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Abstract

Acceleration methods are commonly used for computing precisely the effects of loops in the
reachability analysis of counter machine models. Applying these methods on synchronous data-
flow programs, e.g. Lustre programs, requires to deal with the non-deterministic transforma-
tions due to numerical input variables. In this article we address this problem by extending the
concept of abstract acceleration of Gonnord et al. to numerical input variables. Moreover, we
describe the dual analysis for co-reachability. We compare our method with some alternative
techniques based on abstract interpretation pointing out its advantages and limitations. At last,
we give some experimental results.
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1. Introduction

This article considers the reachability analysis of non-recursive, numerical programs
represented by symbolic automata manipulating numerical variables, as illustrated in
Fig. 1(a). More specifically, we focus on techniques enabling a precise analysis of self-
loops that can be smoothly combined with methods for general numerical programs. For
instance, considering the program of Fig. 1(a) with the set X0 of initial values for the
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Fig. 1. Example program (a), transformed program (b) where τ∗ denotes the transitive closure
of the transition τ , and set of initial states (c).

state variables x1, x2, p, we want to compute the possible values of these state variables at
locations l0 and l1. This article proposes abstract acceleration methods (as introduced by
Gonnord and Halbwachs (2006)) to capture precisely the effect of the inner loop labelled
by τ on a set of states X ∈ R

n. It shows how these techniques integrate nicely with less
precise but more general methods applying to programs with control structure involving
nested loops and unstructured cycles.

Our ultimate motivation is the reachability analysis of data-flow synchronous programs
manipulating Boolean and numerical variables, which are for instance specified with the
Lustre language (Caspi et al. (1987)). Applications of such reachability analyses are for
instance the verification of safety properties (Halbwachs et al. (1993)) or model-based
testing (Jeannet et al. (2005)).

We first give an overview of existing methods for the reachability analysis of the
systems we consider, before detailing the original contributions of this article.

Abstract interpretation and acceleration. Since the reachability problem is not decidable
for numerical programs that encode two-counter automata (Minsky (1961)), two main
approaches have been studied to overcome this fundamental limitation:
(1) Abstract interpretation techniques (Cousot and Cousot (1977, 1992)) always ter-

minate with a sound over-approximation of the reachability set.
(2) Acceleration techniques (e.g. Leroux (2003); Bardin et al. (2003, 2005)) compute

the exact reachability set for a restricted class of programs, e.g., for programs with
certain affine tests and assignments. However, there is no guarantee for termination.

In both approaches, the set of reachable states is obtained by solving iteratively an
equation of the form X = X0 ∪ post(X) where X is a set of states, X0 the initial set,
and post the postcondition operator associated with the program.

Abstract interpretation is a classical method for analyzing programs with infinite state
spaces. The key idea is to approximate sets of states X by an element Y of an abstract do-
main. Two classical abstract domains for numerical invariants X ∈ ℘(Rn) are the domain
of convex polyhedra Pol (Rn) (Cousot and Halbwachs (1978)), that are conjunctions of
linear inequalities

∧

i(aix ≤ bi) and the linear congruences domain (Granger (1991); Bag-
nara et al. (2006)) that represents conjunctions of linear congruences

∧

i(aix=bi mod ci).
An approximation of the reachable set is computed by solving iteratively the equation
Y = Y0 ⊔ post(Y ) in the abstract domain. In order to ensure termination when the
abstract domain contains infinitely increasing chains, an extrapolation operator called
widening is applied, which induces additional over-approximations.
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The idea of acceleration is to accelerate cycles labelled by a function τ in the control

structure of a program by computing the effect of its reflexive and transitive closure

τ∗ =
⋃

k≥0
τk on a set of states X (the term “closure” refers to τ viewed as a relation).

Applied to the program of Fig. 1(a), we obtain the program of Fig. 1(b). If the program

is flat (i.e. it does not contain nested loops) and all loops can be accelerated, then the

method is complete. If the program contains nested loops as in Fig. 1(a), the method

is not complete any more; the standard heuristics is to enumerate and accelerate cycles

(which form an infinite set) in the hope of terminating with the smallest fixed point after

a finite number of steps. The same remark applies if transition functions in some cycles

are too expressive to be accelerated. Acceleration has been mostly applied to automata

manipulating integer variables using Presburger arithmetic (Fribourg and Olsén (1997);

Finkel and Leroux (2002); Bardin et al. (2003)), or FIFO queues using subclasses of

regular expressions (Boigelot and Godefroid (1997); Abdulla et al. (2004)).

Widening basically extrapolates the limit of a sequence of abstract invariants without

referring to the program that generates them, whereas acceleration uses the structure

of the program to perform an exact extrapolation. Gonnord and Halbwachs (2006) have

proposed the concept of abstract acceleration which combines these approaches: wherever

possible, simple loops are accelerated in the abstract domain, and in any other cases

(multiple self-loops, nested loops, too expressive transitions) one resorts to the use of

widening to guarantee the convergence of the fixed point computation at the cost of

over-approximations.

Applying acceleration to reactive programs. Many acceleration techniques such as those

introduced by Leroux (2003); Bardin et al. (2003); Gonnord and Halbwachs (2006) con-

sider automata with transition functions in the form of guarded actions

τ : g(x)
︸︷︷︸

guard

→ x′ = f(x)
︸ ︷︷ ︸

action

x,x′ ∈ R
n (1)

However, reactive programs such as Lustre data-flow programs interact with their en-

vironment: at each computation step they have to take into account the value of input

variables, which typically correspond to values acquired by sensors.

