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Second order optimization of mutual information
for real-time image registration

Amaury Dame, Eric Marchand

Abstract—In this paper we present a direct image registration
approach that uses Mutual Information (MI) as a metric for
alignment. The proposed approach is robust, real-time and gives
an accurate estimation of a set of 2D motion parameters. MI
is a measure of the quantity of information shared by signals.
Although it has the ability to perform robust alignment with
illumination changes, multi-modality and partial occlusions, few
works propose MI-based applications related to spatio-temporal
image registration or object tracking in image sequences due to
some optimization problems that we will explain.

In this work, we propose a new optimization method that is
adapted to the MI cost function and gives a practical solution for
real time tracking. We show that by refining the computation of
the Hessian matrix and using a specific optimization approach,
the registration results are far more robust and accurate than
the existing solutions while the computation is cheaper. A new
approach is also proposed to speed up the computation of
the derivatives and keep an equivalent optimization efficiency.
To validate the advantages of the proposed approach, several
experiments are performed.

Index Terms—Mutual information, registration, tracking, op-
timization.

I. INTRODUCTION

IMage registration goal is to geometrically align two im-
ages acquired at different time and from different camera

viewpoints [5], [40]. Considering a displacement model, this
alignment process requires the optimization of a similarity
measure. Various registration problems can be considered.
First, one can consider the case where a wide baseline between
two viewpoints is available. In this case, most of the ap-
proaches consist of the following steps: features or landmarks
detection, features matching, displacement/transformation es-
timation. Possible applications for such registration methods
include stereo-mapping to recover depth from disparities,
remote sensing, mosaicing of a large area, medical image
registration, etc. A good survey of such techniques is proposed
in [40]. The second group of registration problem, also known
as tracking, considers image sequence analysis where images
differ only slightly and assumptions about smooth changes
are justified. Although wide baseline registration techniques
still apply, since a continuous motion is assumed from frame-
to-frame, other methods can be proposed and only a small
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increment of the transformation parameters has then to be
estimated. Possible applications are motion estimation, video
mosaicing, augmented reality, etc.

In this paper, we shall consider only registration in image
sequences. Such approach which can be seen as a 2D motion
estimation issue is also often referred as direct tracking or
region tracking methods. Major difficulties in such a reg-
istration process are image noise, illumination changes and
occlusions. Along with robustness to such perturbations, our
motivation is to focus on registration and tracking considering
different sensor modalities (eg, infra-red and visible images).
The choice of a robust similarity measure is then fundamental.
In this paper a process based on mutual information [32], [39]
is proposed.

Most of the available direct tracking techniques can be
divided into two main classes: feature-based and model-based
registration method. The former approach focuses on tracking
2D features such as geometrical primitives (point, segments,
circles, etc.) or object contours (such as active contours). The
latter explicitly uses a model of the scene. This model can be
a 3D model leading to a pose estimation process defined as a
registration between the measures in the image and the forward
projection of the 3D model [15][11]. One can also consider
2D models. Within this category, the features to be tracked
can be represented by a descriptor. These descriptors can be
image histograms leading to mean shift like approaches [10] or
point neighborhood leading to keypoint tracking by matching
approaches [23][21]. Following a statistical approach, [4]
proposes an approach that merges both a level set approach
and histogram-based approach to solve the registration prob-
lem. While very robust, these approaches are nevertheless
not prone to the estimation of complex movements. In this
attempt, it is possible to consider that the 2D model is a
reference image (or a template). In that case, the goal is
to estimate the motion (or warp) between the current image
and a reference template. An example of such approaches are
differential image registration methods such as the KLT [24]
or its sequels [28][17][1][2][20][3]. Those approaches are not
limited to 2D motion estimation, considering for example the
motion of a planar object in the image, it is indeed possible to
retrieve its 3D motion. The approach described in this paper
is related to this last category of registration methods.

In the context of “KLT-like approaches”, a measure of
the alignment between the reference image and the current
image and its derivatives with respect to the motion (warp)
parameters is used within a non-linear estimation process to
estimate the current object motion. What seems to be a well
adapted measure is the standard Sum of Squared Differences
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(SSD) function [24][1]. But such approaches are not effective
in the case of illumination changes and occlusions. Several
solutions have been proposed to add robustness toward those
variations. Some include the use of M-estimators to deal with
occlusions [28][17] or add new parameters to estimate the
illumination variations [17][33]. One can also consider local
normalized cross correlation (NCC) [18] or ZNCC to replace
SSD.

In this paper, our goal is: first to have an image registration
approach that is robust to environmental variations and second,
that can handle multi-modality. The proposed solution is then
no longer to minimize the SSD but to consider a more robust
alignment function, the Mutual Information (MI) between the
reference image and the current image, that is defined by the
information shared by them and maximize it. MI has been in-
troduced in the context of information theory by Shannon [32].
It has been later considered as an image similarity measure
back in the mid ninety’s independently by Collignon [9] for
tomographic image registration, Studholme [34] for MR and
CT image, an by Viola [38] for projection image. Since then
MI has become a classical similarity measure especially for
multi-modal registration techniques [30] (eg, for medical or
remote sensing applications). MI has proved to be robust
to occlusions and illumination variations and, therefore, it
can be also considered as a good alignment measure for
image tracking. Nevertheless, to date only few works fea-
tures mutual information within a frame-to-frame tracking
method [8], [13], [14], [29]. To be used efficiently within
a template tracking algorithm (such as [2]), an optimization
technique has to be considered. Various approaches have been
proposed: first-order gradient descent [39], multi-resolution
hill climbing algorithm [34] or simulated annealing tech-
niques [31]. Powell’s [9], [25] or Simplex [27], [8] methods
(which do not require function derivatives to be analytically
expressed) have been very popular in MI optimization but the
former is sensitive to local optima in the registration criterion
whereas the latter is known to be computationally inefficient.
Considering that MI computation is evaluated from the joint
image intensity histogram, an analytic derivative of the mutual
information is difficult to obtain. In order to compute MI
derivatives, [26] introduces partial volume interpolation for
the construction of the joint histogram leading to an analytic
computation of MI gradients. In [36], the authors formulate the
mutual-information criterion as a continuous and differentiable
function of the registration parameters using B-Spline Parzen
windows. These derivatives are then used in a Levenberg-
Marquardt like minimization method. Such a formulation has
been considered within a motion estimation process (or camera
tracking) in [13], [14], [29]. However the existing approaches
are not taking full advantage of the accuracy of MI nor are they
appropriate for real-time applications especially if a complex
motion model is considered.

