Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling

Abstract : Statistical models for networks have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are explicitly designed for capturing some specific graph properties (such as power-law degree distributions), which makes them unsuitable for application to domains where the behavior of the target quantities is not known a priori. The key contribution of this paper is twofold. First, we introduce the Fiedler delta statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random field model, which allows for efficient estimation of edge distributions over large-scale random networks. After analyzing the dependence structure involved in Fiedler random fields, we estimate them over several real-world networks, showing that they achieve a much higher modeling accuracy than other well-known statistical approaches.
Type de document :
Communication dans un congrès
Neural Information Processing Systems (NIPS), Dec 2012, Lake Tahoe, United States. MIT Press, 25, 2012, Advances in Neural Information Processing Systems
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00750345
Contributeur : Antonino Freno <>
Soumis le : jeudi 22 novembre 2012 - 15:15:14
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : samedi 23 février 2013 - 02:40:10

Fichier

extended_paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00750345, version 1

Collections

Citation

Antonino Freno, Mikaela Keller, Marc Tommasi. Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling. Neural Information Processing Systems (NIPS), Dec 2012, Lake Tahoe, United States. MIT Press, 25, 2012, Advances in Neural Information Processing Systems. 〈hal-00750345〉

Partager

Métriques

Consultations de la notice

370

Téléchargements de fichiers

152