Boolean input variables can be encoded in an automaton by finite non-deterministic

choices but numerical input variables demand a more specific treatment. Indeed, they

induce transition functions of the form

τ : g(x, ξ) → x′ = f(x, ξ) x,x′ ∈ R
n ξ ∈ R

p (2)

that depends on both state variables x and numerical input variables ξ. This article ad-

dresses specifically this point, by extending the abstract acceleration concept introduced

by Gonnord and Halbwachs (2006) to systems with numerical inputs. The methods devel-

opped in this article can also be seen as an alternative to acceleration methods-based on

the computation of transitive closures of affine relations (rather than functions) (Beletska

et al. (2009); Bozga et al. (2010)). Indeed, transition functions with inputs can be viewed

as relations between states defined as

R(x,x′) =
(
∃ξ : g(x, ξ) ∧ x′ = f (x, ξ)

)
(3)
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Contributions and outline. Our first two contributions are extensions of the abstract
acceleration concept as introduced by Gonnord and Halbwachs (2006) in two directions:
(i) We consider open systems, i.e., with numerical inputs, instead of closed systems;

in particular we show how to accelerate loops where translations and resets depend
on inputs, provided that the guard of the loop constrains separately state and input
variables.

(ii) We also extend abstract acceleration techniques from forward (reachability) analy-
sis to backward (co-reachability) analysis. In consequence, it possible to apply the
abstract acceleration concept to related, but slightly different problems in verifi-
cation, such as parameter synthesis for example. Moreover, experience shows that
combining forward and backward analyses is very useful in the context of abstract
interpretation (e.g. Jeannet (2003)).

A third contribution is (iii) a detailed comparison of the abstract acceleration approach
to the derivative closure approach of Ancourt et al. (2010), which is related to methods
based on transitive closures of relations. This article extends the results presented by
Schrammel and Jeannet (2010) with the contributions (ii) and (iii).

After some preliminaries in Section 2 about the considered program model, operations
on convex polyhedra and the general analysis framework that we use for verification, we
recall the main results of abstract acceleration in Section 3. Section 4 extends abstract
acceleration techniques to systems with numerical input variables, in the context of for-
ward analysis. Section 5 extends these results to backward analysis. Section 6 is dedicated
to a comparison with other methods. Section 7 gives an overview and some experimen-
tal results on how to apply abstract accleration to logico-numerical programs. After a
discussion of further related work in Section 8, we conclude in Section 9.

2. Analysis of Logico-Numerical Programs

Program model. We assume a set V of variable names. We consider in this article pro-
grams modeled as numerical automata (L,x, ξ, l0, X0, T ) where

• L is a finite set of locations, x ∈ V n a vector of real-valued state variables, and
ξ ∈ V p a vector of real-valued input variables;

• l0 is the initial location and X0 ⊆ R
n is the set of initial values for state variables

x at location l0;
• T is a finite set of transitions of the form t : (l, l′, τ) where l and l′ are respectively
the origin and destination locations, and τ is a (partial) transition function of the
form g(x, ξ) → x′ = f(x, ξ).

An execution of such a system is a sequence (l0,x0)
t0,ξ0−−−→ . . . (lk,xk)

tk,ξk−−−→ . . . such
that x0 ∈ X0 and for any k ≥ 0, tk = (lk, lk+1, τk) and xk+1 = τk(xk, ξk).

This program model includes various models of counter automata (Comon and Jurski
(1998); Bardin et al. (2005)). It can also be obtained from Lustre synchronous data-flow
programs by (1) taking the output of their front-end compilation process, (2) performing
on this output a partial evaluation (Jones et al. (1993)) of all Boolean state variables
(which are then encoded in control locations), and (3) eliminating Boolean input variables
using non-deterministic choices. The partition refinement mechanics implemented in the
NBac tool (Jeannet (2003)) are capable of achieving this task and have been employed
for connecting the Aspic tool (Gonnord (2007, 2009)) to Lustre, for example.
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Convex Polyhedra. We use in this article the abstract domain of convex polyhedra for
representing invariants on numerical variables. Convex polyhedra can be represented
either as a conjunction of constraints denoted by

Ax ≤ b with x ∈ R
n,A ∈ R

m×n, b ∈ R
m

or as the set of vectors generated by a vector of vertices V = (v1 . . .vp) ∈ R
n×p and rays

R = (r1 . . . rq) ∈ R
n×q, denoted by (V,R):

{x | ∃λ,µ≥0 :
∑

i λi = 1 ∧ x = Vλ+Rµ}

We can convert from one representation to the other one (see (Fukuda and Prodon
(1996)). We will use the same notation for polyhedra X interexchangeably for both the
predicate X(x) = (Ax ≤ b) and the set X = {x | Ax ≤ b}. We briefly remind some
classical operations described e.g. by Halbwachs et al. (1997):

The constraint representation is used for computing the intersection ⊓ of two polyhedra
(i.e. the conjunction of their constraints) and the inverse image τ−1(X) of a polyhedron
X = (Ax ≤ b) by an affine assignment τ : x′ = Cx+d, i.e. τ−1(X) = (ACx ≤ b−Ad).