In this paper we present a MI-based image alignment. An
important contribution is to propose an optimization process
adapted to the MI cost function. We propose an inverse
compositional optimization approach [2] where an important
part of the required derivatives can be precomputed, resulting
in small computation times. A precise, complete and efficient

computation of the Hessian matrix is described. We show that
the inverse compositional approach allows the estimation of
the Hessian matrix after convergence that can be used in a
Newton’s like approach to give an accurate and fast estimation
of the displacement parameters. Finally a new approach is
proposed to speed up the computation of the derivatives
through a selection of the reference pixels making the image
alignment process possible at video-rate.

In the remainder of this paper, Section II presents an
overview of the differential image registration approaches. In
section III, a brief introduction on information theory is given
with the definition of mutual information, then a formulation
adapted to the differential alignment method is presented.
Section IV deals with the optimization of the resulting mutual
information function with respect to the motion parameters
to estimate. Finally section V presents several image regis-
tration or template tracking experiments including the Metaio
benchmark and demonstrates the multi-modal capability of the
approach.

II. DIFFERENTIAL TEMPLATE-BASED IMAGE
REGISTRATION

Differential image alignment [2] (or template tracking) is
a class of approaches based on the optimization of an image
registration function.

The goal is to estimate the displacement p of an image
template I∗ in a sequence of images. Considering a frame-to-
frame tracking process, the template I∗ is usually a region of
interest extracted from the very first image of the sequence. In
the case of a similarity function f , the problem can be written
as :

p̂t = arg max
p

f(I∗, w(It,p)). (1)

where we search the displacement p̂t that maximizes the
similarity between the template I∗ and the warped current
image It. In the case of a dissimilarity function the problem
would be simply inverted in the sense that we would search
the minimum of the function f . For the purpose of clarity,
the warping function w is here used in an abuse of notation
to define the overall transformation of the image I by the
parameters p. Afterwards, its proper formulation will be
preferred using w(x,p) to denote the position of the point
x transformed using the parameter p.

The displacement parameters p can be of high dimension.
For instance, the experiments that will be presented at the
end of the paper consider a homography transformation that
corresponds to p ∈ sl(3) that is 8 parameters. Approaches
such as an exhaustive search of p̂ are thus too expensive if
not impossible.

To solve the maximization problem, the assumption made
in the differential image registration approaches is that the
displacement of the object between two consecutive frames
is quite small. The previous estimated displacement p̂t−1 can
therefore be used as first estimation of the current displacement
to perform the optimization of f and incrementally reach the
best estimation p̂t.
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Multiple solutions exists to compute the update of the
current displacement parameters and perform the optimization.
Baker and Matthews showed that two formulations were
equivalent [1] depending on whether the update is acting on
the current image or the reference. The former is the direct
compositional formulation which considers that the update is
applied to the current image, thus we search the update ∆p
that maximize f as:

∆pk = arg max
∆p

f(I∗, w(w(It,∆p),pk)). (2)

This equation is typically solved using a Taylor expansion
where the update is computed with the function derivatives
with respect to ∆p. For a pixel x, the update of the current
parameters pk is then applied as follows:

w( w(x,∆p),pk)→ w(x,pk+1). (3)

A second equivalent formulation is the inverse compositional
formulation which considers that the update modifies the
reference image, so that ∆p is chosen to maximize:

∆pk = arg max
∆p

f(w(I∗,∆p), w(It,p
k)). (4)

In this case the current parameters will be updated using:

w( w−1(x,∆pk),pk)→ w(x,pk+1). (5)

In the inverse compositional formulation, since the update
parameters are applied to the reference image, the derivatives
with respect to the displacement parameters are computed us-
ing the gradient of the reference image. Thus, these derivatives
can be partially precomputed and the algorithm is far less time
consuming. Since we are interested in a fast estimation of the
displacement parameters, the remainder of the paper will focus
on the later inverse compositional approach.

One essential choice remains the one of the alignment
function f . One natural solution is to choose the function f as
the sum of squared differences (SSD) of the pixel intensities
between the reference image and the transformed current
image:

p̂t = arg min
p

(SSD(I∗, w(It,p))) (6)

= arg min
p

∑
x∈W

(I∗(x)− It(w(x,p)))
2 (7)

where the summation is computed on each point x of the
reference template that is the region of interest (W) of the
reference image. As suggested by its definition, this dissimi-
larity function is very sensitive to occlusions and illumination
variations. Many solutions have been proposed to robustify
the SSD. M-estimators can robustify the least squared problem
toward occlusions [17], while a model of illumination changes
can be coupled with the motion model to create a tracker
robust to lighting changes [33]. Nevertheless those solutions
are complex since additional parameters have to be estimated
and aligning two images acquired using different modalities
of acquisition remains impossible.

Let us for example consider an aerial image and a map
template (see figure 1(a)). Considering these two modalities is
obviously an extreme case, but it will emphasize the robustness

of the MI with respect to other similarity function. The value
of SSD is computed with respect to the translations between
the map and the satellite image. The two images are showing
the same place (at least for a human eye they contain the same
“information”), however, since the link between the intensities
of the pixels is not linear, the SSD function represented in
figure 1(b) gives no information on the alignment between the
two images. Since NCC and ZNCC have shown some very
good results in multi-modal alignment problems [18], we also
evaluated the ZNCC efficiency in that matter. We can see in
figure 1(c) that the case is too extreme and that ZNCC has
also no significant optimum and therefore can not be used in
this registration task.

To deal with occlusions, illumination variations and multi-
modality, we propose to define our alignment function as the
mutual information [32], [39]. Originating from the informa-
tion theory, MI is a measure of statistical dependency between
two signals (or two images in our case) that is, as we will see,
robust to all this variations of appearance.

