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Abstract—In the traditional consensus task, processes
are required to agree on a common value chosen among
the initial values of the participating processes. It is well
known that consensus cannot be solved in crash-prone,
asynchronous distributed systems. Two generalizations
of the consensus tasks have been introduced: k-set
agreement and k-simultaneous consensus.

The k-set agreement task has the same requirements as
consensus except that processes are allowed to decide up
to k distinct values. In the k-simultaneous consensus task,
each process participates simultaneously in k instances
of consensus and is required to decide in at least one of
them; any two processes deciding in the same instance
must decide the same value.

It is known that both tasks are equivalent in the wait-
free shared memory model. Perhaps surprisingly, this
paper shows that this is no longer the case in the n-
process asynchronous message passing model with at
most t process crashes. Specifically, the paper establishes
that for parameters t, n, k such that t > n+k−2

2
, k-

simultaneous consensus is strictly harder than k-set
agreement.

The proof compares the information on failures neces-
sary to solve each task in the failure detector framework
and relies on a result in topological combinatorics,
namely, the chromatic number of Kneser graphs. The
paper also introduces the new failure detector class V Σk,
which is a generalization of the quorum failures detector
class Σ suited to k-simultaneous consensus.

Index Terms—Consensus, Failure detectors, Fault tol-
erance, Agreement, Message passing, Kneser graph.

I. INTRODUCTION

The k-set agreement problem: The k-set agreement
problem (Chaudhuri, [11]) is one of the fundamental
problems in fault tolerant distributed computing. Each
process proposes a value and every non-faulty pro-
cess is required to decide a value (termination) such
that every decided value has been proposed (valid-
ity) and no more than k distinct values are decided
(agreement). The problem generalizes the consensus
problem, which corresponds to the case where k = 1.
In asynchronous systems, it is well known that 1-
set agreement is impossible as soon as at least one
process may fail by crashing [15], whereas the case
k = n does not require any coordination at all. For
intermediate values of k (1 < k < n), asynchronous
k-set agreement tolerating t process crash failures is
possible if and only if k > t [7], [20], [26], in shared
memory or message-passing systems.

The k-simultaneous consensus problem: The k-
simultaneous consensus problem [1] is another gener-
alization of consensus. Each process proposes a value
and is required to decide a pair (c, v), where c is an
integer 1 ≤ c ≤ k and v is a proposed value (validity).
Each non-faulty process has to decide (termination)
and, for any two pairs with the same first component,
the second component must be the same, i.e., for any
decided pairs (c, v), (c′, v′), c = c′ =⇒ v = v′

(agreement). Intuitively, processes are trying to solve
simultaneously k instances of the consensus problem
in such a way that each process decides in at least
one instance. For any instance, decisions occurring in
that instance must be consistent with the validity and
agreement requirements of consensus. A decided pair
(c, v) may thus be interpreted as follows: value v is
decided in the cth instance of consensus.

While k-set agreement weakens the safety property
of consensus by allowing k values to be decided, k-
simultaneous consensus may be though as weakening
its liveness property by considering k instances in
parallel, and allowing some instances to remain un-
decided. Practically, simultaneous consensus might be
useful in situations where processes participate con-
currently in k different applications: a k-simultaneous
consensus protocol can guarantee progress in at least
one application [16], [18].

Failure detectors: A failure detector is a distributed
oracle that provides processes with possibly unreliable
information on failures [10]. According to the quality
of the information, several classes of failure detectors
can be defined and may be used to solve otherwise im-
possible problems. For example, an eventual leadership
failure detector (Ω, [9]) provides the processes with
an id which is eventually 1) the same at each process
and, 2) the id of a non-faulty process. Whereas k-set
agreement cannot be solved in asynchronous message
passing systems in which at most t processes may fail
if k ≤ t, [8] presents an asynchronous Ω-based k-
set agreement protocol that tolerates up to t process
failures, for any t, k ≤ t < kn

k+1 .
A failure detector D is necessary for solving a

distributed problem P if given any failure detector D′

that can be used to solve P , it is possible to emulate
D. It has been shown that a failure detector called Σk



is necessary for k-set agreement in message passing
systems [6].

k-set agreement vs. k-simultaneous consensus: The
paper investigates the relative hardness of k-set agree-
ment and k-simultaneous consensus in n-process asyn-
chronous messages passing systems with crash fail-
ures. Let t < n denote the bound on the number of
failures.

Clearly, if a protocol for k-simultaneous consensus
is provided, one can solve k-set agreement. A fun-
damental result in [1] is that the converse is true in
asynchronous shared memory system. That is, both
problems are computationally equivalent in shared
memory: given any wait-free1 protocol for k-set agree-
ment (respectively, for k-simultaneous consensus), one
can construct a wait-free protocol for k-simultaneous
(respectively, for k-set agreement).

The equivalence has been instrumental in determin-
ing the weakest failure detector for k-set agreement
in asynchronous shared memory systems [17], [27], a
question which is still unsolved for message passing
systems. In addition, while many k-set agreement
protocols for messages passing systems with various
synchrony assumptions or augmented with failure de-
tectors has been proposed, e.g., [2], [3], [8], [13], [23],
[24], [25], to the best of our knowledge no specific
protocol is known for k-simultaneous consensus. A
first step to remedy this situation will consist in a
generic transformation for turning any k-set agreement
protocol into a k-simultaneous protocol, it such a
transformation exists.

The equivalence extends to asynchronous process
message passing systems when a majority of processes
are non-faulty (i.e., t < n

2 ), as in this case shared
memory can be emulated t-resiliently [4]. The question
addressed in this paper is whether the equivalence
between the two problems extends beyond the ma-
jority threshold. Our main result is that the answer
is “no”: we show that if t > n+k−2

2 , k-simultaneous
consensus is strictly harder than k-set agreement in a
asynchronous n-process messages passing systems in
which at most t processes can fail by crashing.

Contributions of the paper: We study both problems
through the lens of the amount information on failures
required to solve them. This is usually captured in
the framework of failure detectors. On one hand, it is
known that failure detector (Σk × Ω) is sufficient for
k-set agreement [8]. On the other hand, we identify
a new class of failure detectors, namely V Σk, and
show that it is necessary for k-simultaneous consensus
(Section IV). The question of whether k-simultaneous
consensus can be solved t-resiliently using a k-set
agreement protocol thus boils down to whether V Σk

1A wait-free protocol tolerates any number of crash failures.

can be emulated t-resiliently from Σk×Ω (Section VI).
If t is small enough, namely t < kn

k+1 , Σk can be
emulated t-resiliently without relying on any failure
detector. In this case, it is enough to study for which
values of t failure detector V Σk can be implemented
t-resiliently (Section V). It is shown that n−k+2

2 is
a tight threshold. Interestingly, the proof relies on
the chromatic number of a certain class of graphs,
namely Kneser graphs. Finally, Section VII presents
our main impossibility results, obtained by assembling
the various pieces from the previous section.

Table I summarizes the main contributions of the pa-
per. k-SA and k-SC are shorthands for k-set agreement
and k-simultaneous consensus respectively. MPn,t
denotes a message passing system made of n pro-
cesses, t of which may crash. MPn,t[Ω] stands for
system MPn,t equipped with a failure detector Ω.
X ' X ′, X ≺ X ′, X � X ′ mean respectively that
X and X ′ implements each other, X ′ implements X
but X ′ does not implement X , X ′ implements X . See
Section II for more details about the notations.

II. PRELIMINARIES

Message passing asynchronous distributed system:
We consider a distributed system made of a set Π of
n asynchronous processes {p1, . . . , pn}. Each process
runs at its own speed, independently of the other
processes.

Processes communicate by sending and receiving
messages over a reliable but asynchronous network.
Each pair of processes {pi, pj} is connected by a bi-
directional channel. Channels are reliable and asyn-
chronous, meaning that each message sent by pi to pj
is received by pj after some finite, but unknown, time;
there is no global upper bound on messages transfers
delays.

The system is equipped with a global clock whose
ticks range T is the set of positive integers. This clock
is not available to the processes, it is used from an
external point of view to state and prove properties
about executions.

Failures: Processes may fail by crashing. A process
that crashes prematurely halts and never recovers.
In an execution, a process is faulty if it fails and
correct otherwise. A failure pattern is a function F
from T to Π where F(τ) is the set of processes that
have failed by time τ . We define Correct(F) and
Faulty(F) = Π\Correct(F) to be the set of correct
processes and the set of faulty processes according to
F , respectively. When F is clear from the context, we
simply write Correct and Fauly instead of Faulty(F)
and Correct(F) respectively.

An environment (or adversary [14]) is a set of failure
patterns. The wait-free environment consists in all
failure pattern in which at least one process is correct.