The generator representation is used for computing the convex hull (union) ⊔ of two
polyhedra (i.e. the union of their generators), the projection of dimensions, and the
image τ(X) of a polyhedron X = (V,R) by an affine assignment τ : x′ = Cx + d:
τ(X) =

(
(CV + (d . . .d

︸ ︷︷ ︸

p times

)),CR
)
.

Mind that the intersection of two convex polyhedra is again a convex polyhedron:
X ∩Y = X ⊓Y . In contrast, the union of two convex polyhedra is not convex in general.
For that reason the convex hull, i.e. an over-approximation, is used instead of the ordinary
union for sets: X ∪ Y ⊆ X ⊔ Y

The time elapse operation, defined as X ր D = {x+ td |x ∈ X,d ∈ D, t ∈ R
≥0} can

be implemented using the systems of generators (VX , RX) and (VD, RD) of the polyhedra
X and D: (VX , RX ∪ VD ∪RD) is a system of generators for X ր D.

The Minkowski sum (see de Berg et al. (2008)) of two polyhedra X = X1+X2 is
defined by X(x) = ∃x1,x2 : (x=x1+x2) ∧X1(x1) ∧X2(x2).

⊤ and ⊥ denote the polyhedra R
n and ∅ respectively.

Concerning the complexity, the translation between the two representations may be
exponential in the number of dimensions n (see Fukuda and Prodon (1996)), hence any
composition of basic operations requiring both representations has a worst-case expo-
nential complexity.

Note that the operations defined on generators can also be computed using only sys-
tems of constraints and projection as shown by Benoy et al. (2005). However, this does
not allow to improve the worst-case complexity.

3. Overview of Acceleration and Abstract Acceleration

As mentioned in the introduction, the idea of acceleration (Fig. 1) is to replace a
self-loop τ by an ordinary transition τ∗ that is the reflexive and transitive closure of τ .
Abstract acceleration introduced by Gonnord and Halbwachs (2006) and Gonnord (2007)
relaxes exact acceleration in the sense that it aims at approximating the exact set τ∗(X)
by a convex polyhedron τ⊗(X) ⊇ τ∗(X) that is close to the convex hull of the exact
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search stop
s > 2 ∨ t > 3

σ ∧ s ≤ 2 ∧ t ≤ 3 →
s′ = 0; t′ = t+ 1

µ ∧ s ≤ 2 ∧ t ≤ 3 →
s′ = s+ 1; d′ = d+ 1

s′ = 0; t′ = 0; d′ = 0

Fig. 2. Example: A robot car safety controller. The lower loop means: When a “meter” signal
µ is received the speed estimation s and the distance d are incremented: this transition is a
translation. On the contrary, the upper loop is a translation with resets: when a “second” signal
σ is received the speed estimation is reset and the time t is incremented. If the speed is above
2m/s or no input signal has been received for 3s then the car is stopped.

set. This method is also inspired by the time elapse operator used in timed or in hybrid

automata (Halbwachs et al. (1997)).

Following the notations of Section 2, a self-loop τ has the structure: G → A meaning

“while guard G do action A”. Generally, acceleration methods for numerical variables x

deal with transitions of the form

Ax ≤ b → x′ = Cx+ d (4)

where Ax ≤ b represents a conjunction of linear constraints defining a convex polyhe-

dron, and x′ = Cx+ d is an affine transformation; C is a square matrix. A transition is

called

• a reset iff C is the zero matrix,

• a translation iff C is the identity matrix,

• a translation with resets (or translation/reset) iff C is a diagonal matrix with zeros

and ones only,

• a periodic affine transformation iff ∃p > 0, ∃l > 0 : Cp+l = Cp,

• a general affine transformation otherwise.

Existing acceleration methods do not address general affine transformations. We will not

consider in this paper the case of periodic affine transformations, but we discuss the

generalization of our results to this case in the conclusion.

Fig. 2 shows an example of a simplistic safety controller for a robot car (cf. Halbwachs

et al. (1997); Ancourt et al. (2010)). The car should follow a given track, but in case it

has lost the track it should keep on searching the track for a while before being stopped.

This example illustrates two of the above types of transitions.

In the context of abstract acceleration, Gonnord and Halbwachs (2006) show that

translations and translations with resets can be accelerated as follows:

Theorem 1 (Translations, Gonnord (2007)). Let τ be a translation G → x′ = x + d,

then for every convex polyhedron X, the convex polyhedron

τ⊗(X) = X ⊔
((

(X ⊓G) ր {d}
)
⊓ (G+ {d})

)

is a convex over-approximation of τ∗(X).
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lation (Ex. 1) by vector d starting from
X (dark gray) resulting in τ⊗(X) (whole
shadowed area).

0

1

2

3

4

0 1 2 3 4 5
x1

x2

τ⊗(X)

X

τ(X)

G

Fig. 4. Abstract acceleration of a transla-

tion with resets (Ex. 2) starting from X
(dark gray): τ (X) (bold line) and result
τ⊗(X) (whole shadowed area).