III. MUTUAL INFORMATION

Rather than comparing intensities, mutual information is the
quantity of information shared between two random variables.
Mutual information of two random variable I and I∗ is then
given by the following equation[32]:

MI(I, I∗) = h(I) + h(I∗)− h(I, I∗). (8)

where the entropy h(I) is a measure of variability of a random
variable I (signal, image...). If r are the possible values of I
and pI(r) = P (I = r) is the probability distribution function
of r, then the Shannon entropy h(I) of a discrete variable I
is given by the following expression:

h(I) = −
∑
r

pI(r) log (pI(r)) . (9)

The probability distribution function of the gray-level values is
then simply given by the normalized histogram of the image
I . The entropy can therefore be considered as a dispersion
measure of the image histogram.

Following the same principle, the joint entropy h(I, I∗) of
two random variables I and I∗ can be defined as the variability
of the couple of variables (I, I∗). The Shannon joint entropy
expression is given by:

h(I, I∗) = −
∑
r,t

pII∗(r, t) log (pII∗(r, t)) (10)

where r and t are respectively the possible values of the
variables I and I∗, and pII∗(r, t) = P (I = r ∩ I∗ = t) is
the joint probability distribution function. In our problem I
and I∗ are images. Then r and t are the gray-level values of
the two images and the joint probability distribution function is
a normalized bi-dimensional histogram of the two images. As
for entropy, joint entropy corresponds to a dispersion measure
of the joint histogram of (I, I∗). If this expression is combined
with the previously defined differential motion estimation
problem, we can consider that the image I is depending on the
displacement parameters p. If we use the same warp function
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(a) (b) (c) (d)

Fig. 1. Alignment functions wrt. translations between two images from the same area: (a) aerial image and the map reference. MI shows a maximum near
zero translation at the alignment position whereas SSD and ZNCC gives no clear information on the alignment quality.

notation as in section II, the mutual information can thus be
written with respect to p:

MI(p) = MI(w(I,p), I∗)

= h(w(I,p)) + h(I∗)− h(w(I,p), I∗). (11)

The final expression of MI is obtained by developing the
previous equation using the entropy equations (9) and (10):

MI(p) =
∑
r,t

pII∗(r, t,p) log

(
pII∗(r, t,p)

pI(r,p)pI∗(t)

)
(12)

The analytical formulation of a normalized histogram of an
image I∗ is classically written as follows:

pI∗(t) =
1

Nx

∑
x

φ
(
t− I∗(x)

)
(13)

pI(r,p) =
1

Nx

∑
x

φ
(
r − I(w(x,p))

)
(14)

pII∗(r, t,p) =
1

Nx

∑
x

φ
(
r − I(w(x,p))

)
φ
(
t− I∗(x)

)
where x are the points of the region of interest in the image
and Nx is the number of points. r and t are the possible
values of I(x) and I∗(x) that are the scaled version of
the original images, so that {r, t} ∈ [0, Nc]

2. Let us note
that to have a smooth mutual information it is important to
maintain the number of histogram bins Nc low (Nc = 8
in our implementation). In the classical formulation φ is a
Kronecker’s function: φ(x) = 1 for x = 0 and φ(x) = 0
otherwise. So that, for instance, each time I∗(x) = i the
ith histogram bin value of pI∗ is incremented. However this
formulation does not take advantage of the decimal part of
the scaled intensities, therefore several solutions have been
proposed to simultaneously smooth the mutual information
function, make its formulation differentiable and keep its
accuracy [39][25]. Several approaches propose to use Gaussian
function, however, in our approach, we focus on the use
of B-splines functions for φ [25], [36]. It has indeed been
shown that these functions provides a good approximation of
Gaussian functions while their computation and the one of
their derivatives is cheaper. As it will be discussed later, this
also permits to have a smooth, accurate but computationally
cheap gradient of MI to perform its optimization.

IV. MUTUAL INFORMATION-BASED MOTION ESTIMATION

In this section we will see how to use the MI cost function
with the differential image registration formulation presented

in section II. Once our approach is fully defined, a pseudo-code
of the algorithm is given to summarize the proposed method.

A. Overview

The goal of our tracking problem is to align an image
template I∗ with an input image I . If we assume that the
reference template appears in I , the goal is to search for the
transformation that aligns the pixels x of the reference image
I∗ to the corresponding pixels x′ of I in the sense of our
chosen similarity measure. Assuming that the transformation
from the reference points to the input image can be modeled by
a warp function x′ = w(x,p), the problem can be formulated
as:

p̂ = arg max
p

MI (I∗(x), I(w(x,p))) (15)

Since this problem is impossible to solve linearly, a non-linear
optimization is performed. To initialize the optimization, a
first guess of the displacement parameters is required. Since
we suppose that the displacement of the object between
two consecutive frames is small, a good approximation is
to approximate the parameter pt of the input image It at a
time t using the parameters estimated for the previous frame:
pt = p̂t−1.

To initialize the whole tracking approach, the position of the
template in the first image I0 has to be known coarsely. Since
the first image of the sequence is usually the one that defines
the template I∗, the first displacement parameters p0 between
the template and the first image simply correspond to an
identity transformation (considering the warp functions defined
in the first chapter it yields: p0 = 0). Otherwise, the first
estimation can be performed using some matching process,
such as a keypoints matching approach [23], [21] or other wide
baseline registration method. The first approximation of the
displacement p0

t = p̂t−1 is then refined using the numerical
resolution of the equation (15). To solve the maximization, an
iterative optimization method is used that successively goes
closer and closer to the optimum of the cost function p̂t
(see Figure 2). For a clarity purpose, let us now consider the
maximization peculiar to one image I (we drop the subscript t)
and focus on the iteration number noted using the superscript
k.