2



t 0 n
2

n+k−2
2

kn
k+1

n

MPn,t

Σk implementable Σk not implementable [6], Section V
V Σk implementable V Σk not implementable Section V

Σk ' V Σk Σk ≺ V Σk Section VI
k-SA ' k-SC k-SA � k-SC k-SA ≺ k-SC [1], Section VII

MPn,t[Ω]
k-SC solvable k-SC not solvable Section VII

k-SA solvable k-SA not solvable [8]

TABLE I
CONTRIBUTIONS OF THE PAPER.

For 1 ≤ t ≤ n−1, the t-resilient environment contains
every failure pattern in which no more than t processes
are faulty (the (n−1)-resilient environment is the wait-
free environment).

Failure detectors: Informally, a failure detector [10]
is a distributed oracle that provides (perhaps inac-
curate) hints on the current failure pattern of the
execution. Operationally, a failure detector provides at
each process pi a read-only variable FDi, whose value
at time τ is denoted FDτi . This value is the output of
the failure detector for process p at time τ .

We recall next the main features of the framework
in which failure detectors are defined, as introduced
in [10]. A failure detector history H with range R
is a function H : Π × T → R. H(pi, τ) may be
seen as the output of the local failure detector module
of process pi at time τ . A failure detector D with
range RD is a function that maps each failure pattern
to set of failure detector histories with range RD.
Given a failure pattern F , D(F) denotes the set of
failure detector histories allowed by D when the failure
pattern is F .

For example, the range of the quorum failure detec-
tor Σ, defined in [12] is 2Π, the set of all subsets of
Π. H : Π× T→ 2Π ∈ Σ(F) iff ∀τ, τ ′ ∈ T,∀pi, pj ∈
Π : H(pi, τ) ∩ H(pi, τ

′) and ∃τc ∈ T : ∀pi ∈
Correct(F ),∀τ ≥ τc, H(pi, τ) ⊆ Correct(F). That
is, any two sets output by the failure detector intersect
and eventually, for every correct process, the output of
Σ contains only correct process.

Comparing failure detectors: Let D1, D2 denote
two failure detectors. Failure detector D1 is weaker
than D2 in environment E , denoted D1 � D2, if there
exists a distributed algorithm TD2→D1 that uses D2
to emulate the output of D1. More specifically, algo-
rithm TD2→D1 maintains at each process pi a variable
OUTD1 intended to emulate the output of D1 at pi;
The variable can be used at each process to replace
the actual output of D1: in any execution, pi cannot
distinguish between reading the variable OUTD1 or
querying the failure detector D1. If D1 is weaker than
D2 and D2 weaker than D1 in environment E , D1 and
D2 are said to be equivalent in E (denoted D1 ' D2).
On the contrary, if D2 is not weaker than D1, D1 is
strictly weaker than D2 (denoted D1 ≺ D2).

Given a distributed task T , such as consensus,
failure detector D is a weakest failure detector for
T in environment E if (1) there exists an algorithm
AD for T in E that uses D and (2) for every failure
detector D′ that can be used to solve T in E , there
exists an algorithm TD′→D that uses D′ to solve D.
Note that if D1 and D2 are weakest failure detectors
for T , then D1 ' D2.

Comparing tasks: Given two distributed tasks T1
and T2 defined for n processes, task T1 implements
task T2 in environment E if, given a protocol for
T1, one can construct a protocol for T2 in E by
interleaving steps of a message passing protocol with
calls to any number of instance of the protocol for
T1. The protocol for T1 is a “black-box”: it is only
required that it solves T1 in E . We say that T1 is
harder than T2 is E if T1 implements T2 whereas
T2 does not implement T1.

Notations: Given vari a local variable of process pi,
we denote by varτi its value at time τ .MPn,t denote
a n-process asynchronous message passing system in
which at most t processes may fail.MPn,t[D] denote
the same system equipped with a failure detector of
the class D. Given two failure detectors D,D′ with
ranges RD and RD′ respectively, D ×D′ denote the
failure detector with range RD × RD′ and histories
D(F)×D′(F) for any failure pattern F .

III. THE FAILURE DETECTORS Σk , V Σk AND Ω

This section recalls the definition of the failure
detector classes Σk, Ω and introduces the new class
V Σk. For each process pi , FDτi denote the the value
output by the failure detector at time τ .

a) The family {Σk}1≤k≤n: A failure detector
of the class Σk maintains at each process a variable
QUORUMi that contains at any time a set of processes
ids. The sets output, called quorums, satisfy the fol-
lowing properties:
• Intersection. Any set containing at least k + 1

quorums has two intersecting quorums. Formally,
let Q be the set of all quorums output at all the
processes at all times. That is, Q = {B | ∃pi ∈
Π,∃τ ∈ T : QUORUMτ

i = B}. Then, for every
X ⊆ Q with |X| > k : ∃B,B′ ∈ X : B∩B′ 6= ∅.
• Liveness. Eventually, for each correct process,

every quorum contains only correct processes ids.
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That is, ∃τ ∈ T : ∀pi ∈ Correct, ∀τ ′ ≥ τ :
quorumτ ′

i ⊆ Correct
Σk was introduced in [6] where it is shown to be
necessary to solve k-set agreement in message passing
systems. A (Σk × Ω)-based protocol tolerating any
number of process crashed that solves k-set agreement
is presented in [8]. The class Σ1 is the same as Σ,
the weakest failure detector to implement a register in
crash-prone message passing systems [12].

b) The eventual leader failure detector Ω: A fail-
ure detector of the class Ω maintains at each process
pi a variable LEADERi that contains a process id. It
satisfies the following property:
• Eventual leadership. Eventually, for every cor-

rect process pi, LEADERi contains forever the
same identity of a correct process. That is,
∃p` ∈ Correct,∃τ ∈ T : ∀τ ′ ≥ τ,∀pi ∈
Correct, LEADERτ

′

i = `.
(Ω× Σ) is the weakest failure detector for consensus
in message passing systems in any environment [9],
[12].

c) The family {V Σk}1≤k≤n: The failure detector
V Σk (read Vector-Σk) outputs at each process pi
an array QUORUMSi of size k. At any time, each
component QUORUMSi[c], 1 ≤ c ≤ k of the array
contains a set of process ids (a quorum). Intuitively,
a failure detector V Σk may be seen as k instances
of a failure detector of the class Σ. In each instance,
the intersection property of the class Σ is satisfied,
whereas the liveness property may not hold. It is
only required that liveness is satisfied in at least one
instance. Formally:
• Intersection. Any two quorums output in the
same entry c at the same process or at dis-
tinct processes intersect. That is, ∀c, 1 ≤ c ≤
k,∀τ, τ ′ ∈ T,∀pi, pi′ ∈ Π : QUORUMSτi [c] ∩
QUORUMSτ

′

i′ [c] 6= ∅.
• Liveness. There exists some entry c such that,

eventually, every quorum output in this entry at
any correct process contains only correct pro-
cesses. That is, ∃τ ∈ T,∃c, 1 ≤ c ≤ k : ∀pi ∈
Correct ,∀τ ′ ≥ τ, QUORUMSτ

′

i [c] ⊆ Correct.

IV. NECESSITY OF V Σk FOR k-SIMULTANEOUS
CONSENSUS

This section shows that failure detector V Σk is nec-
essary for solving k-simultaneous consensus. That is,
failure detector D can be used to solve k-simultaneous
consensus, then V Σk can be emulated using D.

Theorem IV.1. For all t, k, 1 ≤ t, k ≤ n, for any
protocol A and any failure detector D, if A solves k-
simultaneous consensus inMPn,t[D] then V Σk � D.

The strategy of the proof is similar to the one in [6].
There, it is shown that failure detector Σk is necessary

to solve k-set agreement in message passing systems.
The proof is simple an elegant, and, as we are about to
see, can be generalized to the case of k-simultaneous
consensus.

A protocol that emulates a failure detector V Σk is
described in Figure 1. Recall that we are given an
algorithm A and a failure detector D such that A
solves k-simultaneous consensus in MPn,t[D]. We
assign for each set S ∈ 2Π an instance of A denoted
AS . Each process pi participates in instance AS only
if pi ∈ S. The value proposed by pi in this instance
is 〈S, i〉. In more details, algorithm A consists in
n automata A1, . . . ,An, one per process. Process pi
starts 2n−1 copies of Ai, one copy, denoted ASi , for
each set S ∈ 2Π : i ∈ S. The proposal of pi in ASi is
〈S, i〉 and each message sent by ASi is tagged for the
purpose of not confusing messages sent in different
instances of A. When a receive step is performed in
ASi , a message with tag S (if any) is selected from pi’s
input message buffer and delivered to the automata.
Failure detector queries are performed normally: when
a failure detector value is needed by ASi , the local
failure detector module of pi is queried. pi performs
steps of each automata ASi , i ∈ S in any fair way, for
example in a round robin fashion.

