Skip to Main content Skip to Navigation
Conference papers

Feature selection for high dimensional regression using local search and statistical criteria

Julie Hamon 1, 2 Clarisse Dhaenens 1, 2 Gaël Even 3 Julien Jacques 4, 5
1 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
5 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, METRICS - Evaluation des technologies de santé et des pratiques médicales - ULR 2694, Polytech Lille - École polytechnique universitaire de Lille, Université de Lille, Sciences et Technologies
Abstract : Genomic selection is a genetic evaluation of animals from their DNA, based on a huge number of markers covering the whole genome. It requires advanced approaches and in particular feature selection methods. Feature selection is a combinatorial problem that may be addressed by combinatorial optimization methods. We propose to combine an iterated local search (ILS) with a statistical evaluation of a multivariate regression and we compared three criteria in order to analyse their impact on the performance of the local search.
Complete list of metadata

Cited literature [6 references]  Display  Hide  Download

https://hal.inria.fr/hal-00749708
Contributor : Julie Hamon <>
Submitted on : Tuesday, March 5, 2013 - 9:25:24 AM
Last modification on : Monday, August 23, 2021 - 1:28:01 PM
Long-term archiving on: : Thursday, June 6, 2013 - 3:56:05 AM

File

julieHamon_meta2012.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00749708, version 2

Citation

Julie Hamon, Clarisse Dhaenens, Gaël Even, Julien Jacques. Feature selection for high dimensional regression using local search and statistical criteria. International Conference on Metaheuristics and Nature Inspired Computing, Oct 2012, Port El-Kantaoui, Tunisia. ⟨hal-00749708v2⟩

Share

Metrics

Record views

524

Files downloads

540