Let us recall that for efficiency issue, we chose to consider
an inverse compositional approach. The difference with the
forward compositional approach comes from the optimization
process where the updating steps from the current guess to
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Previous image It−1 Current image It

Fig. 2. The first approximation of the position p0
t , given by the previous

position p̂t−1, is iteratively refined to find the optimal parameters p̂t.

the optimal displacement parameters are modified. Instead of
searching the update parameters that will bring the warped
points of the current image into the points of the template
image, the formulation of the problem is inverted so that
we search the “inverse” update that brings the points of the
template image into the warped points of the current image.
In the inverse compositional approach [2], the goal is then
formulated as finding the update ∆p that leads to the optimum,
so that, at each iteration k, we seek (see Section II for details):

∆pk = arg max
∆p

MI
(
I∗(w(x,∆p)), I(w(x,pk))

)
(16)

The optimization using this formulation is similar to the
optimization using the forward compositional approach. Nev-
ertheless, since the update is considered to affect the reference
image, we will see that more elements of the mutual informa-
tion derivatives with respect to the update can be precomputed.

B. Derivative function analysis

Let us remind that the goal is to estimate the displacement
parameters pt that maximizes the MI using a first estimation of
the parameters pt−1 and an iterative update of the parameters.
In this work we ought to register planar regions through
3D displacements. This problem implies a strong correlation
between the elements of the vector p. Therefore, estimating the
update using first-order optimization method such as a steepest
gradient descent is not adapted. Such non-linear optimization
are usually performed using a Newton’s method that assume
the shape of the function to be parabolic.

Newton’s method uses a second order Taylor expansion at
the current position pk−1 to estimate the update ∆p required
to reach the optimum of the function (where the gradient
of the function is null). The same estimation and update
are performed until the parameter pk effectively reaches the
optimum. The update is estimated following the equation:

∆p = −H−1G> (17)

where G and H are respectively the gradient and Hessian
matrices of the mutual information with respect to the update
∆p. Following the inverse compositional formulation defined
in equation (4) those matrices are equal to:

G =
∂MI(w(I∗,∆p), w(I,p))

∂∆p
(18)

H =
∂2MI(w(I∗,∆p), w(I,p))

∂∆p2
(19)

Applying the derivative chain rules to equation (12) yields
the following gradient and Hessian matrices:

G =
∑
r,t

∂pII∗

∂∆p

(
1 + log

(
pII∗

pI∗

))
(20)

H =
∑
r,t

∂pII∗

∂∆p

> ∂pII∗

∂∆p

(
1

pII∗
− 1

pI∗

)
+
∂2pII∗

∂∆p2

(
1 + log

pII∗

pI∗

)
(21)

For the purpose of clarity, the marginal probabilities and
joint probability that are actually depending on r, t, p * and
∆p are simply denoted as pI , pI∗ and pII∗ . The details of the
calculation from equation (18) to equation (21) can be found
in [13].

By analogy with the Hessian computation in a Gauss-
Newton’s method for a least squared problem that is assuming
that the neglected term is null after convergence, second
order derivatives are usually neglected in the Hessian matrix
computation [36], [37], [13], [14] leading to:

H '
∑
r,t

∂pII∗

∂∆p

> ∂pII∗

∂∆p

(
1

pII∗
− 1

pI∗

)
. (22)

In our approach we compute the Hessian matrix using the
second order derivatives. In our point of view, they are required
to obtain a precise estimation of the motion. Indeed, let us
consider the approximation made in (22). Considering the ex-
pression of the marginal probability pI∗(t) =

∑
r pII∗(r, t), it

is clear that pI∗(t) > pII∗(r, t) so 1/pII∗(r, t)−1/pI∗(t) > 0.
Since ∂pII∗

∂∆p

> ∂pII∗
∂∆p is a positive matrix then the final Hessian

matrix given by (22) is positive. Since the goal is to maximize
MI, the Hessian matrix after convergence is supposed to be
negative by definition. The common approximation of (22) is
thus not suited for the optimization of MI.

As we can see in equation (20) and equation (21), the
derivatives of the mutual information depend on the derivatives
of the joint probability. Using the previous definition in (14)
and passing the derivative operator through the summation
yields the following expressions:

∂pII∗

∂∆p
=

1

Nx

∑
x

φ
(
t− I(w(x,p))

) ∂φ (r − I∗(w(x,∆p))
)

∂∆p

∂2pII∗

∂∆p2
=

1

Nx

∑
x

φ
(
t− I(w(x,p))

) ∂2φ
(
r − I∗(w(x,∆p))

)
∂∆p2

.

(23)

The remaining expressions to evaluate are the variations
of the B-spline function φ with respect to the update. Their
derivatives are obtained using the chain rule leading to:

∂φ(r − I∗(w(x,∆p)))

∂∆p
= −∂φ

∂r

∂I∗

∂∆p
(24)

∂2φ
(
r − I∗(w(x,∆p))

)
∂∆p2

=
∂2φ

∂r2

∂I∗

∂∆p

>
∂I∗

∂∆p
− ∂φ

∂r

∂2I∗

∂∆p2
.

(25)
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Finally the derivatives of the reference image intensity with
respect to the update parameters ∆p is given by the following
expressions:

∂I∗

∂∆p
= ∇I∗ ∂w(x,p)

∂∆p
(26)

∂2I∗

∂∆p2
=

∂w

∂∆p

>
∇2I∗

∂w

∂∆p
+∇I∗x

∂2wx
∂∆p2

+∇I∗y
∂2wy
∂∆p2

(27)
where ∇I∗ are the image gradients of the reference image,
obtained using the convolution of a Gaussian filter and a
derivative filter, the Gaussian filter allowing for a smoother
version of the gradients. The motivation for using the inverse
compositional formulation is then obvious. The derivatives of
the warp function are all computed at ∆p = 0, their values are
then constant for each pixels of the template. Moreover, since
the reference image I∗ is constant, its gradients and all the
expressions from equation (24) to equation (27) are constants
and have to be precomputed only one time.

In our work we focus on planar region registration. The
warp function is thus defined by the group action w : SL(3)×
P2 with x ∈ P2 and p defines the 8 parameters of the sl(3) lie
algebra associated to the SL(3) group. However, this research
is not limited to such a warp function thus details will not
be given on the warp derivatives. All details regarding the
derivatives of the chosen warp function can be found in [3].