Example 1 (Translation). (see Fig. 3)

τ : x1+x2≤4 ∧ x2≤3
︸ ︷︷ ︸

G

→




x′
1

x′
2



=




x1

x2



+




2

1





︸ ︷︷ ︸

d

Starting from X = (0≤x1≤1 ∧ 0≤x2≤4) we compute τ⊗(X):

X ⊓G = (0≤x1≤1 ∧ 0≤x2≤3)

(X ⊓G) ր {d} =







x1≥0 ∧ x2≥0 ∧ x1−2x2≥−6 ∧

−x1+2x2≥−1)

((X ⊓G) ր {d}) ⊓ (G+ {d}) =







x1≥0 ∧ 0≤x2≤4 ∧ x1−2x2≥−6 ∧

−x1+2x2≥−1 ∧ x1+x2≤7

τ⊗(X) =







x1≥0 ∧ 0≤x2≤4 ∧ − x1+2x2≥−1 ∧

x1+x2≤7

Theorem 2 (Translations with resets, Gonnord (2007)). Let τ be a translation with

resets G → x′ = Cx+ d, then for every convex polyhedron X, the convex polyhedron

τ⊗(X) = X ⊔ τ(X) ⊔
((

(τ(X) ⊓G) ր {Cd}
)
⊓ (G+ {Cd})

)

is a convex over-approximation of τ∗(X).

Example 2 (Translation with resets). (see Fig. 4)

τ : x1+x2≤4 ∧







x′
1 = x1+2

x′
2 = 1
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Starting from X = (0≤x1≤3 ∧ 2≤x2≤3) we compute τ⊗(X):

τ(X) = (2≤x1≤4 ∧ x2=1)

τ(X) ⊓G = (2≤x1≤3 ∧ x2=1)

(τ(X) ⊓G) ր {Cd} = (x1≥2 ∧ x2=1)

((τ(X) ⊓G) ր {Cd}) ⊓ (G+ {Cd}) = (2≤x1≤5 ∧ x2=1)

τ⊗(X) =







x1≥0 ∧ 1≤x2≤3 ∧ x1+2x2≥4 ∧

x1+x2≤6

Remark 1. Theorem 2 exploits the property that a translation with resets to constants
iterated N times is equivalent to the same translation with resets, followed by a pure
translation iterated N−1 times. Hence the structure of the obtained formula

Remark 2. Ideally, τ⊗(X) as defined in Theorems 1 and 2 should be the best over-
approximation of τ∗(X) by a convex polyhedron. This is not the case as shown by the
following example in one dimension. Let X = [1, 1] and τ : x1 ≤ 4 → x′

1 = x1 + 2.
τ⊗(X) = [1, 6], whereas the best convex over-approximation of τ∗(X) = {1, 3, 5} is
the interval [1, 5]. This is because the operations involved in the definition of τ⊗(X)
manipulate dense sets and do not take into account arithmetic congruences. In this
article we will not improve in this respect, but we will point out in our proofs where this
dense approximation takes place, and we discuss in Section 9 how the linear congruences
abstract domain mentioned in the introduction can be exploited to improve on this point.

4. Abstract Acceleration with Numerical Inputs

We now extend numerical abstract acceleration by numerical input variables ξ. We
consider transitions τ of the form 1




A L

0 J








x

ξ



 ≤




b

k





︸ ︷︷ ︸

Ax+Lξ≤b ∧ Jξ≤k

→ x′ =
(

C T

)




x

ξ



+ u

︸ ︷︷ ︸

Cx+Tξ+u

(5)

General and simple guards. The following proposition shows the challenge raised by
adding inputs:

Proposition 1 (General guards and general affine transformations). Any general affine
transformation without inputs Ax ≤ b → x′ = Cx+ d can be expressed

– as a “reset with inputs” (Ax ≤ b ∧ ξ = Cx+ d) → x′ = ξ,

– as well as a “translation with inputs” (Ax ≤ b ∧ ξ = (C−I)x+ d) → x′ = x+ ξ.

This means that there is no hope to get precise acceleration for such resets or transla-
tions with inputs, unless we know how to accelerate precisely general affine transforma-
tions without inputs, which is out of the scope of the current state of the art.

1 Note that the 0 in the matrix of the guard does not imply a loss of generality.
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Nevertheless, we can accelerate transitions with inputs if the constraints on the state
variables do not depend on the inputs, i.e., the guard is of the form Ax ≤ b ∧ Jξ ≤ k,
i.e., when L = 0 in Eqn. (5). We call the resulting guards simple guards.

In the following, we show how to accelerate translations and translations with resets
with simple guards. We provide in §4.3 an over-approximation of our results for general
guards.

4.1. Translations with Inputs and Simple Guards

Definition 1. Translations with inputs and simple guards are defined as



A 0

0 J








x

ξ



 ≤




b

k





︸ ︷︷ ︸

Ax ≤ b
︸ ︷︷ ︸

G

∧ Jξ≤k

→ x′
=

(

I T

)




x

ξ



+ u

︸ ︷︷ ︸

x+Tξ+u

The first step we perform is to reduce such a translation with inputs to a polyhedral
translation τ : G → x′ = x+D and defined by τ(X) = (X ⊓G) +D.

Proposition 2 (Translation with inputs = polyhedral translation). A translation τ with
inputs and a simple guard (Def. 1) is equivalent to a polyhedral translation defined by

G → x′ = x+D with D = {d | ∃ξ : d = Tξ + u ∧ Jξ ≤ k}

(D can be computed by standard polyhedra operations.)

Proof.

x′ ∈ τ(X)

⇐⇒ ∃x ∈ X, ∃ξ : Ax ≤ b ∧ Jξ ≤ k ∧ x′ = x+Tξ + u

⇐⇒ ∃x ∈ X ⊓G, ∃ξ, ∃d : Jξ ≤ k ∧ d = Tξ + u ∧ x′ = x+ d

⇐⇒ ∃x ∈ X ⊓G, ∃d ∈ D : x′ = x+ d

with D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}
2

We now generalize Thm. 1 from ordinary translations to polyhedral translations.