The output of the failure detector V Σk at process
pi consists in a k-component array OUTi. Process pi
maintains in addition a k-component array of sets
denoted Qi. If p decides (c, d) in instance AS , set
S is added to the cth component of Qi[c].

For each c, 1 ≤ c ≤ k, pi periodically strives to as-
sign to the cth component of OUTi a set S ∈ Qi[c] that
contains only correct process (if Qi[c] contains such a
set). To that end, each process periodically broadcasts
HEARTBEAT messages (task T2). HEARTBEATs are
used to rank processes id. Process pi maintains an
ordered list order i of processes ids. Each time a
HEARTBEAT from process pj is received, j is moved
at the beginning of the list (Task T3). As each faulty
process sends finitely many HEARTBEATs, there ex-
ists a time after which each correct process id appears
before any faulty process id. Therefore, given two sets
S, S′ of process, S ⊆ Correct and S′ 6⊆ Correct ,
the largest rank of the ids of the processes in S is
eventually always smaller than the largest rank of the
ids in S′. When pi updates OUTi[c], it selects a set
S that has the smallest largest rank of its ids among
the sets currently in Qi[c] output by V Σk (lines 5–
7). If Qi[c] contains a set of correct processes, this
guarantees that eventually OUTi[c] ⊆ Correct .

Process pi may not decide in every instance AS
in which it participate, as it may wait forever for
messages from some process pj , j /∈ S. However,
for any S such that Correct ⊆ S, every correct
process that participates in AS , must eventually decide
since A correctly solves k-simultaneous consensus.
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Hence, some component ci of Qi eventually contains
a set of correct processes, and therefore, OUTi[ci] is
eventually a subset of the correct processes. Moreover,
the protocol ensures that when a set S is added to
Qi[ci], it is eventually added to the cith component
of every Qj , for every correct process pj (tasks T1
and T4). It thus follows that eventually at each correct
process pj , OUTj [c] ⊆ Correct for some c, 1 ≤ c ≤ k,
thereby ensuring the liveness property of the class
V Σk.

For the intersection property of the class V Σk, it
remains to see that for any two sets S, S′ assigned
to the cth component of the emulated failure detector
output, perhaps at different processes, S ∩ S′ 6= ∅, for
any c, 1 ≤ c ≤ k. Note that S, S′ are assigned to the
cth component of the emulated failure detector only if
(c, d) and (c, d′) are decided in instances AS and AS′

respectively.
Let S, S′ be two disjoint subsets of Π. Suppose that

processes p ∈ S and p′ ∈ S′ decide the pairs (c, d) and
(c′, d′) in AS and AS′

respectively. We demonstrate
that, in this case, c 6= c′. First, as any value proposed
in AS (respectively, in AS′

) is of the form 〈S, j〉
(respectively, 〈S′, j〉), where pj ∈ S (respectively,
pj ∈ S′) d 6= d′ by the validity of property of k-
simultaneous consensus. Second, because S′ ∩ S = ∅,
prefixes of the executions of AS and AS′

can be
“merged” in a single execution of A in which the set
of participating processes is S∪S′. That is, there exists
a single execution α of A that is indistinguishable
from the execution of AS (respectively, of AS′

) for p
(respectively, for p′). p and p′ thus decide respectively
(c, d) and (c′, d′) in α. As d 6= d′, it thus follows that
c′ 6= c.

Proof: The proof is essentially the same as the proof
of Bonnet and Raynal [6]. In order for the paper to be
self-contained, a complete proof is provided next.

If var i a variable local to process pi, let varτi denote
the value of the variable at time τ . We consider an
arbitrary infinite execution α of the protocol described
in Figure 1. For each process pi, the output of the
emulated failure detector V Σk is stored in the array
OUTi; OUTτi [c] thus denotes the cth quorum output at
process pi by the emulated failure detector at time
τ , for any c, 1 ≤ c ≤ k, and any pi ∈ Π. The
proof is divided in two parts. We first establish that
the protocol ensures the Liveness property of the
class V Σk (Lemma IV.2) and then show that the
Intersection property is also ensured (Lemma IV.3).
The correctness of the emulation then immediately
follows (Theorem IV.1).

Lemma IV.2 (Liveness). For each correct process
pi, there exists a time τi and `i, 1 ≤ `i ≤ k:
∀τ ≥ τi, OUTτi [`i] ⊆ Correct .

init Qi[1..k]← [{Π}, . . . , {Π}]; /* array of set of sets */
orderi ← (1, . . . , n); /* ordered list of processes ids */
OUT[1..k]← [Π, . . . ,Π]; /* V Σk output */
for each S ∈ 2Π : i ∈ S do

launch an instance AS
i of Ai with input 〈S, i〉 enddo

/* instances run in parallel independently */
start tasks T1,T2,T3,T4

task T1: when pi decides in AS
i :

(1) let (c, d) be the decision of pi; Qi[c]← Qi[c] ∪ {S};
(2) send (c, S) to all /* d = 〈S, j〉 for some j ∈ S */

task T2: repeat periodically
(3) send HEARTBEAT(i) to all

task T3: when HEARTBEAT(j) is received:
(4) move j at the head of the list orderi
(5) for each c : 1 ≤ c ≤ k do OUTi[c]← E
(6) where E ∈ Qi[c] and ∀S ∈ Qi[c],
(7) maxj∈E rank(j, orderi) ≤ maxj∈S rank(j, orderi)

/* rank(j, orderi): rank of j in the ordered list orderi */

task T4: when (c, S) is received:
(8) Qi[c]← Qi[c] ∪ {S};

Fig. 1. Emulation of V Σk from an algorithm A that uses a failure
detector D to solve k-simultaneous-consensus (code for pi)

Proof: Let pi denote a correct process in α. Recall
that A is an asynchronous algorithm that solves the k-
simultaneous consensus problem in MPn,t[D]. This
implies that every correct process eventually decides in
every instance AS , where Correct ⊆ S. In particular,
pi decides in the instance ACorrect . Let (`i, vi) be the
pair eventually decided by pi in this instance. It thus
follows from the protocol (task T1), that, after some
time τ1, Correct ∈ Qi[`i].

If no set containing faulty process is ever inserted in
Qi[`i], then OUTτi [`i] is a set of the correct processes
in α, for any time τ . Otherwise, let S be any set
containing a faulty process that is included in Qi[`i].
That is, after some time τ2, we have S ∈ Qτi [`i],
for any τ ≥ τ2. Let pf denote a faulty process in
S. pf sends finitely many HEARTBEAT messages
to pi. Therefore, pf is moved finitely many times
at the head of the list order i. On the contrary, pi
receives infinitely many HEARTBEAT messages from
each correct process, and thus each correct process is
moved infinitely often at the head of the list order i. It
thus follows that after some time τ3, we always have

max
pj∈Correct

rank(j, orderi) < max
pj∈S

rank(j, orderi)

Hence, after time max(τ1, τ2, τ3), the set stored in
OUTi[`i] cannot be S (lines 5–8, task T3). As this is
true for any set S containing a faulty process, OUTi[`i]
eventually always contain a set of correct processes.

Lemma IV.3. For any pi, pj pair of (not necessarily
distinct) processes, for any times τ, τ ′, for any c, 1 ≤
c ≤ k: OUTτi [c] ∩ OUTτ

′

j [c] 6= ∅
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Proof: Let S, S′ be the values of OUTi[c] and
OUTj [c] at times τ and τ ′ respectively. Assume for
contradiction that S ∩ S′ = ∅. Note that S, S′ 6= Π
and thus neither S nor S′ are the initially values of
OUTi[c] and OUTj [c] respectively. Therefore, by the
code (Task T3), S must have been inserted in Qi[c]
by pi and S′ inserted in Qj [c] by pj . This implies that
pi has decided (c, v) in the instance AS and pj has
decided (c, v′) in AS′

, where v, v′ are the cth entry of
a vector proposed in AS and AS′

respectively.
Any value proposed in AS has the form 〈S, `〉,

where p` ∈ S. Similarly, any value proposed in AS′

has the form 〈S′, `′〉 , where p`′ ∈ S′. Hence, by
the validity requirement of the k-simultaneous problem
and the fact that S 6= S′, v 6= v′.

We next construct an execution β of A in which pi
decides (c, v) and pj decides (c, v′). Since v 6= v′, this
is a contradiction. Intuitively, β is obtained by merging
steps of AS and AS′

taken by the processes in S ∪S′
in α in a single execution.