Let us emphasize that any kind of warp model can be
considered. Although homography have been considered in
this paper, it can also be applied on affine motion model [12],
pose parameters SE(3)[29][7] and other motion models. The
method could also be extended to non-rigid registration pro-
cess. In that case, specific local distortions have to be consid-
ered. Radial basis functions (such as Wendland’s function or
thin-plate splines) are able to handle locally varying geometric
distortions and can be considered within the proposed frame-
work. In any cases, although the main algorithm will remain
unchanged, the only modification will be to redefine the warp
derivatives.

C. Optimization approach

The Newton’s method that can be used to perform the
estimation of the update parameters ∆p is based on the
assumption of a similarity function with a parabolic shape.
One can immediately notice that this assumption can be easily
violated by looking at the function’s shape where we see that
the assumption is correct only near the maximum. Since the
violation could cause the Newton’s method to fail, a better
approach has to be found.

To evaluate the efficiency of the following optimization
methods, a set of alignment experiments has been realized. The
goal is to estimate the known position p∗ of a template in an
image (see figure 4(a)) from many initial position parameters
(see figure 4(b)). The initial parameters are automatically gen-
erated applying a random noise to the ground truth position.

The convergence rate of the optimization method are then
evaluated with respect to the initial positioning error. The
positioning error err is defined as the RMS distance between
the correct position of some reference points x∗i = w(xi,p

∗)

and the current position of the points w(xi,p) [22]. The
reference points are simply chosen as the 4 corners of the
template so that the error becomes:

err(p) =

√√√√ 4∑
i=1

‖x∗i − w(xi,p)‖ (28)

We consider that the optimization converges as soon as the
error err is below 0.5 px. 500 alignment experiments are
performed for each initial positioning error err from 1 to 20
that is a total of 10000 experiments. As output we retrieve the
convergence rate, the average number of iterations required
to reach convergence, the final residues after convergence and
the computation time of each iteration. Indeed, those values
gives a good overview of the efficiency of the optimization
methods.

The Gradient descent method cannot estimate an accurate
estimation of the homography (see section IV-B). Indeed its
use gives a final estimation with an error always above 0.5 px
for the all set of experiments (that is a 0% convergence rate).
Thus the results have not been included in figure 4.

1) Newton’s method: Mutual information function is a
quasi-concave function, thus the parabolic hypothesis of the
Newton’s method is only valid near the convergence. As soon
as the displacement in the sequence is important, the initial
parameters pt−1 would be on the convex part of the cost
function that will cause the optimization to diverge.

The problem is in fact equivalent using a SSD function.
One example of the values obtained on the estimation of a
translational displacement is presented in figure 3 for both
the MI function and the minus of the SSD function. For the
purpose of clarity, we choose to analyze the minus of the
SSD function to deal with a maximization for both functions.
The quasi-concave shape of both functions is obvious. The
parabolic assumption is only correct for the concave part
of the function, that is where their second order derivatives
are negative (the area highlighted in purple). Therefore the
convergence domain using a classical Newton’s method would
be very small.

Figure 4(c) shows the convergence results obtained using
our set of convergence tests. The convergence domain of
the Newton’s method is indeed practically very small in the
case of the homography estimation. As soon as the initial
error exceeds 2 px, the initial parameters are, most of the
time, out of the convergence domain of the Newton’s method
and the convergence rate decreases drastically. Considering
the converging experiments, then once the convergence is
achieved, the parabolic shape assumption is verified and the
method gives good quality estimation with a mean final residue
of 0.06 px. However, it is rarely the case and the computation
of the Hessian at each iteration makes the process really time
consuming (see figure 5 for the time per iteration).

Considering the simple one dimensional example, one could
expect an optimization that has a convergence domain as wide
as the one of the gradient descent method (the blue area in
figure 3).

2) Conditioning the optimization: In this section, we show
how to combine the convergence domain of the gradient
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Fig. 3. SSD, MI and their derivatives with respect to one translation (px). The purple area is the convergence domain using a classical Newton’s method,
the blue one is the convergence domain of a Gradient descent method. The proposed method keeps the wider convergence domain of the gradient’s method
in blue, while having the convergence properties of the Newton’s method near the optimum, allowing an accurate estimation of complex transformations.

Ground truth Initial positions (err = 20px)
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Fig. 4. Empirical convergence analysis of the optimization methods. The
proposed methods (blue and green curves) have a very high convergence rate
compared to the classical Newton’s methods (red curve).

Newton Inverse Inverse fast
Time/iteration (ms) 13.4 5.1 3.5

Fig. 5. Average time in ms required to compute one update ∆p of the
optimization methods.

descent with the accuracy and efficiency of the Newton’s
method for the optimization of MI. In registration problems
formulated with a SSD function, the Gauss-Newton approxi-
mation condition the problem by estimating a Hessian matrix
that is always definite positive (see section IV-B and the green
curve in figure 3) and that is a good approximation of the exact
Hessian matrix after convergence. Therefore its use permits to
have a convergence domain as wide as the one with a gradient
method (blue area) and a good convergence behavior next to
the optimum yielding to accurate estimations.

In the mutual information maximization, the problem is
different. Indeed approximating the Hessian matrix as it is
proposed in [36], [13], [14] do not gives an estimation of the
Hessian matrix after convergence (see the green curve in 3
for the MI function). No approximation on the Hessian of MI
simplifies the problem as the Gauss-Newton approach does for
the SSD.

The solution that we propose is inspired from the Gauss-
Newton approach. The idea remains to use an estimation of the
Hessian matrix after convergence. To compute this estimation

we consider that after convergence the alignment between the
template and the warped current image is perfect. Therefore
we simply assume that at the optimum we have I(w(x,p)) =
I∗(x).

This solution has several advantages:
• It gives a definite negative Hessian matrix that yields to

have a wide convergence domain (blue area in figure 3).
We can notice that the resulting convergence domain is as
wide as the one of the SSD function in the considered 1D
example. In section V-A2, further experiments will show
that it is also the case for a homography estimation.