Proposition 3 (Polyhedral translation). Let τ be a polyhedral translation G → x′ =
x+D. Then, the set

τ⊗(X) = X ⊔ τ
(
(X ⊓G) ր D

)

is a convex over-approximation of τ∗(X).

Proof. x′ ∈
⋃

k≥1
τk(X) ⇐⇒ x′ ∈ τ(

⋃

k≥0
τk(X))

⇐⇒ ∃k≥0, ∃x0 ∈ X, ∃xk, ∃d1 . . .dk ∈ D :







x′ ∈ τ(xk)

xk = x0 +
∑k

j=1
dj

G(x0) ∧ ∀k′ ∈ [1, k] : G(x0 +
∑k′

j=1
dj)

9



⇐⇒ ∃k≥0, ∃x0 ∈ X, ∃xk, ∃d ∈ D : x′ ∈ τ(xk) ∧ xk = x0 + kd ∧ G(x0) ∧ G(xk)

(because D and G are convex, see Rem. 3)

=⇒ ∃α≥0, ∃x0 ∈ X, ∃xk, ∃d ∈ D : x′ ∈ τ(xk) ∧ xk = x0 + αd ∧ G(x0)

(dense approximation; G(xk) implied by x′ ∈ τ(xk))

⇐⇒ ∃x0 ∈ X ⊓G, ∃xk : x′ ∈ τ(xk) ∧ xk ∈ ({x0} ր D)
⇐⇒ x′ ∈ τ((X ⊓G) ր D) 2

Mind that the only approximation takes place in the line (⇒) where the integer coefficient
k≥0 is replaced by a real coefficient α≥0. This is the technical explanation of Rem. 2.

Remark 3 (Convexity argument). For any k loop iterations with d1, . . . ,dk ∈ D s.t.

∀k′ ∈ [0, k] : G(x+
∑k′

j=1
dj) we have ∃d ∈ D, ∃α≥0 : G(x)∧G(x+αd) s.t.

∑k

j=1
dj =

αd: any intermediate point x + αd must be in G, because G is convex; moreover α≥ 0
and a vector d ∈ D actually exist: for example, take α=k and d = 1

k

∑k

j=1
dj , which is

in D because D is convex.

Remark 4 (Inputs vs. constants). One might think that Thm. 1
can be applied directly by accelerating the transition for each d ∈ D

and taking the union, i.e. computing τ⊗(X) by X ⊔
⊔

d∈D Xd with

Xd =
(
(X ⊓ G) ր {d}

)
⊓ (G + {d}). However, this formula is not

correct for the last step beyond the guard, which is illustrated in
the figure on the right-hand side for a polyhedral translation with
X={(0, 0)}, D=(0≤d1≤1 ∧ d2=1) and the guard G given in the

0

1

2

0 1 2 x1

x2

G

figure. For the step crossing the guard, e.g. at (2, 2), there is actually a choice among
all values in D (correct abstract acceleration: whole shadowed area), whereas the wrong
acceleration (dark gray) considers only the vector d=(1, 1) which led to (2, 2).

We combine Propositions 2 and 3 to formulate the following theorem:

Theorem 3 (Translation with inputs and simple guards). Let τ be a translation with
inputs and a simple guard

τ : (Ax ≤ b
︸ ︷︷ ︸

G

) ∧ (Jξ ≤ k) → x′ = x+Tξ + u

Then, the set
τ⊗(X) = X ⊔ τ

(
(X ⊓G) ր D

)

with D = {d | ∃ξ : d = Tξ + u ∧ Jξ ≤ k} is a convex over-approximation of τ∗(X).

Proof. Follows directly from Prop. 2 and 3. 2

Example 3 (Translation with inputs and simple guards). Consider the polyhedron X =
{(x1, x2) | 0≤x1≤x2≤1} and the transition

τ :

∣
∣
∣
∣
∣
∣

x1 + x2 ≤ 4

1 ≤ ξ ≤ 2
→

∣
∣
∣
∣
∣
∣

x′
1 = x1 + 2ξ − 1

x′
2 = x2 + ξ

Eliminating the inputs as in Proposition 2 yields D = {(d1, d2)|1≤d1≤3∧−d1+2d2=1},
see Fig. 5 left-hand side. After translation of X by D (Fig. 5 right-hand side) we obtain
the polyhedron {(x1, x2)|x1≥0∧−x1+x2≤1∧x1+x2≤9∧−2x1+4x2≤9∧ 2x1−3x2≤0}.
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d1

d2

ξ

1

1

D

J ξ ≤k

x1

x2

1

1
X

τ⊗(X)

G

Fig. 5. Translation with inputs (Ex. 3): The left-hand side
shows the computation of D: Jξ ≤ k∧d = Tξ+u (bold line)
is projected on variables d to obtain D. The shadowed area
in the right-hand side figure is τ⊗(X).

x1

x2

1

1
X

τ⊗(X)

G

G+D

Fig. 6. Precision loss in ex-
ample 3 when using the ap-
proximate formula according
to Rem. 5.