More precisely, the failure pattern is the same in β
and α. The failure detector history of the underlying
failure detector D is also the same in α and β. In β,
only processes in S∪S′ take steps. Let σ (respectively,
σ′) be the sequence of steps taken by the processes in
S (resp. S′) while executing AS (resp., AS′

) in α. The
sequence of steps µ taken by the processes in S ∪ S′
in β is obtained by merging σ and σ′ respecting the
real order occurrence of the steps in α. Note that β is
a valid execution of A, as the history of D is the same
in α and β.

Since pi (resp., pj) takes the same steps in β and
in the execution of AS (resp., AS′

) in α, it decides
(c, v) (resp., (c, v′)) in β. This is a contradiction as
v 6= v′ and A solves the k-simultaneous problem in
MPn,t[D].

It thus follows from Lemma IV.2 and Lemma IV.3
that the protocol of Figure 1 emulates failure detector
of the class V Σk given a protocol A using a failure
detector D to solve k-simultaneous consensus.

V. t-RESILIENT PROTOCOLS FOR V Σk AND Σk

This section investigates whether there is a t-
resilient protocol for implementing a failure detector
Σk or V Σk. For the class Σk, the answer is known
[6], [8]. For completeness, the result is recalled at the
end of this section (Theorem V.5).

For the class V Σk, we show that the existence of a
protocol emulating a failure detector V Σk is strongly
related to the chromatic number of a certain family of
graphs, namely, Kneser graphs. We show that there
exists a t-resilient protocol that emulates a failure
detector V Σk if and only if the Kneser graph KGn,n−t
has a proper vertex k-coloring.

A. t-resilient emulation of V Σk

This section is devoted to the proof of the following
Theorem:

Theorem V.1. Let n, k, t be integers such that 1 ≤
t, k ≤ n. There exists a protocol that emulates a failure
detector of the class V Σk in MPn,t if and only if
t ≤ n+k−2

2 .

Preliminaries: A coloring of a graph is a labelling
of the graph’s vertices with colors drawn from the
integers {1, 2, 3, . . .}. A coloring is called a k-coloring
if it uses at most k colors and proper if no two adjacent
vertices share the same color. The chromatic number
of a graph G, denoted χ(G), is the smallest number
of colors needed to properly color G, i.e. the smallest
value of k for which a proper k-coloring of G is
possible.

The Kneser graph KGn,k is the undirected graph
whose vertices are the subsets of k elements of a
set of size n, and where two vertices share an edge
whenever the two corresponding sets are disjoint. For
example, KGn,1 is the complete graph, and KG5,2 is
isomorphic to the Petersen graph. An important result
about Kneser graphs is their chromatic number. The
chromatic number χ(KGn,k) of the Kneser graph is
exactly n − 2k + 2 if n ≥ 2k, and 1 otherwise.
This result was conjectured by Martin Kneser early
in 1955 and proved for the first time by Lovász[21]
in 1978. His proof was the first one using algebraic
topology to solve a problem in combinatorics, giving
rise to the field of topological combinatorics. Simpler
proofs were later given by Bárány [5], Greene [19] and
Matoušek [22].

Kneser graphs, and their chromatic number are
central to show that it is impossible to emulate t-
resiliently V Σk for certain values of n, k and t. We
reduce the existence of a protocol that emulates V Σk
in MPn,t to the problem of whether k colors are
sufficient to properly color KGn,n−t (Lemma V.2).
Conversely, we show that if V Σk can be emulated
in MPn,t, there is a k-coloring of KGn,n−t (Lemma
V.3).

A t-resilient protocol emulating V Σk: A simple
algorithm that emulates a failure detector of the class
V Σk inMPn,t is described in Figure 2. The algorithm
requires that t ≤ n+k−2

2 .
The algorithm relies on a k-coloring of the Kneser

graph KGn,n−t. As seen in the preliminaries, the
chromatic number of KGn,n−t is χ(KGn,n−t) =
n − 2(n − t) + 2 = 2t − n + 2 ≤ k if n ≥ 2(n − t)
and 1 otherwise. Therefore, for t ≤ n+k−2

2 , the graph
KGn,n−t can be properly colored with k colors.

The processes are initially provided with a function
color that maps each subset of Π of size n− t to an
integer in the range [1, k] such that any two disjoint
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sets are mapped to distinct integers. That is, color is a
k-coloring of KGn,n−t. Since the chromatic number
of this graph is χ(KGn,n−t) = 2t − n + 2 if n ≥
2(n−t) and 1 otherwise, the function color does exist
as t ≤ n+k−2

2 .
Each process pi maintains a vector of sets of

processes OUTi[1..k] intended to contain the output
of the emulated failure detector V Σk. Each entry of
OUTi is initially equal to Π, the set of processes
ids in the system. To ensure the liveness property of
V Σk, i.e., the existence for each correct process pi
of an entry `i such that eventually, the `ith entry of
OUTi contains only correct processes ids, each process
periodically broadcasts HEARTBEAT (line 1). When
an HEARTBEAT is received from some process pj ,
the identity of pj is added to the local set Qi (line
2). Whenever n− t distinct ids have been accumulated
in Qi, the output of V Σk is updated as follows. The
current set S of ids in Qi is assigned to the cth entry
of OUTi, where c is the color of S (line 3). Then pi
broadcasts Qi together with its color c in a QUORUM
message. Finally, Qi is reset to the empty set. When
a QUORUM(Qj , c) message is received from pj , the
cth element of OUTi is updated to Qi.

Note that it thus follows that eventually, some entry
of the output of V Σk at all processes contains only
correct processes, as every faulty process eventually
stops sending HEARTBEATs messages, and thus its
id eventually stops occurring in Qi. Moreover, using
the map color to assign sets of (n−t) processes ids to
entries of the vector OUTi guarantees the intersection
property of V Σk. Indeed, by definition of the map
color, two sets are assigned to the same entry only if
they intersect.

init OUTi[1..k]← [Π, . . . ,Π]; /* output of V Σk */
color : {S ⊆ Π : |S| = n− t} → {1, . . . , k};

/* k-coloring of KGn,n−t */
Qi ← ∅; /* set of processes ids, initially empty */
start task T1,T2,T3

task T1: repeat periodically
(1) send HEARTBEAT(i) to all

task T2: when HEARTBEAT(j) is received:
(2) Qi ← Qi ∪ {j};
(3) if |Qi| = n− t then let c = color(Qi); OUTi[c]← Qi;
(4) send QUORUM(Qi, c) to all; Qi ← ∅ endif

task T3: when QUORUM(Q, c) is received:
(5) OUTi[c]← Q

Fig. 2. Emulation of V Σk inMPn,t, t ≤ n+k−2
2

(code for pi)

Lemma V.2. Let n, t, k be integers such that 1 ≤
t, k ≤ n and t ≤ n+k−2

2 . The algorithm described
in Figure 2 implements a failure detector V Σk in
MPn,t.

Proof: The proof is divided in two parts cor-

responding to the two properties of the class V Σk,
namely liveness and intersection.
Liveness. Define τ to be the time at which: (i) all
faulty processes have already crashed, (ii) all messages
sent by them have already been received by correct
processes. There exists a time τ ′ ≥ τ such that
for every correct process pi, the processes that are
accumulated in Qi at any time after τ ′ are correct. This
is because there are at least n − t correct processes,
and each of them never stops sending HEARTBEAT
messages (line 1). Let Q ⊆ Correct be any set of
n − t ids accumulated by a given correct process
p` after τ ′, say at τ`. Let c denote color(Q). Every
process pj ∈ Correct \ {p`} will receive the message
QUORUM(c, Q) from p`, say at τj . Hence for every
pi ∈ Correct, OUTi[c] contains Q at τi. Since τi ≥ τ ′,
whether OUTi[c] is updated (as a result of accumulat-
ing a new set of ids by pi or receiving a QUORUM
message) or not, its value is necessarily a subset of
Correct.
Intersection. Let `, 1 ≤ ` ≤ k and let Si, Sj be two
sets of processes ids corresponding to the `th entry
of the output of the emulated failure detector at some
processes pi and pj (with pi not necessarily distinct
from pj). That is, at some time τi (respectively, τj),
OUTi[`] = Si (respectively, OUTj [`] = Sj). If Si
or Sj is equal to Π, Si ∩ Sj 6= ∅ as OUTi[`] and
OUTj [`] always contain processes ids. Otherwise, Si
is the value of the variable Qi at some time, and `
is the color assigned to the set Si by the map color .
Similarly, color maps Sj to `. Since disjoint sets are
mapped to distinct colors, it follows that Si ∩ Sj 6= ∅.

An impossibility result: We now prove that the
condition linking t, k and n of Lemma V.2 is tight
for the existence of a protocol that emulates V Σk in
MPn,t:

Lemma V.3. Let n, t, k be integers such that 1 ≤
t, k ≤ n and n+k−2

2 < t. There is no algorithm
that emulates a failure detector of the class V Σk in
MPn,t.