• Since the Hessian matrix used in the Newton’s method
is the Hessian matrix after convergence, the behavior of
the optimization near convergence is optimal and the final
estimated displacement parameters are very accurate.

• This approach has the advantage of its computation time.
In the classical Newton’s method the Hessian and Jaco-
bian are computed for each iterations. In the proposed
approach the Hessian matrix is computed one time in the
whole experiment.

The proposed optimization has been evaluated on the set of
experiment presented in figure 4. As expected, the convergence
domain is larger than the one using the classical Newton’s
method. The optimization converges for all the experiments
with an initial error below 16px and the convergence rate
slightly decreases for err > 16. Since we use the Hessian
estimated after convergence, then the behavior near the opti-
mum is suited to reach an accurate solution yielding to final
residues that have a mean of 0.06 px.

Figure 4(d) shows the number of iterations to reach conver-
gence. The number of iterations with the proposed method is
fewer than the one with the classical Newton’s method while
its computation is much cheaper (see figure 5).

3) Improving the computation time: Compared to a simple
least squared problem, mutual information can still be consid-
ered as a very complex function to compute. The proposed
approach offers already a practical solution. Nevertheless,
faster performance is sometimes desired.

To compute the MI between the two images, all the infor-
mation is required, so all the reference pixels must be used
to compute the marginal and joint probabilities. As for the
variation of the mutual information computation, only the
motion of the pixels that are not in a uniform region will
have a strong effect. This fact is obvious from equation (26)
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and (27). One very simple modification is then to perform the
computation of the gradient and Hessian using only a selection
of pixels in the template.

A simple measure to determine if a point is in a uniform
region of the template is given by the norm of the reference
image gradients. Therefore the selection condition can be
written as:

‖∇I∗(x)‖ > α (29)

where α is a given threshold. The summation in equation (23)
is therefore computed on the reference pixels that respect this
condition.

The efficiency of the proposed approach has been compared
to the previous one using the set of experiments represented
in figure 4. Using a threshold α = 6, the selected number
of points corresponds to 18% of the total number of reference
points. We can see on figure 4(c & d) that the convergence rate
and the number of required iterations is equal to the ones of
the previous method up to few percent and iterations. Curves
“proposed” and “fast proposed” are superimposed meaning
precision efficiency remains the same (the final residues still
has a mean value of 0.06 px) whereas computational efficiency
greatly improves: 3.5ms per iteration vs 5.1ms (see figure 5)
for the same number of iterations (see figure 4(d) ).

In summary, for a similar efficiency, the computation time
of the proposed method is 30% smaller (see figure 5). Such
a selection method is therefore highly recommended in MI
derivatives computation.

To summarize the whole process, a pseudocode of the
algorithm is presented in Figure 6 in the case of a classical
image registration task.

V. EXPERIMENTAL RESULTS

The differential image registration method that is presented
in this paper has been implemented on a laptop with a 2.4GHz
processor. The evaluation of the displacement parameters has
been performed using the presented inverse compositional
scheme combined with a pyramidal approach that increases
the convergence domain and speeds up the convergence of the
optimization. We limit our experiments to the estimation of
the displacement of planar image regions.

A. Mono-modal image alignment

The robustness and accuracy of the proposed method have
been evaluated on various image sequences.

1) Image alignment through natural variations: This ex-
periment concerns an indoor sequence acquired at video rate
(25Hz). The initialization of the registration process has been
performed by learning the reference image from the first image
of the sequence and setting the initial homography to an
identity. The template includes 16000 reference pixels.

The sequence has been chosen to illustrate the robustness
of the motion estimation through many perturbation. Some
images of the sequence are shown in figure 9. Firstly, the
object is subject to several illumination variations: the artificial
light produced an oscillation on the global illumination of the
captured sequence. Moreover the object is not Lambertian,

thus the sequence is subject to saturation and specularities
(see figure 9 frame 200). The object is moved from its initial
position using wide angle and wide range motions (figure 9
frame 400). And finally the object is subject to fast motion
causing a significant blur in many images (figure 9 frame 600).

The frames of the sequence are presented with the cor-
responding estimated positions of the reference image. No
ground truth of the object position is known, however, the
projection of the tracked image on the reference image has
been performed and qualitatively attests the accuracy of the
registration process. Indeed the reconstructed templates show
strong variations in terms of appearance but not in terms of
position. We can conclude that the estimation of the motion is
robust and accurate despite the strong illumination variations
and blurring effects.

Concerning the processing time, using the proposed ap-
proach with no selection of the reference points (sec-
tion IV-C2), the images are processed at video rate (25Hz).
Using the fast computation (section IV-C3) it is about 40Hz.
All the corresponding sequences are presented in the attached
video.

In this experiment, we see that even if nothing guaranties
that the optimization reaches the global maximum, the pro-
posed computation of MI has such a wide maximum that it
yields to a really robust approach. If nonetheless the conver-
gence had to be verified, a solution could be to use a parallel
tracking by matching approach [23] and check if we can find
a better match (an higher MI score) than the one estimated in
the non-linear optimization.

2) Evaluation on benchmark datasets: To have a quanti-
tative measure of its accuracy and robustness, the registration
process has been evaluated on some very demanding reference
datasets proposed by Metaio GmbH [22]. Those datasets in-
clude a large set of sequences with the typical motions that we
are suppose to face in augmented reality applications. Indeed
sequences using eight reference images from low repetitive
texture to highly repetitive texture are included. And for each
reference image is a set of four sequences depicting wide
angle, high range, fast far and fast close motion and one
sequence with illumination variations.

The estimated motion has been compared with the ground
truth for each sequences. The percentages given in the tables
have been computed by Metaio relative to their ground truth.
The upper table on figure 8 shows the results that have
been obtained using the proposed approach. The tracker is
considered as converging if the error between the estimation
and the ground truth is below a given threshold. The error
measure is similar to the one defined in equation (28). A
detailed definition is available in [22]. Some images of the
sequences are shown in Figure 7 with the estimated position of
the reference template. The mutual information based tracker
proves its robustness and accuracy on most of the sequences.