Remark 5 (Alternative, less precise formula). In analogy to Thm. 1, we could alterna-
tively consider the formula

X ⊔ ((((X ⊓G) ր D) ⊓ (G+D)).
In order to justify this, we extend the proof of Proposition 3 by continuing at the label
(dense approximation):
⇐⇒ ∃α≥0, ∃x0 ∈ X ⊓G, ∃xk, ∃d,d

′ ∈ D : x′ = xk+d′ ∧ xk = x0+αd ∧ G(xk)
⇐⇒ ∃α≥0, ∃x0 ∈ X ⊓G, ∃d,d′ ∈ D : x′ = x0+αd+d′ ∧ G(x′−d′)
=⇒

(
∃α≥0, ∃x0 ∈ X ⊓G, ∃d,d′ ∈ D : x′ = x0+αd+d

′
)

∧
(
∃d′ ∈ D : G(x′−d

′)
)

⇐⇒
(
∃α′≥1, ∃x0 ∈ X ⊓G, ∃d′′ ∈ D : x′ = x0+α′d

′′
)

∧
(
∃d′ ∈ D : G(x′−d

′)
)

=⇒ x′ ∈ (X ⊓G) ր D ∧ x′ ∈ (G+D)
using {x | ∃d ∈ D ∧ G(x−d)} = {z+d | d ∈ D ∧G(z)} = (G+D). It can be observed
that for the translation of example 3 the latter formula results in an over-approximation
(see Fig. 6) as compared to the result in Fig. 5. This reflects the additional approximation
steps in the proof indicated by (=⇒).

4.2. Translations/Resets with Inputs and Simple Guards

Definition 2. Translations/resets with inputs and simple guards are defined as



A 0

0 J








x

ξ



 ≤




b

k





︸ ︷︷ ︸

Ax≤b ∧ Jξ≤k

→ x′ =
(

C T

)




x

ξ



+ u

︸ ︷︷ ︸

Cx+Tξ+u

where C is a diagonal matrix with Ci,i ∈ {0, 1} for all i.

Notations. Let C′ = I − C, then we can decompose any vector x in Cx+C′x. We
denote Cx = xt,0 a vector where the reset dimensions are set to zero, and C′x = x0,r

a vector where the translated dimensions are set to zero. We extend such notations to
sets: Xt,0 = {xt,0 | x ∈ X} and X0,r = {x0,r | x ∈ X}. We use a similar notation
for projection: Xt,• = {x | xt,0 ∈ Xt,0} and X•,r = {x | x0,r ∈ X0,r} denote the sets
obtained by existential quantification of the reset (resp. translated) dimensions.
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Observe that the over-approximation Xt,• ⊓X•,r of a set X by the cartesian product
w.r.t. to translated and reset dimensions is equal to the Minkowski sum Xt,0 +X0,r.

The case of translations/resets with inputs can be handled similarly to translations: we
combine Proposition 2 and Thm. 2 to reduce translations/resets with inputs to polyhedral
translations with resets τ : G → x′=Cx+D defined by τ(X)=(X ⊓G)t,0+D.

Mind, however, that Rem. 1 does not apply any more and cannot be exploited in the
presence of inputs, because the variables being reset may be assigned a different value in
each iteration.

Proposition 4 (Polyhedral translation with resets). Let τ be a polyhedral translation
with resets G → x′ = Cx+D. Then, the set

τ⊗(X) = X ⊔ τ(X) ⊔ τ
((

(τ(X) ⊓G)t,0 ր Dt,0
)
+D0,r

)

is a convex over-approximation of τ∗(X).

In the formula above and in the proof below, we unfold τ twice, that is, we accelerate
only the central part of the sequence x

τ
−→ x0 . . .xn

τ
−→ x′ with x ∈ X because we have

∀k ∈ [0, n] : xk ∈ G⊓D•,r, whereas we only have x ∈ G at the start-point, and x′ ∈ D•,r

at the end-point.

Proof. The formula is trivially correct for 0 or 1 iterations of the self-loop τ . It remains
to show that, for the case of k ≥ 2 iterations, our formula yields an over-approximation
of

⋃

k≥2
τk(X).

x′ ∈
⋃

k≥2
τk(X) ⇐⇒ x′ ∈ τ

(
⋃

k≥0
τk(τ(X))

)

⇐⇒ ∃k≥0, ∃x ∈ X, ∃x0 . . .xk, ∃d1 . . .dk ∈ D :






x0 ∈ τ(x)

∧ ∀k′ ∈ [1, k] :







xi
k′ = xi

0 +
∑k′

j=1
di
j for i ∈ It

xi
k′ = di

k′ for i ∈ Ir

∧ x′ ∈ τ(xk)

∧ ∀k′ ∈ [0, k] : G(xk′)

⇐⇒ ∃k≥0, ∃x ∈ X, ∃x0 . . .xk, ∃d1 . . .dk ∈ D :






∀k′ ∈ [1, k] : xk′ = x
t,0
0 + (

∑k′

j=1
d
t,0
j ) + d

0,r
k′

∧ ∀k′ ∈ [0, k] : G(xk′)

∧ x0 ∈ τ(x) ∧ x′ ∈ τ(xk)

=⇒ ∃k≥0, ∃x ∈ X, ∃x0 . . .xk, ∃d
t,0
1 . . .d

t,0
k ∈ Dt,0, ∃d0,r

1 . . .d
0,r
k ∈ D0,r :







∀k′ ∈ [1, k] : xk′ = x
t,0
0 + (

∑k′

j=1
d
t,0
j ) + d

0,r
k′

∧ ∀k′ ∈ [0, k] : G(xk′)

∧ x0 ∈ τ(x) ∧ x′ ∈ τ(xk)

(D approximated by the sum (Dt,0 +D0,r))
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x1

x2

1

1

G X

x1

x2

1

1

G X

Fig. 7. Translation/reset with inputs: Ex. 4. Left-hand side: τ (X) (dark shad-
owed) and ((τ (X) ⊓ G)t,0 ր Dt,0) + D0,r (whole shadowed area). Right-hand side:
τ (((τ (X)⊓G)t,0 ր Dt,0) +D0,r) (dark shadowed) and τ⊗(X) (whole shadowed area).