We actually prove this Lemma as a corollary of a
slightly more general result:

Lemma V.4. Let n, t, k be integers such that 1 ≤
t, k ≤ n and n+k−2

2 < t. There is no algorithm
that emulates a failure detector of the class V Σk in
MPn,t[Ω].

Proof: The proof is by contradiction. Assume that
there exists an algorithm A that implements a failure
detector V Σk in MPn,t[Ω] with n+k−2

2 < t, i.e, k <
2t−n+2. We show that we can use A to properly color
KGn,n−t with k colors. This contradicts the fact that
the chromatic number of KGn,n−t is χ(KGn,n−t) =
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2t− n+ 2 when t ≥ n
2 and 1 otherwise.

Let S = S1, . . . , Su, u =
(
n
n−t

)
be an enumeration

of all subsets of Π of size n − t. We construct an
execution α of A from which we derive a proper
k-coloring of KGn,n−t. The construction proceeds
inductively by forming longer and longer prefix αi
of α. At the end of αi, each set Sj , 1 ≤ j ≤ i has
received a color cj , 1 ≤ cj ≤ k such that any two
disjoint sets receive distinct colors.

Base step. Let α′1 be an execution of A in which
the set of correct processes is S1. Moreover, the faulty
processes are initially crashed in α′1. At each process
pi ∈ S1, the output of the failure detector Ω is the same
process ids `1, where p`1 ∈ S1. Let pj be a process
in S1. By the liveness property of V Σk, there exists a
time τ1 and an entry c1 such that, at time τ1, the c1th
entry of the failure detector output at process pj is a
set S ⊆ S1. This is because S1 is the set of correct
processes in α′1 and eventually one entry of the vector
output by V Σk at each correct process must contain
only correct processes ids.

In execution α1, no process fails. However, pro-
cesses in Π \ S1 do not take a step before time τ1.
Moreover, execution α1 and α′1 are indistinguishable
up to time τ1 for every process in S1. In particular, for
every process in S1, the output of Ω until time τ1 is
`1. Hence, as in execution α′1, process pj ∈ S1 output
at time τ1 a vector whose c1th entry is a set contained
in S1. We then let every process take enough steps for
every message sent before τ1 to be received. The color
c1 is assigned to S1.

Induction step. Suppose that the prefix αi has been
constructed, for some i, 1 ≤ i < u. We describe how
to extend αi to form the prefix αi+1.

Let α′i+1 be an execution of A that extends αi and
in which the set of correct processes is Si+1. More
precisely, αi is a prefix of α′i+1 and every process in
Π\Si+1 fails immediately after αi. Processes in Si+1

then keeps taking steps forever and, after αi, the output
of Ω at each process in Si+1 is the same id `i+1 for
some process p`i+1 ∈ Si+1. The eventual leadership
property of the class Ω is thus satisfied. Let pj be
an arbitrary process in Si+1. As in the base case, it
follows from the liveness property of the class V Σk
that there exists an entry ci+1 such that eventually the
ci+1th entry of the vector output by A at pj is included
in Si+1, which is the set of correct processes in that
execution. Let τi+1 be a time following αi at which
this occurs.

Execution αi+1 and α′i+1 are indistinguishable for
every process in Si+1 up to time τi+1. In particular,
for every process in Si+1, the output of Ω is `i+1 after
αi and until time τi+1, and processes in Π\Si+1 take
no step after αi and until τi+1. After τi+1, we let each
process takes enough step in order to every message
sent before τi+1 to be received. As αi+1 and α′i+1 are

indistinguishable for every process in Si+1, the ci+1th
entry of the vector output by A at process pj at time
τi+1 is the same as in α′i+1, that is a set included in
Si+1. We assign the color ci+1 to Si+1.

Final step. Suppose we have constructed prefix
αu as described above. Execution α is an infinite
execution with prefix αu. After αu, each process
takes infinitely many steps, for example in round-robin
fashion; the output of Ω at each process is the same
arbitrary process id. Every message sent is eventually
received.

Note that execution α is a valid execution of A in
MPn,t[Ω] with no failure. In particular, note that since
after prefix αu, the underlying failure detector output
the same correct process id at every process, the failure
detector history is a valid history for a failure detector
of the class Ω. The output of A must therefore fulfills
the properties of the class V Σk. We claim that the
coloring of each Si, 1 ≤ i ≤ u with ci, 1 ≤ i ≤ u, as
indicated in the construction is a proper k-coloring of
KGn,n−t.

Notice first that each ci is an entry of the vector of
size k output by A, i.e., 1 ≤ ci ≤ k. Finally, let Si, Sj
be two sets such that Si ∩ Sj = ∅. By construction,
at time τi, the cith entry of the vector output by A at
some process is a set si ⊆ Si. Similarly, at time τj , the
cj th entry of the vector output by A at some process
is a set sj ⊆ Sj . As Si∩Sj = ∅, we have si∩ sj = ∅.
It thus follows from the intersection property of V Σk
that ci 6= cj , as desired.

As 1 ≤ k, and n+k−2
2 < t, it follows that 2(n −

t) ≤ n. The chromatic number of KGn,n−t is thus
χ(KGn,n−t) = n − 2(n − t) + 2 = 2t − n + 2. This
is a contradiction since we have k < 2t− n+ 2.

Lemma V.3 is a consequence of Lemma V.4, as
any protocol emulating V Σk in MPn,t emulates
V Σk in any system in which a failure detector is
available. Theorem V.1 then immediately follows from
Lemma V.2 and Lemma V.3.

B. t-resilient emulation of Σk

For completeness, we recall here the condition link-
ing the parameters t, k and n under which there exists
a t-resilient protocol emulating a failure detector Σk:

Theorem V.5 ([8]). Let n, k, t be integers such that
1 ≤ t, k ≤ n. There exists a protocol that emulates a
failure detector Σk in MPn,t if and only if t < kn

k+1 .

Proof: The proof considers two cases, according
to the value of t.
• t < kn

k+1 . A simple protocol to emulate a fail-
ure detector of the class Σk in MPn,t is as
follows: Every process periodically broadcasts
HEARTBEAT messages. Whenever a process has
collected n − t “fresh” HEARTBEAT from a
set S of n − t distinct processes, it updates the
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output of Σk with this set S. The intersection
property of the class Σk is ensured since, as
(k + 1)(n − t) > n, among any k + 1 sets of
size n− t of processes, at least two sets intersect.
Liveness follows from the fact that faulty pro-
cesses eventually stop broadcasting heartbeats.

• t ≥ kn
k+1 . In that case, it is not possible to emulate

Σk in MPn,t. The proof is by contradiction and
relies on a partitioning argument.
Assume for contradiction that there exists an
algorithm A that emulates a failure detector Σk
in MPn,t. We construct an execution α of A in
which the intersection property of the class Σk is
violated.
As t ≥ kn

k+1 , i.e., (k+ 1)(n− t) ≤ n, there exists
a collection S of k + 1 pairwise disjoint subsets
of Π of size n − t, S = {S1, . . . , Sk+1}. That
is, for all 1 ≤ i 6= j ≤ k + 1, Si ∩ Sj = ∅ and
|Si| = |Sj | = n − t. We construct inductively
longer an longer prefix αi of α.

– Base case. Let α′1 denote an execution of
A in which every process, but the n − t
processes of S1 initially fail. By the liveness
property of the class Σk, there exists a time
τ1 at which the output of Σk is a set s1 ⊆ S1

at some process pj ∈ S1.
In the prefix α1, no process fails. Every
process in Π \ S1 does not take any step
before τ1 and, for every process in S1, α1

and α′1 are indistinguishable up to time τ1.
Hence, as in α′1, the output of Σk at process
pj ∈ S1 is s1 ⊆ S1. After τ1, we then let
every process take enough steps such that
every message sent before τ1 is received, and
every process in Π\S1 takes at least one step.

– Induction base. Suppose that the prefix αi
has been constructed, for some i, 1 ≤ i < k+
1. Let α′i+1 be an execution of A that extends
αi and in which the set of correct processes is
Si+1.More precisely, after αi, every process
in Π \ Si+1 fails and every process in Si+1

keeps taking steps forever. By the liveness
property of the class Σk, there exists a time
τi+1 after αi at which the output of Σk is
some set si+1 ⊆ Si+1 at some process pj ∈
Si+1.
Execution αi+1 and α′i+1 are indistinguish-
able for every process until τi+1. As in
the base case, after time τi+1, we let every
process takes enough steps for every message
sent before τi+1 to be delivered. Note that,
as in α′i+1, the output of Σk at process
pj ∈ Si+1 is si+1 ⊆ Si+1 at time τi+1 in
execution αi+1.

