Multinerves and Helly Numbers of Acyclic Families

Abstract : The nerve of a family of sets is a simplicial complex that records the intersection pattern of its subfamilies. Nerves are widely used in computational geometry and topology, because the nerve theorem guarantees that the nerve of a family of geometric objects has the same topology as the union of the objects, if they form a good cover. In this paper, we relax the good cover assumption to the case where each subfamily intersects in a disjoint union of possibly several homology cells, and we prove a generalization of the nerve theorem in this framework, using spectral sequences from algebraic topology. We then deduce a new topological Helly-type theorem that unifies previous results of Amenta, Kalai and Meshulam, and Matousek. This Helly-type theorem is used to (re)prove, in a unified way, bounds on transversal Helly numbers in geometric transversal theory.
Type de document :
Communication dans un congrès
Symposium on Computational Geometry - SoCG '12, Jun 2012, Chapel Hill, United States. ACM, pp.209-218, 2012, <http://dl.acm.org/citation.cfm?doid=2261250.2261282>. <10.1145/2261250.2261282>
Liste complète des métadonnées


https://hal.inria.fr/hal-00752073
Contributeur : Xavier Goaoc <>
Soumis le : mercredi 12 décembre 2012 - 15:01:10
Dernière modification le : mercredi 28 septembre 2016 - 16:18:46
Document(s) archivé(s) le : mercredi 13 mars 2013 - 02:35:09

Fichier

multinerve-socg.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Éric Colin De Verdière, Grégory Ginot, Xavier Goaoc. Multinerves and Helly Numbers of Acyclic Families. Symposium on Computational Geometry - SoCG '12, Jun 2012, Chapel Hill, United States. ACM, pp.209-218, 2012, <http://dl.acm.org/citation.cfm?doid=2261250.2261282>. <10.1145/2261250.2261282>. <hal-00752073>

Partager

Métriques

Consultations de
la notice

281

Téléchargements du document

153