Y. Akimoto, A. Auger, and N. Hansen, Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic $\mathcal C^2$ -composite Functions, Parallel Problem Solving from Nature - PPSN XII, 12th International Conference, number 7491 in Lecture Notes in Computer Science, pp.42-51, 2012.
DOI : 10.1007/978-3-642-32937-1_5

Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi, Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies, Parallel Problem Solving from Nature -PPSN XI, 11th International Conference, pp.154-163, 2010.
DOI : 10.1007/978-3-642-15844-5_16

S. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, vol.37, issue.2, pp.251-276, 1998.
DOI : 10.1103/PhysRevLett.76.2188

L. Arnold, A. Auger, N. Hansen, and Y. Ollivier, Information-Geometric Optimization algorithms: A unifying picture via invariance principles, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00601503

S. Baluja and R. Caruana, Removing the Genetics from the Standard Genetic Algorithm, Proceedings of the 12th International Conference on Machine Learning, pp.38-46, 1995.
DOI : 10.1016/B978-1-55860-377-6.50014-1

P. D. Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, A tutorial on the cross-entropy method, Annals of Operations Research, issue.134, pp.19-67, 2005.

V. S. Borkar, Stochastic approximation, Resonance, vol.8, issue.s.471012, 2008.
DOI : 10.1007/s12045-013-0136-x

P. Dayan and G. E. Hinton, Using Expectation-Maximization for Reinforcement Learning, Neural Computation, vol.8, issue.2, pp.271-278, 1997.
DOI : 10.1016/0004-3702(89)90049-0

M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.26, issue.1, pp.1-13, 1996.
DOI : 10.1109/3477.484436

N. Hansen, S. D. Muller, and P. Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, pp.1-18, 2003.
DOI : 10.1162/106365601750190398

G. E. Hinton, Connectionist learning procedures, Artificial Intelligence, vol.40, issue.1-3, pp.185-234, 1989.
DOI : 10.1016/0004-3702(89)90049-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.216.5594

S. Kullback, Information theory and statistics, 1968.

H. J. Kushner and G. G. Yin, Stochastic approximation and recursive algorithms and applications, 2003.

P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, 2002.
DOI : 10.1007/978-1-4615-1539-5

L. Malagò, M. Matteucci, and G. Pistone, Towards the geometry of estimation of distribution algorithms based on the exponential family, Proceedings of the 11th workshop proceedings on Foundations of genetic algorithms, FOGA '11, pp.230-242, 2011.
DOI : 10.1145/1967654.1967675

F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters et al., Parameter-exploring policy gradients, Neural Networks, vol.23, issue.4, pp.551-559, 2010.
DOI : 10.1016/j.neunet.2009.12.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.7104