– Final case. Suppose that prefix αk+1 has

been constructed. α is an infinite execution
of A with no faulty process. After αk+1,
every process takes infinitely many steps in
some arbitrary order in such a way that every
message sent is eventually received.

α is a valid execution of A in MPn,t in
which the emulated failure detector output sets
s1, . . . , sk+1. As for each i, 1 ≤ i ≤ k + 1, si ⊆
Si and {S1, . . . , Sk+1} is a family of pairwise
disjoint sets, the intersection property of the class
Σk is violated in α.

VI. {V Σk}1≤k≤n VS. {Σk}1≤k≤n
This section compares the two families

{V Σk}1≤k≤n and {Σk}1≤k≤n. For establishing that
that k-set agreement is weaker than k-simultaneous
consensus, we are mainly interested in the values of
parameters n, t, k for which V Σk can be emulated
in MPn,t[Σk]. This is because Σk can be used
to solve k-set agreement and V Σk is necessary
for k-simultaneous consensus. Hence, a protocol
that uses a k-set agreement protocol to solve k-
simultaneous consensus in MPn,t implies that V Σk
can be emulated in MPn,t[Σk]. Nevertheless, for
completeness, we also study for which values of the
parameters n, t and k a failure detector Σk can be
emulated in MPn,t[V Σk] (Section VI-B).

A. Emulation of V Σk′ in MPn,t[Σk]

The values of t, n, k and k′ for which a failure
detector V Σk′ can be emulated in MPn,t[Σk] are
completely characterized by the following theorem:

Theorem VI.1. Let n, t, k, k′, 1 ≤ k, k′, t < n. There
is a protocol that emulates a failure detector V Σk′ in
MPn,t[Σk] if and only if k = 1 or t ≤ n+k′−2

2 .

Proof: If t ≤ n+k′−2
2 , we know from Lemma V.2

that there is a protocol that emulates V Σk′ inMPn,t,
and thus also in MPn,t[Σk]. If k = 1, V Σk′ can be
emulated in MPn,t[Σ] by simply replicating k′ times
the outputs of Σ.

Suppose now that k ≥ 2 and t > n+k′−2
2 . Assume

for contradiction that there exists a protocol A that
emulates V Σk′ in MPn,t[Σk].

Let S1, . . . , Su, u =
(
n
n−t

)
be every subset of Π of

size n − t. For every Si ∈ S, let αi be an execution
of A in which (1) the set of correct processes is Si,
(2) each faulty process fails initially and (3) the output
of the underlying failure detector Σk is always Si, at
every process. By the liveness property of the class
V Σk′ , there exists a time τi and ci, 1 ≤ ci ≤ k′ such
that the cith entry of the vector output by V Σk′ at
some correct process in αi is a set si ⊆ Si.

Now, we show that there exists Sj , S` such that
Si ∩ Sj = ∅ and cj = c` = c. Assume not for
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contradiction. This means that f : Si 7→ ci is a k′-
coloring of KGn,n−t. Therefore, the chromatic num-
ber of KGn,n−t is χ(KGn,n−t) ≤ k′. As t > n+k′−2

2 ,
it follows that k′ < 2t− n+ 2. Contradiction!

Let α be an execution of A defined as follows. The
set of correct processes in α is Sj∪S`. At each process
in Sj (respectively, S`), the output of Σk is always
Sj (respectively, S`). Since k ≥ 2, this is a valid
output for Σk in an execution where the set of correct
processes is Sj ∪ S`. Faulty processes do not take a
step in α. As for correct processes, each message sent
by the processes in Sj (respectively, S`) before time
τ = max(τj , τ`) is delayed if it is sent to a process in
S` (respectively, Sj). Otherwise it is received as in αj
(respectively, α`). After time τ , every delayed message
is received, and every message sent after that time is
eventually received.

Up to time τ , α and αj are thus indistinguishable
for any processes in Sj and, similarly, α and α` are
indistinguishable for any processes in S`. Therefore,
in α, the cth(= cj = c`) entry of the vector output by
A is a set sj ⊆ Sj at some process, and a set s` ⊆ S`
at some other process. As Sj∩Si = ∅, this contradicts
the intersection property of the class V Σk′ .

The impossibility part of the Theorem can be ex-
tended to the case in which a failure detector Ω is
available:

Corollary VI.2. Let n, t, k, k′, 1 ≤ k, k′, t < n. There
is no protocol that emulates a failure detector V Σk′

in MPn,t[Σk × Ω] if k ≥ 2 and t > n+k′−2
2 .

Proof: Essentially the same strategy as in the
previous proof can be reused. What is left undefined
in the executions αi considered there is the output
of the failure detector Ω. In each αi, 1 ≤ i ≤ u, Ω
may always outputs the same process q ∈ Si at each
process. Then, in the definition of α, the output of Ω
is the same as in αj (respectively, α`) up to time τ
for each process in Sj (respectively, S`). After time
τ , the output of Ω is the same process ∈ Si ∪ S`
at every correct process in α. This is consistent with
the eventual leadership property of the class Ω and
does not help each process in Sj (respectively, S`) to
distinguish until time τ between αj (respectively, α`)
and α.

B. From V Σk to Σk

Next theorem complements Theorem VI.1 by char-
acterizing the values of the parameters t, n and k′ for
which it is possible to t-resiliently emulate Σk′ when
a failure detector V Σk is available.

Theorem VI.3. Let n, t, k, k′, 1 ≤ k, k′, t < n. There
is a protocol that emulates a failure detector Σk′ in
MPn,t[V Σk] if and only if k ≤ k′ or t < k′n

k′+1 .

Proof: The proof of the theorem is divided in

two parts. We first establish that for k ≤ k′ or when
t < k′n

k′+1 , failure detector Σk′ can be emulated in
MPn,t[V Σk]. For the case k ≤ k′, a simple protocol
emulating a failure Σk′ is presented (Figure 3). When
t < k′n

k′+1 , Σk′ can be emulated in MPn,t (Theorem
V.5), and thus also in MPn,t[V Σk]. We then prove
that if k > k′ and t ≥ k′n

k′+1 , it is not possible to
emulate Σk′ (Lemma VI.5). The proof is based on a
simple partitioning argument.

d) Emulation of Σk′ inMPn,n−1[V Σk], k′ ≥ k:
A protocol that emulates a failure detector Σk′ is
described in Figure 3. The protocol tolerates any
number of failures, i.e., t ≤ n − 1. Each process pi
maintains a variable QUORUMi that contains the output
of the emulated failure detector Σk′ .

Recall that the underlying failure detector V Σk
provides at each process pi an array VQ i[1..k] of sets
of processes. By the intersection property of the class
V Σk, the sets output at any time and at any process
in the cth entry intersect, for any c, 1 ≤ c ≤ k. So,
any collection of k′+ 1 sets Q1, . . . , Qk′+1 output by
failure detector V Σk contains at least two sets with a
non-empty intersections since k′ ≥ k. That is, if for
each Qi, 1 ≤ i ≤ k′ + 1 there exists a process pi, a
time τi and an entry ci such that VQ i[ci] = Qi at
time τi, then two sets Qj , Q`, 1 ≤ j 6= ` ≤ k′ + 1
are output in the same entry c = ci = c` and thus are
not disjoint. Therefore, the intersection property of the
class Σk′ is satisfied if for each process pi, QUORUMi

always contains some set output by V Σk. This is what
is done in the protocol of Figure 3: periodically, the
underlying failure detector is queried, and one of the
sets output by V Σk is selected as the new output of
Σk′ (Task T1, lines 3–5).

It is also required that the output of the emulated
failure detector eventually always contains at each cor-
rect process a set of correct processes. By the liveness
property of the class V Σk, for each correct process pi,
there exist an entry `i, 1 ≤ `i ≤ k such that VQ i[`i]
eventually always contains a set of correct processes.
In order to eventually select one of the sets of correct
processes output by V Σk, each process periodically
broadcasts HEARTBEAT messages (task T1). As in
the extraction protocol (Figure 1), HEARTBEAT are
used to rank processes id. Each process pi maintains
an ordered list order i of processes ids. Each time a
HEARTBEAT from process pj is received, j is moved
at the beginning of the list (Task T2). As each faulty
process sends finitely many HEARTBEAT messages,
there exists a time after which each correct process id
appears before any faulty process id. Therefore, given
two sets S, S′ of process, S ⊆ Correct and S′ 6⊆
Correct , the largest rank of the ids of the processes
in S is eventually always smaller than the largest rank
of the ids in S′. When pi updates QUORUMi, it selects
a set S that has the smallest largest rank of its ids
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among the sets currently output by V Σk (line 4). Since
the sets output by V Σk eventually contain a subset of
the correct processes, this guarantees that eventually
QUORUMi ⊆ Correct . A proof of the protocol follows.

