A Comparative Study of Algorithms for Intra- and Inter-subjects fMRI Decoding

Abstract : Functional Magnetic Resonance Imaging (fMRI) provides a unique opportunity to study brain functional architecture, while being minimally invasive. Reverse inference, a.k.a. decoding, is a recent statistical analysis approach that has been used with success for deciphering activity patterns that are thought to fit the neuroscientific concept of population coding. Decoding relies on the selection of brain regions in which the observed activity is predictive of certain cognitive tasks. The accuracy of such a procedure is quantified by the prediction of the behavioral variable of interest - the target. In this paper, we discuss the optimality of decoding methods in two different settings, namely intra- and inter-subject kind of decoding. While inter-subject prediction aims at finding predictive regions that are stable across subjects, it is plagued by the additional inter-subject variability (lack of voxel-to-voxel correspondence), so that the best suited prediction algorithms used in reverse inference may not be the same in both cases. We benchmark different prediction algorithms in both intra- and inter-subjects analysis, and we show that using spatial regularization improves reverse inference in the challenging context of inter-subject prediction. Moreover, we also study the different maps of weights, and show that methods with similar accuracy may yield maps with very different spatial layout of the predictive regions.
Type de document :
Communication dans un congrès
Georg Langs, Irina Rish, Moritz Grosse-Wentrup, Brain Murphy. MLINI - Machine Learning and Interpretation in Neuroimaging - 2011, Dec 2011, Sierra Nevada, Spain. Springer, pp.1-8, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-34713-9_1〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00753142
Contributeur : Gaël Varoquaux <>
Soumis le : dimanche 18 novembre 2012 - 16:38:36
Dernière modification le : jeudi 9 février 2017 - 15:56:12
Document(s) archivé(s) le : jeudi 21 février 2013 - 10:57:45

Fichiers

michel_mlini_2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Michel, Alexandre Gramfort, Evelyn Eger, Gaël Varoquaux, Bertrand Thirion. A Comparative Study of Algorithms for Intra- and Inter-subjects fMRI Decoding. Georg Langs, Irina Rish, Moritz Grosse-Wentrup, Brain Murphy. MLINI - Machine Learning and Interpretation in Neuroimaging - 2011, Dec 2011, Sierra Nevada, Spain. Springer, pp.1-8, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-34713-9_1〉. 〈hal-00753142〉

Partager

Métriques

Consultations de la notice

394

Téléchargements de fichiers

249