⇐⇒ ∃k≥0, ∃x ∈ X, ∃x0,xk, ∃d
t,0 ∈ Dt,0, ∃d0,r

k ∈ D0,r :






xk = x
t,0
0 + kdt,0 + d

0,r
k

∧ G(x0) ∧ G(xk)

∧ x0 ∈ τ(x) ∧ x′ ∈ τ(xk)

(because Dt,0, D0,r and G are convex and x
0,r
0 ∈ D0,r)

=⇒ ∃α≥0, ∃x ∈ X, ∃x0,xk, ∃d
t,0 ∈ Dt,0, ∃d0,r

k ∈ D0,r :






∧ xk = x
t,0
0 + αdt,0 + d

0,r
k

∧ x0 ∈ τ(x) ∧ G(x0) ∧ x′ ∈ τ(xk)

(dense over-approximation; G(xk) already implied by x′ ∈ τ(xk))

⇐⇒ x′ ∈ τ
((

(τ(X) ⊓G)t,0 ր Dt,0
)
+D0,r

)

2

Theorem 4 (Translation with resets, inputs and simple guards). The accelerated tran-
sition τ⊗ for a translation/reset with inputs and a simple guard τ can be computed by
applying Proposition 4 with D defined as in Proposition 2.

Example 4 (Translation with resets, inputs and simple guards). Consider the polyhe-
dron X = {(x1, x2) | 0≤x1 ∧ 1≤x2 ∧ x1+x2≤2} and the transition

τ :

∣
∣
∣
∣
∣
∣

x1 + 2x2 ≤ 3

0 ≤ ξ ≤ 1
→

∣
∣
∣
∣
∣
∣

x′
1 = x1 + ξ + 1

x′
2 = ξ

Eliminating the inputs yields D = {(d1, d2) | 1 ≤ d1 ≤ 2 ∧ d1−d2 = 1} and Dt,0 =
{(d1, d2) | 1 ≤ d1 ≤ 2 ∧ d2 = 0}. We obtain τ⊗(X) = {(x1, x2) | x1+x2 ≥ 1 ∧ x2 ≥
0 ∧ x1−x2≤4 ∧ x1+5x2≤10 ∧ x1≥0}, see Fig. 7.

4.3. Relaxing General Guards to Simple Guards

As discussed at the beginning of §4, allowing constraints that relate state variables
with input variables in guards, i.e. G = Ax + Lξ ≤ b ∧ Jξ ≤ k with L 6= 0 (see
Eqn. (5)), makes acceleration very difficult (Prop. 1). Our solution is to relax the guard
G to a simple guard (or cartesian product) G = (∃ξ : G)

︸ ︷︷ ︸

A′x≤b′

∧ (∃x : G)
︸ ︷︷ ︸

J′ξ≤k′

.

We can now apply the accelerated transition from Theorems 3 and 4 with G′ =

13



x1

x2

1

1
X

G

Fig. 8. Ex. 5: accelerated transition
τ⊗(X) using the relaxed guard G (re-
sult shadowed).

x1

x2

1

1

Fig. 9. Ex. 5: comparison between convex hull of
the exact result (dark gray), our method (gray), and
widening with no delay and 3 descending iterations
(light gray).

(A′x ≤ b′) and D′ = {d | ∃ξ : d = Tξ +u ∧ J ′ξ ≤ k′}. This trivially results in a sound
over-approximation because a weaker guard is used for abstract acceleration.

Note however that in the corresponding acceleration formulas, we can still compute
exactly the function τ using the original guard G. Indeed, the proofs of those theorems
are not based on the assumption L 6= 0 when they introduce the function τ .

Example 5 (Relaxed guard). Consider the polyhedron X = {(x1, x2) | x1 ≤ 1 ∧ x2 ≤

1 ∧ x1+x2≥1} and the transition τ :

∣
∣
∣
∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6

x2 − ξ ≤ 2

0 ≤ ξ ≤ 1

→

∣
∣
∣
∣
∣
∣

x′
1 = x1 + ξ + 1

x′
2 = x2 + 1

The relaxed guard is G = (2x1+x2≤6∧x1+x2≤4∧x2≤3)∧ (0≤ξ≤1). Eliminating the
inputs yields D = {(d1, d2) | 1≤d1≤2 ∧ d2=1}. We obtain τ⊗(X) = {(x1, x2) | x1+x2≥
1∧x2−x1 ≤ 1∧−4≤x1−2x2≤1∧x1+2x2≤10∧2x1+x2≤10}, see Fig. 8. The convex hull of
the exact result is {(x1, x2)|x1+x2≥1∧−2≤x2−x1 ≤ 1∧x1−2x2≤1∧x2≤3∧2x1+x2≤10},
see Fig. 9.