The results obtained using the ESM approach [3] reported
from [22] are also represented in the lower table of figure 8
where better convergence results are in bold characters. If we
compare the results of the two methods we can see that both
have similar convergence rates in most cases. But MI has an
undeniable advantage in the cases of illumination variations
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%Definition of the reference:
I∗ = I0;
p0 = Id;

%Precomputation of the derivatives:
for x\{‖∇I∗(x)‖ > α} do

Compute ∂φ(r−I∗(w(x,∆p)))
∂∆p ;

end for
Compute H−1 using I(w(x,p)) = I∗(x);

for each image It do
p0
t = pt−1;
k = 0;
while ∆p is significant do

Compute G;
∆p = −H−1G>;
pk+1
t = pkt ⊕∆p−1; %See equation (5)

end while
end for

Fig. 6. Pseudo-code of the proposed method to solve a classical image registration task.
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Fig. 7. Various image sequences from the Metaio dataset [22]: fast motions
(blurred images) and illumination variations. The first line represents the
image with the estimated position of the reference (in green). The second
line represents inverse projection from the image to the reference image.

experiments.
From this demanding set of experiments, we can conclude

that the proposed MI computation has a large convergence
domain (at least as large as the one in the least squared
problem) and that the proposed optimization is adapted to use
the potential of the MI function leading to a very efficient
image registration method.

B. Multi-modal image alignment

1) Satellite images versus map: This experiment illustrates
the capabilities of the presented mutual information-based
image registration process in alignment applications between
map and aerial images. The reference image is a map template
provided by IGN (Institut Géographique National) that can
easily be linked to Geographic Information System (GIS)
and the sequence has been acquired using a moving USB

MI Angle Range Fast Fast Illumination
Far Close

Low 100.0 94.1 75.2 56.5 99.5
100.0 98.1 69.9 43.7 93.0

Repetitive 76.9 67.9 22.8 63.6 100.0
91.3 67.1 10.4 70.5 96.2

Normal 99.2 99.3 43.9 86.7 99.6
100.0 100.0 14.8 84.5 100.0

High 47.1 23.2 7.2 10.0 50.6
100.0 69.8 20.8 83.8 100.0

ESM Angle Range Fast Fast Illumination
Far Close

Low 100.0 92.3 35.0 21.6 71.1
100.0 64.2 10.6 26.8 56.3

Repetitive 61.9 50.4 22.5 50.2 34.5
2.9 11.3 6.8 35.8 11.3

Normal 95.4 77.8 7.5 67.1 76.8
99.6 99.0 15.7 86.8 90.7

High 0.0 0.0 0.0 0.0 0.0
100.0 61.4 22.8 45.5 79.7

Fig. 8. Ratio of successfully registered images for our approach compared
to the ESM [22].

camera focusing on a poster representing the satellite image
corresponding to the map.

As it has been previously noticed in figure 1, a non-linear
relationship exists between the intensities of the map and aerial
image and this link can be evaluated by the MI function. Mu-
tual information can therefore allow for aligning the satellite
image using the map image. As Figure 10 shows, the selected
initial position can be rather far from the correct position.
Figure 11 shows the reference image and some images of
the sequence with the corresponding overlaid results. There
is no available ground truth for this experiment, nevertheless
the overlaid results give a good overview of the alignment
accuracy. We can also see in the attached video that the
alignment converges despite some strong blurring effects.

2) Airborne infrared image versus satellite images: The
same method has been evaluated with another current modal-
ity. This time the reference is a satellite image and the
sequence is an airborne infrared sequence provided by Thales
Optronic.

As expected, although very different, the two images shown
in figure 13 are sharing a lot of information and thus MI can
handle the registration process between the infrared sequence
and the satellite image template. The warp function is still
a homography. The airport scene is then supposed to be
planar leading to an approximation. Nevertheless the proposed
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Fig. 9. registration of a planar template through illumination variations. First row: frame 0, 200, 400 and 600. The green rectangle represents the rectangle
from the template image transformed using the estimated homography. Second row: projection of the templates for the same iterations in the reference image.

(a) Template (b) Aerial image (c) Initialization

Fig. 10. Registration of an aerial sequence with a map template image by MI: (a) the considered template to be registered with an image of an aerial view
of the same area (b) (image and map source: IGN). (c) Shows the initialization process (corresponding to one step of the tracking algorithm. It allows to
show that the convergence domain is quite large despite the fact that the images are very different.

Fig. 11. Registration of an aerial sequence with a map template image by MI: frames 1, 250, 500 and 750 are represented with the over-imposed satellite
reference (inside the green rectangle) projected using the estimated homography (image and map source: IGN) .

method remains robust. No ground truth is available, but the
overlaid images qualitatively validates the accuracy of the
registration process.

Fig. 12. From the homography to the estimation of the camera position.
Green curve: estimated camera trajectory in the 3D space, blue: the 6 esti-
mated camera positions corresponding to the frames represented in figure 13.

The homographies have been decomposed to estimate the
position of the plane with respect to the airport. The resulting
3D trajectory of the camera is represented in figure 12, as
we can see the trajectory is smooth and has the expected

behavior that shows the approach of a plane with respect
to the runway. The trajectory of the camera with respect to
the time is presented in the attached video. Figures 13 also
shows some registered images that validate the accuracy of
the motion estimation. The complete sequences are visible in
the attached video.

To illustrate the improvements led by our approach Fig-
ure 14 shows the difference between a classical first order
maximization approach using MI [13] (first row) and the
proposed one (second row) that considers the full computation
of the Hessian. Small registration errors can be observed when
considering the classical approach while using a complete
Hessian allows a better estimation of the transformation. Plots
on the right of Figure 14 show the estimated altitude of the
camera/plane (up to a scale factor) during the landing step. One
can see, that in the first case, the estimation of the trajectory
is noisy while with our approach one can clearly identify the
classical three different steps of a landing process: airplane
reduces downward slope, classically from 5 to 3 degree, this
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Reference template Alignment result

Fig. 13. Registration of a satellite template image using MI on an airborne infrared sequence. 6 frames are represented with the over-imposed aerial reference
(inside the green rectangle) projected using the estimated homography (Infrared images courtesy of Thales, optical image is obtained from google earth).

can be seen at 460 on the abscissa axis and finally executes
a flare (350). Figure 13 shows the reference template (left),
and six images of the sequence (overlaid with the projected
template).

