R. R. Aliev and A. V. Panfilov, A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, vol.7, issue.3, pp.293-301, 1996.
DOI : 10.1016/0960-0779(95)00089-5

J. Allard, H. Courtecuisse, and F. Faure, Implicit FEM Solver on GPU for Interactive Deformation Simulation, In: GPU Computing Gems, vol.2, 2011.
DOI : 10.1016/B978-0-12-385963-1.00021-6

URL : https://hal.archives-ouvertes.fr/inria-00589200

E. Bartocci, E. M. Cherry, J. Glimm, R. Grosu, S. A. Smolka et al., Toward real-time simulation of cardiac dynamics, Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB '11, pp.103-112, 2011.
DOI : 10.1145/2037509.2037525

M. Chhay, Y. Coudì-ere, and R. Turpault, How to compute the extracellular potential in electrocardiology from an extended monodomain model, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683386

Y. Coudì-ere and C. Pierre, Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology, Nonlinear Analysis: Real World Applications, vol.7, issue.4, pp.916-935, 2006.
DOI : 10.1016/j.nonrwa.2005.02.006

M. Ethier and Y. Bourgault, Semi-Implicit Time-Discretization Schemes for the Bidomain Model, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2443-2468, 2008.
DOI : 10.1137/070680503

F. Fenton and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47, 1998.
DOI : 10.1063/1.166311

J. P. Keener, An eikonal-curvature equation for action potential propagation in myocardium, Journal of Mathematical Biology, vol.30, issue.7, pp.629-651, 1991.
DOI : 10.1007/BF00163916

H. Lamecker, T. Mansi, J. Relan, F. Billet, M. Sermesant et al., Adaptive tetrahedral meshing for personalized cardiac simulations, CI2BM09 -MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, pp.149-158, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00417371

C. Mitchell and D. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

P. Pathmanathan, M. G. Whiteley, and J. , The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations, International Journal for Numerical Methods in Biomedical Engineering, vol.117, issue.1, 2011.
DOI : 10.1002/cnm.1438

J. Relan, M. Sermesant, H. Delingette, M. Pop, G. Wright et al., Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and MR data, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1027-1030, 2009.
DOI : 10.1109/ISBI.2009.5193230

URL : https://hal.archives-ouvertes.fr/inria-00616130

F. Richard, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.

K. H. Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2004.
DOI : 10.1152/ajpheart.00794.2003