Lemma VI.4. For all k, k′ : 1 ≤ k ≤ k′ ≤ n and
t : 1 ≤ t ≤ n − 1, the protocol described in Figure
3 implements a failure detector of the class Σk′ in
MPn,t[V Σk].

Proof: We show that the values of the variables
QUORUMi, for each process pi, fulfill the specification
of the class Σk′ .

• Intersection. Let us consider k′ + 1 set
Q1, . . . , Qk′+1 output by the emulated failure
detector. We have to show that at least two of
them have a non-empty intersection.
Q1, . . . , Qk′+1 are the values of the variables
QUORUMi1 , . . . , QUORUMik′+1

at some times
τ1, . . . , τk′+1 respectively for some (not neces-
sarily distinct) processes pi1 , . . . , pik′+1

. By the
code of the protocol (line 4), each Qj is output
by the underlying failure detector V Σk. More
precisely, for each Qj , there exists an integer
cj , 1 ≤ cj ≤ k and a time at which at process
pij , the cith entry of the output of V Σk is Qi.
As k′ ≥ k, for at least two sets Qj , Q`, ` 6= j,
cj = c` by the pigeonhole principle. Therefore,
it follows from the intersection property of V Σk
that Qj ∩Q` 6= ∅.

• Liveness Let pi denote a correct process. Peri-
odically, the value of the variable QUORUMi is
refreshed with one of the sets currently output
by the underlying failure detector V Σk. The set
is chosen according to the current order on the
processes ids given by the ordered list orderi
(lines 3–4).
Let S, S′ denote two sets of processes ids. The set
S has higher rank than S′ if every id in S appears
before at least one id in S′ in the list orderi.
Suppose that S ⊆ Correct whereas S′ contains
the id of a faulty process. A faulty process is
moved finitely many times at the head of the list
(line 7) since it sends finitely many HEARTBEAT
messages. On the contrary, a correct process is
moved infinitely many times at the beginning of
the list (line 7). Hence, S is eventually always
ranked before S′.
By the liveness property of the class V Σk, there
is a time after which the vector of sets output
by the failure detector at pi always contains
a set of correct processes ids. It thus follows
that eventually, a set of correct processes ids is
selected each time line 4 is executed, from which
we conclude that QUORUMi eventually contains a
set of correct processes ids.

Impossibility of t-resilient emulation of Σk′ for
k < k′ and k′n

k+1 ≤ t: To complete the proof of
Theorem VI.3, we establish the following impossibility
result:

Lemma VI.5. Let n, t, k, k′, 1 ≤ k′ < k < n and
k′n
k′+1 ≤ t. There is no protocol that emulates a failure
detector Σk′ in MPn,t[V Σk].

Proof: The proof is based on a partition argument.
Assume for contradiction that there exists a protocol A
that emulates a failure detector Σk′ in MPn,t[V Σk].

As k′n
k′+1 ≤ t, i.e., (k′ + 1)(n − t) ≤ n, there

exists k′ + 1 pairwise disjoint sets S1, . . . , Sk′+1 ⊆ Π
of size n − t. Let VQ be the vector of size k
[S1, . . . , Sk′+1,Π, . . . ,Π]. Note that VQ is a valid
output for a failure detector of the class V Σk in any
execution in which the set of correct processes is Π or
Si, for any i, 1 ≤ i ≤ k′ + 1.

Let α1, . . . , αk′+1 denote k′ + 1 executions of A
as follows. For each i, 1 ≤ i ≤ k′ + 1, the set of
correct processes in execution αi is Si; the output of
the underlying failure detector V Σk is always VQ ,
for every process p` ∈ Si. Processes in Π \ Si fail
before taking any step. Observe that n − t processes
are correct in Si.

Consider execution αi, for some i, 1 ≤ i ≤ k′ + 1.
By the correctness of the emulation A, there exists a
time τi at which the output of Σk′ is a set si ⊆ Si,
for some process in Si. This follows from the liveness
property of the class Σk′ .

To establish a contradiction, we construct an execu-
tion α of A by “merging” execution α1, . . . , αk′+1.
Let τ = max1≤i≤k′+1 τi. No processes fail in α.
As in each execution αi, the output of the un-
derlying failure detector V Σk is always VQ =
[S1, . . . , Sk′+1,Π, . . . ,Π] as in αi, 1 ≤ i ≤ k. This
is a valid output for a failure detector of the class
V Σk, as no processes fail in α. Moreover, for each
i, 1 ≤ i ≤ k, each message sent by the processes in
Si before time τ is delayed if it is sent to a process
outside Si, or received as in αi. After time τ , we let
every delayed messages be received in any order. Also,
each message sent after time τ is eventually received.

It thus follows that run α and αi are indistinguish-
able up to time τ by each process in Si. Therefore, by
construction of αi, at time τi and at some process Si,
the output of A is a quorum si ⊆ Si. As S1, . . . , Sk′+1

is a family of pairwise disjoint sets, so is the family
s1, . . . , sk′+1. Therefore, the intersection property of
Σk′ is violated: a contradiction.

VII. SEPARATION RESULTS

This section glues together the results presented in
Section IV, Section V and Section VI to establish the
following main theorem:
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init orderi ← (1, . . . , n); /* ordered list of processes ids */
QUORUMi ← Π; /* Σk emulated output */
start task T1,T2,T3

task T1:
(1) repeat periodically
(2) send HEARTBEAT(i) to all processes;
(3) V Qi ← V Σk-query();

/* query V Σk; V Qi is an array of k sets of procs. ids */
(4) let Q ⊆ Π : ∃j : Q = V Qi[j] and ∀c, 1 ≤ c ≤ k :

max`∈Q rank(`, orderi) ≤ max`∈VQi[c]
rank(`, orderi)

/* rank(j, order) is the rank of j in the ordered list orderi */
(5) QUORUMi ← Q
(6) end repeat

task T2: when HEARTBEAT(j) is received:
(7) move j at the head of the list orderi

task T3: when Σk′ is queried:
(8) return QUORUMi

Fig. 3. Emulation of Σk′ in MPn,n−1[V Σk], k′ ≥ k (code for pi)

Theorem VII.1. Let n, t, k, k′, 1 ≤ k, k′ ≤ t < n such
that 2 ≤ k and n+k′−2

2 < t. There is no protocol for
k′-simultaneous consensus in MPn,t[k-SA].

The proof strategy is as follows: On one hand, it has
been shown in [8] that k-set agreement can be solved
in MPn,t[Ω × Σk], for any value of t. On the other
hand, we have seen that V Σk′ is necessary for solving
k′-simultaneous consensus (Theorem IV.1). The im-
possibility of a t-resilient solution to k′-simultaneous
consensus using a k-set agreement protocol thus re-
duces to the impossibility of a t-resilient emulation of
V Σk′ based on Ω×Σk. The latter has been answered
in the previous Section (Corollary VI.2).

Proof: Let k ≥ 2 and t > n+k′−2
2 . The proof

is by contradiction. Assume that there exists a k′-
simultaneous consensus protocol A in MPn,t[k-SA].
More precisely, A uses any number of copies of a
k-set agreement protocol B to solve k′-simultaneous
consensus. Protocol B is any t-resilient protocol for k-
set agreement. No assumption is made regarding the
internals of protocol B. It particular, B might be a
failure detector-based protocol.

It is known that k-set agreement can be solved in
MPn,t[Ω × Σk] [8] – the protocol presented there
imposes no requirement on t and k. B may thus be
the protocol presented in [8]. Therefore, by combining
protocol A and B, it follows that k′-simultaneous
consensus can be solved in MPn,t[Ω× Σk].

In section IV, we have shown that V Σk is necessary
for k′-simultaneous consensus. That is, if there is a k′-
simultaneous consensus protocol using a failure detec-
tor D, then one may use D to emulate a failure detector
of the class V Σk. As k′-simultaneous consensus can
be solved in MPn,t[Ω×Σk] by combining protocols
A and B, it thus follows that there exists a protocol T
that emulates V Σk in MPn,t[Ω× Σk].

However, by corollary VI.2, there is no protocol that
emulates V Σk in MPn,t[Ω × Σk] if k ≥ 2 and t >
n+k′−2

2 : a contradiction.
The relative hardness of k-set agreement and k-

simultaneous consensus is also expressed by the fol-
lowing theorem. The theorem gives tight bounds on t
for k-set agreement and k-simultaneous consensus to
be solvable when an eventual leader is available:

Theorem VII.2. Let 1 ≤ k ≤ t < n. In MPn,t[Ω],

1) There is a k-set agreement protocol if and only if
t < kn

k+1 ;
2) There is a k-simultaneous consensus protocol if

and only if t ≤ n+k−2
2 .

