Skip to Main content Skip to Navigation
Conference papers

Optimistic Heuristics for MineSweeper

Olivier Buffet 1 Chang-Shing Lee 2 Woanting Lin 3 Olivier Teytaud 4, 5, 6
1 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
2 OASE
Institute of CSIE - Institute of Computer Science and Information Engineering [Taiwan]
4 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We present a combination of Upper Con dence Tree (UCT) and domain speci c solvers, aimed at improving the behavior of UCT for long term aspects of a problem. Results improve the state of the art, combining top performance on small boards (where UCT is the state of the art) and on big boards (where variants of CSP rule).
Document type :
Conference papers
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/hal-00750577
Contributor : Olivier Teytaud <>
Submitted on : Tuesday, February 19, 2013 - 5:00:33 PM
Last modification on : Thursday, June 17, 2021 - 3:50:33 AM
Long-term archiving on: : Monday, May 20, 2013 - 4:04:51 AM

File

mines3.pdf
Files produced by the author(s)

Identifiers

Citation

Olivier Buffet, Chang-Shing Lee, Woanting Lin, Olivier Teytaud. Optimistic Heuristics for MineSweeper. ICS - International Computer Symposium - 2012, Dec 2012, Hualien, Taiwan. pp.199-207, ⟨10.1007/978-3-642-35452-6_22⟩. ⟨hal-00750577v2⟩

Share

Metrics

Record views

1213

Files downloads

1555