp.2392-2399, 2009.
DOI : 10.1016/j.automatica.2009.06.027

V. L. Kharitonov and D. Hinrichsen, Exponential estimates for time delay systems, Systems & Control Letters, vol.53, issue.5, pp.395-405, 2004.
DOI : 10.1016/j.sysconle.2004.05.016

N. N. Krasovskii, On the analytic construction of an optimal control in a system with time lags, Journal of Applied Mathematics and Mechanics, vol.26, issue.1, pp.50-67, 1962.
DOI : 10.1016/0021-8928(62)90101-6

V. Laskhmikanthan, S. Leela, and A. Martynyuk, Practical stability of nonlinear systems, Word Scientific, 1990.

N. Macdonald, Time Lags in Biological Models, In Lecture Notes in Biomath, vol.27, 1978.
DOI : 10.1007/978-3-642-93107-9

L. A. Marquez-martinez, C. H. Moog, and V. V. Martin, Observability and observers for nonlinear systems with time delays, Kybernetika, vol.38, issue.4, pp.445-456, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00410033

H. Mounier and J. Rudolph, Flatness-based control of nonlinear delay systems: A chemical reactor example, International Journal of Control, vol.71, issue.5, pp.871-890, 1998.
DOI : 10.1080/002071798221614

K. Natori and K. Ohnishi, A Design Method of Communication Disturbance Observer for Time-Delay Compensation, Taking the Dynamic Property of Network Disturbance Into Account, IEEE Transactions on Industrial Electronics, vol.55, issue.5, pp.2152-2168, 2008.
DOI : 10.1109/TIE.2008.918635

S. Niculescu, C. De-souza, L. Dugard, and J. Dion, Robust exponential stability of uncertain systems with time-varying delays, IEEE Transactions on Automatic Control, vol.43, issue.5, pp.743-748, 1998.
DOI : 10.1109/9.668851

S. Niculescu, Delay effects on stability: A robust control approach, 2001.

P. Picard, O. Sename, and J. F. Lafay, Observers and observability indices for linear systems with delays, CESA 96, IEEE Conference on Computational Engineering in Systems Applications, pp.81-86, 1996.

J. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica, vol.39, issue.10, pp.1667-1694, 2003.
DOI : 10.1016/S0005-1098(03)00167-5

J. Richard, F. Gouaisbaut, and W. Perruquetti, Sliding mode control in the presence of delay, Kybernetica, vol.37, issue.4, pp.277-294, 2001.

O. Sename, New trends in design of observers for time-delay systems, Kybernetica, vol.37, issue.4, pp.427-458, 2001.

O. Sename and C. Briat, H1 observer design for uncertain time-delay systems, IEEE ECC, 2007.

A. Seuret, T. Floquet, J. Richard, and S. K. Spurgeon, A sliding mode observer for linear systems with unknown timevarying delay, IEEE ACC, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00385904

A. Seuret, T. Floquet, J. Richard, and S. K. Spurgeon, Topics in Time-Delay Systems: Analysis, Algorithms and Control, 2008.

E. Shustin, L. Fridman, E. Fridman, and F. Castaos, Robust Semiglobal Stabilization of the Second Order System by Relay Feedback with an Uncertain Variable Time Delay, SIAM Journal on Control and Optimization, vol.47, issue.1, pp.196-217, 2008.
DOI : 10.1137/060673333

URL : https://hal.archives-ouvertes.fr/hal-00218262

R. Villafuerte, S. Mondie, and Z. Poznyak, Practical Stability of Time-Delay Systems: LMI's Approach, IEEE CDC, 2008.
DOI : 10.3166/ejc.17.127-138

Z. Wang, B. Huang, and H. Unbehausen, Robust H? observer design for uncertain time-delay systems:(I) the continuous case, IFAC 14-th world congress, pp.231-236, 1999.

J. Zhang, X. Xia, and C. H. Moog, Parameter Identifiability of Nonlinear Systems With Time-Delay, IEEE Transactions on Automatic Control, vol.51, issue.2, pp.371-375, 2006.
DOI : 10.1109/TAC.2005.863497

G. Zheng, D. Barbot, T. Boutat, J. Floquet, and . Richard, On Observation of Time-Delay Systems With Unknown Inputs, IEEE Transactions on Automatic Control, vol.56, issue.8, pp.1973-1978, 2011.
DOI : 10.1109/TAC.2011.2142590

URL : https://hal.archives-ouvertes.fr/inria-00589916