Proof: 1) Bonnet and Raynal[6] have shown that
Σk is necessary for k-set agreement. Moreover, Σk
can be emulated in MPn,t[Ω] if and only if t < kn

k+1 .
Hence, the existence of an Ω-based k-set agreement
protocol tolerating t implies a t-resilient emulation
of Σk in MPn,t[Ω]. This is not possible if t ≥ kn

k+1 .
A k-set agreement protocol in MPn,t[Σk × Ω] is
presented in [8]. Since Σk can be emulated inMPn,t
provided that t < kn

k+1 , k-set agreement can be solved
in MPn,t[Ω] for t < kn

k+1 .

2) Similarly, we have shown that V Σk is neces-
sary for k-simultaneous (Section IV) and that V Σk
can be emulated in MPn,t[Ω] if and only if t ≤
n+k−2

2 (Lemma V.4). Therefore, no protocol solves k-
simultaneous consensus in MPn,t[Ω] if t > n+k−2

2 .
For t ≤ n+k−2

2 , k-simultaneous consensus can
be solved in MPn,t[Ω] as follows: Each process pi
participates simultaneously in k instances A1, . . . ,Ak
of an (Ω×Σ)-based consensus protocol A. pi proposes
its initial value in each instance; if pi decides v in
instance Ac, the pair (c, v) is returned by pi as its

12



output for k-simultaneous consensus. Emulation of Σ
in instance j consists in outputting the jth component
of the vector provided by V Σk.

The liveness property of the class V Σk ensures that
for some c, 1 ≤ c ≤ k, the cth entry of the vector
output by V Σk eventually contains a subset of the
correct processes. Moreover, for any entry j, every pair
of sets in the jth entry of the vector provided by V Σk
have a non-empty intersection. Therefore, the cth entry
of the output of V Σk satisfy the same property as the
output of a failure detector Σ. It thus follows that every
correct process eventually decides in Ac.

Since in every instance Aj , 1 ≤ j ≤ k, the
emulation of Σ preserves the intersection property,
no two process decide different values in Aj . This is
because the safety property of consensus relies only
on the fact that the intersection of any two sets output
by Σ is non-empty. Hence, if (j, v) and (j, v′) are
decided, then v = v′, for any j, 1 ≤ j ≤ k.

VIII. CONCLUSION

The paper has investigated the relationship linking
the k-set agreement and the k-simultaneous consen-
sus problems in asynchronous crash-prone message-
passing systems. While k-simultaneous consensus t-
resiliently implements k′-set agreement for any value
of t < n, and any k′ ≤ k, the paper has shown that
k-set agreement does not implement k′-simultaneous
consensus for any k′, 1 ≤ k′ ≤ n if n+k′−2

2 < t
and 2 ≤ k. In addition, when an eventual leader
Ω is available, it has established that k-simultaneous
consensus can be solved if and only if t ≤ n+k−2

2 .
This is to be compared with k-set agreement, which
can be solved if and only if t < kn

k+1 .
The paper leaves open the following question: For

n
2 ≤ t ≤ n+k−2

2 , what is the smallest value of
k′ for which k-set agreement t-resiliently implements
k′-simultaneous consensus in message passing? As a
starting point, we demonstrate below that given a k-
set agreement protocol and assuming t ≤ n+k−2

2 ,
(2k−1)-simultaneous consensus can be achieved. Note
that this is not trivial: for example, if 2(2k + 1) < n,
2k − 1 ≤ t for every t, n2 ≤ t ≤

k+n−2
2 .

Partition the set of processes in two sets A =
{p1, . . . , pk−1} and B = {pk, . . . , pn}. Each pi in A
broadcasts (i, vi) where vi is pi’s initial value before
deciding that pair. The n− k+ 1 remaining processes
emulate a shared memory reduction of k-simultaneous
consensus to k-set agreement, as described in [1],
assuming that no more than tA = bn−k2 c processes
among them fail. If pi ∈ A obtains a decision (c, d),
it broadcast the pair (c + (k − 1), d) before deciding
it. Any process that receives a pair (c, d) decides this
pair. Note that we have 1 ≤ c ≤ 2k − 1, and if pairs
(c, d), (c, d′) are decided, d = d′. If the number of
actual failures in B exceeds tB , the emulation may not

terminate, but safety is not violated (that is, a simulated
write or read operation may not terminate).

For termination, let fA, fB be the actual number of
failures in sets A and B respectively. If fA < k − 1,
the protocol terminates as A contains a correct process.
Otherwise, fA = k−1 and consequently fB ≤ t−(k−
1) ≤ n+k−2

2 −(k−1) = n−k
2 .That is, a majority of the

processes in A are correct. The emulation of the shared
memory protocol thus terminates, which enables every
correct process to decide.

Another avenue for future research is to deter-
mine the weakest failure detector for k-simultaneous
consensus. A candidate is the (new) failure detector
class Wk: the output of Wk is a k-component array.
Each component contains the same output as a failure
detector Ω × Σ, except that the eventual leadership
property of Ω and the liveness property of Σ are
only required to hold in a single component. This
component must be the same for both properties and
for every process. More details appear in Appendix A.
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APPENDIX

Intuitively, a failure detector of the class Wk pro-
vides the processes with k instances of failure detectors
Ω × Σ. In each copy, the safety property of the class
Ω× Σ holds. That is, the intersection property of the
class Σ in each copies is always satisfied: any two
quorums output possibly at distinct processes by the
same copy of Σ intersect. The liveness properties of
Ω×Σ, however, is may not be satisfied in every copy.
It may be the case that in some copies the output of Ω
never converges towards a correct leader, or that the
quorums output by Σ include infinitely often faulty
processes. Nevertheless, in at least one, unknown, copy
both the eventual leadership property of Ω and liveness
of Σ hold.

More formally, a detectorWk provides each process
pi with two k-component denoted LEADERSi and
QUORUMSi that satisfy the following properties:

• Validity. At any time, each component of
LEADERSi stores a process identity and each
component of QUORUMSi stores a set of process
ids.
∀pi ∈ Π,∀τ ∈ T,∀c, 1 ≤ c ≤ k :
(LEADERSτi [c] ∈ Π) ∧ (QUORUMSτi [c] ⊆ Π).

• Intersection. Any two quorums output in the
same component c of the array QUORUMS at the
same process or at distinct processes intersect.
Formally,
∀c, 1 ≤ c ≤ k, ∀τ, τ ′ ∈ T,∀pi, pi′ ∈ Π :
QUORUMSτi [c] ∩ QUORUMSτ

′

i′ [c] 6= ∅.
• Liveness. There exists c, 1 ≤ c ≤ k and a correct

process p` such that eventually (i) LEADERSi[c] =
`, and and, (ii) QUORUMSi[c] ⊆ Correct for
every correct process pi. That is,
∃c, 1 ≤ c ≤ k, ∃p` ∈ Correct, ∃τ` ∈ T such that:

(i) Eventual leadership. ∀pi ∈ Correct, ∀τ ≥ τ` :
LEADERSτi [c] = `.

(ii) Quorum liveness. ∀pi ∈ Correct, ∀τ ≥ τ` :
QUORUMSτi [c] ⊆ Correct.

Clearly, k-simultaneous consensus can be solved
in MPn,t[Wk]. Every process participates simultane-
ously in k instances of an (Ω × Σ)-based consensus
protocol. For each instance j, 1 ≤ j ≤ k, the output
of Ω × Σ is provided by the jth component of Wk.
By the validity and intersection properties of Wk, at
most one value is decided in each instance, whereas
the liveness guarantees that decision occur in at least
one instance.

Finally, we rank the power of Wk among two other
failure detectors that combine in different way the
properties of Ω and Σ. Recall that a failure detector Ωk
[27], [17] outputs a k-component array of processes
ids; it is guaranteed that the eventual leadership prop-
erty is satisfied in at least one component.
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Lemma A.1. V Σk × Ωk � Wk � V Σk × Ω.

Proof:
1) Ωk × V Σk � Wk. Simply observe that the

arrays LEADERS and QUORUMS comply with the
specification of Ωk and V Σk respectively.

2) Wk � V Σk ×Ω. The failure detector Wk can be
emulated as follows. The algorithm outputs two
arrays LEADERS and QUORUMS at each process.
The former contains k copies of Ω and the latter
is a copy of the output of V Σk.
The emulated failure detector complies with
the validity requirement of Wk. The intersec-
tion property of Wk follows from the epony-
mous property of the underlying failure detector
V Σk. The liveness property of V Σk also ensures
the quorums liveness property of Wk. That is,
there exists c ∈ [1, k] and a time after which
QUORUMSi[c] at each correct process pi is a
subset of Correct. Note that by definition of Ω,
the content of LEADERS[c] eventually complies
with the leadership liveness property of V Σk.
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