When estimating an homography (that is 8 independent
parameters), template size may be important especially when
considering multi-modal images. To sufficiently populate the
joint probability histogram necessary for the computation of
the mutual information and to maintain a good accuracy,
we have always considered at least 100x100 pixels template.
Nevertheless, although the computational cost will obviously
increase with the number of pixels, it has to be remembered
that most of the computation (Gradient, Hessian) are precom-
puted and the approach remains cost effective.

C. Mosaicing application

Image mosaics are a collection of overlapping images. The
goal of the mosaicing problem is to find the transformations
that relate the different image coordinates. Once the trans-
formation between all the images is known, an image of the
whole scene can be constructed. This problem requires to find
a warping function that maps the coordinates of one image into
the coordinate system of another image. When considering a
video, one has to warp each new image into the coordinate sys-
tem of the very first image of the video [35][6][19][16]. This is
basically a motion estimation process performed on the whole
image. One can consider to estimate this motion using matched
keypoints as in [6] or using SSD based motion estimation as
in [19][16]. The latter approach is very efficient when image
sequences are considered, that is, when displacements between
one frame to another are small but shows its limits in case of
image noise or occlusions. This section shows the benefits of
using the presented approach to solve the registration problem.

These experiments show the application of the MI -based
motion estimation algorithm to the mosaicing problem. In
these sequences, since some parts of the scene completely
disappear, it is necessary to define multiple reference images
along the sequence. The approach is build as follows:
• Initialization: the first image is chosen as reference image,

i.e. I∗0 = I0.
• Registration: for every frame, we compute the displace-

ment pk between It and I∗k.
• Reference Update: every 30 images, the reference image
I∗k is changed and defined as the current image, i.e. I∗k =
It for t = 30k (involving a small drift).

Using the homography from the current image to the current
reference image and the homographies between the references,
we retrieve the homography between the current image and
the first image. Using this homography, we can project all the
images of the sequence into the mosaic image and construct
the global image of the whole scene.

In the first experiment (Figure 15 and 16), the overlapping
images are simply a compressed sequence of 1000 images. The
aerial scene is acquired from a camera embedded on a flying
UAV and shows the ground that is approximately 500 meters
away from the camera. Since this distance is very large, the
scene can be approximated as a plane and registered using
homographies. During the acquisition of the sequence, the
camera is moving forward and is rotating around the vertical
axis.

In Figure 15 we show some images from the sequence. This
sequence has been downloaded on Youtube and is affected by
the H264 coding artifacts. We can also note the poor quality
of the images. Despite this poor quality, the resulting mosaic
presented in Figure 16 shows the accuracy of the MI based
method. Since the camera is making an entire revolution, the
first and last images are overlapping. A very small drift occurs
between the first and last estimated positions. Let us note
that nothing has been performed to reduce the drift (such as
the bundle adjustment approach proposed by [6]). Considering
the template update problem and the planar assumption, the
estimated homographies are accurate. A second similar exper-
iment presents a mosaic build using more than 10000 images.
The images are extracted from a highly compressed video. The
camera was attached to a free flying balloon flying over Paris.
Figure 17 shows three steps of the mosaic construction.

Fig. 15. Some overlapping key images used for the mosaicing application.

In the last experiment (see mosaic in Figure 19), we consider
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Registration with a first order minimization approach using MI

Registration with full computation of the Hessian

Fig. 14. Registration of a satellite template image using MI on an airborne infrared sequence. First row corresponds to a registration process with a first order
minimization approach while second row depicts our approach with a full computation of the Hessian. On the left is the estimated altitude versus distance to
the runway (up to a scale factor).

Fig. 19. Mosaic created from the John Ford movie “she wore a yellow ribbon”. An affine motion model was considered. Note that some cavalrymen are
moving all along the sequence. Despite these disturbances, motion is correctly estimated.

a sequence extracted from the John Ford movie “she wore a
yellow ribbon”. To build this mosaic, an affine motion model
was considered. The interest of this sequence is that some
cavalrymen are moving all along the sequence and, therefore,
act as important occlusions as can be seen on Figure 18. A
comparison with a mosaic built using the SSD criterion is
proposed in Figure 20 and demonstrates the robustness of our
approach.

VI. CONCLUSION

This paper presents a robust and accurate template based-
motion estimation process that was defined using a new
approach based on the mutual information alignment function.
The definition of MI has been adapted to the differential
image alignment problem so that the function is smooth and
as concave as possible. The proposed definition preserves
the advantages of MI with respect to its robustness toward
occlusions, illumination variations and images from different

modalities. A new optimization approach has been defined
to deal with the quasi-concave shape of MI. The proposed
approach is taking advantage of both the wide convergence
domain of MI and its accurate maximum and besides is not
computationally expensive. Moreover the time consumption is
greatly reduced using a new approach based on the reference
pixels selection that yields to an accurate, fast and robust
registration process.

Finally the proposed method has been evaluated using
several experiments. Its robustness and accuracy is verified
using reference datasets and shows its advantages compared
with classical approaches on monomodal image registration
method. Some new applications are also proposed to use a
model image acquired from another modality than the original
sequence.

The algorithm presented here has been limited to planar
scene. Nevertheless the proposed approach could similarly be
applied to more complex model-based tracking applications
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Fig. 16. Resulting mosaic image: despite the poor quality of the sequence
and the approximation that the scene is planar, the final displacement between
the first and last image is accurate.

Fig. 17. Three steps of the “Paris” mosaic construction. The sequence feature
more than 10000 images acquired from a camera attached to a free-flying
balloon.

Fig. 18. Three images used for the “yellow ribbon” mosaic construction.

Fig. 20. Mosaic created from the John Ford movie but the similarity function
is the SSD.

where we could directly estimate the position of the object on
SE(3) [7][29]. The method could also be extended to non-rigid
registration process.
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