5. Backward Abstract Acceleration

Abstract acceleration has been applied to forward reachability analysis in order to
compute the reachable states starting from a set of initial states. Backward analysis
computes the states co-reachable from the error states. For example, combining forward
and backward analysis allows to obtain an approximation of the sets of states belonging
to a path from initial to error states (see for instance Jeannet (2003)). Moreover, a
backward analysis allows us to synthesize constraints on parameter variables that ensure
that a property is satisfied (see e.g. Alur et al. (1995)).

In this section, we present how to compute the accelerated backward transitions in
the case of translations and translations/resets. Although the inverse of a translation
is a translation, the difference is that the intersection with the guard occurs after the
(inverted) translation. The case of backward translations with resets is more complicated
than for the forward case, because resets are not invertible. Finally, the relaxation of
general guards to simple guards applies in the same way to backward acceleration.
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5.1. Translations

Proposition 5 (Polyhedral backward translation). Let τ be a polyhedral translation

G → x′ = x+D. Then the set

τ−⊗(X ′) = X ′ ⊔
(
(τ−1(X ′) ր (−D)

)
⊓G

is a convex over-approximation of τ−∗(X ′), where τ−∗ = (τ−1)∗ = (τ∗)−1 is the reflexive

and transitive backward closure of τ .

The negation 2 of a polyhedron has the following meaning: d ∈ (−D) ⇐⇒ (−d) ∈ D. It

is hence the reflexion of D w.r.t. the origin.

Proof.

x0 ∈
⋃

k≥1
τ−k(X ′) ⇐⇒ ∃x′ ∈ X ′ : x′ ∈ τ

(
⋃

k≥0
τk({x0})

)

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃xk, ∃d1, . . . ,dk ∈ D :







xk = x0 +
∑k

j=1
dj

∀k′ ∈ [0, k] : G(x0 +
∑k′

j=1
dj)

x′ ∈ τ({xk})

(forward reachability)

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃xk, ∃d1, . . . ,dk ∈ D :







xk ∈ τ−1({x′})

x0 = xk −
∑k

j=1
dj

∀k′ ∈ [0, k] : G(xk −
∑k

j=k′+1
dj)

(rewritten as backward reachability)

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃xk, ∃d ∈ D : xk ∈ τ−1({x′}) ∧ x0 = xk − kd ∧ G(x0) ∧ G(xk)

(because D and G are convex)

=⇒ ∃α≥0, ∃x′ ∈ X ′, ∃xk, ∃d ∈ D : xk ∈ τ−1({x′}) ∧ x0 = xk − αd ∧ G(x0)

(dense approximation; G(xk) implied by xk ∈ τ−1({x′}))

⇐⇒ x0 ∈
(
(τ−1(X ′) ր (−D)

)
⊓G. 2

Example 6 (Polyhedral backward translation). Consider the polyhedronX ′ = {(x1, x2) | 3≤

x1≤6 ∧ 4≤x2≤5} and the transition

τ :

∣
∣
∣
∣
∣
∣

x1 + 2x2≤10 ∧ 0≤x1≤4 ∧

0≤x2 ∧ 1 ≤ ξ≤2
→

∣
∣
∣
∣
∣
∣

x′
1 = x1 + 1

x′
2 = x2 + ξ

The polyhedron D is {(d1, d2) |d1=1∧ 1≤d2≤2}. As result of the backward acceleration

(Fig. 10) we obtain the polyhedron {(x1, x2) | 0 ≤ x1 ≤ 6 ∧ 0 ≤ x2 ≤ 5 ∧ −x1 + x2 ≤

2 ∧ 4x1 − 3x2≤12}.

2 Not to be confounded with the complement.
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Fig. 10. Backward acceleration of a translation loop (Ex. 6) starting from X ′ with τ−1(X ′) (dark
gray) and τ−1(X ′) ր (−D) (whole shadowed area) on the left-hand side and the final result
(right-hand side).

5.2. Translations with Resets

Proposition 6 (Polyhedral backward translation with resets). Let τ be a polyhedral

translation with resets G → x′ = Cx+D. Then, the set

τ−⊗(X ′) = X ′ ⊔ τ−1(X ′) ⊔ τ−1
((

(τ−1(X ′)t,• ր (−Dt,0)
)
⊓D•,r ⊓G

)

is a convex over-approximation of τ−∗(X ′).

Proof. The formula is trivially correct for 0 or 1 backward iterations of the self-loop τ ,

thus, it remains to show that, for the case of k ≥ 2 iterations, our formula yields an

over-approximation of
⋃

k≥2
τ−k(X).

x ∈
⋃

k≥2
τ−k(X ′) ⇐⇒ ∃x′ ∈ X ′ : x′ ∈ τ

(
⋃

k≥0
τk(τ(x))

)

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃x0 . . .xk, ∃d1 . . .dk ∈ D :






x0 ∈ τ(x) ∧ x′ ∈ τ(xk)

∧ ∀k′ ∈ [1, k] : xk′ = x
t,0
0 +

∑k′

j=1
d
t,0
j + d

0,r
k′

∧ ∀k′ ∈ [0, k] : G(xk′)

(forward reachability)

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃x0 . . .xk, ∃d1 . . .dk ∈ D :






∀k′ ∈ [0, k−1] : xk′ = x
t,0
k −

∑k

j=k′+1
d
t,0
j + d

0,r
k′

∧ ∀k′ ∈ [0, k] : G(xk′)

∧ xk ∈ τ−1({x′}) ∧ x ∈ τ−1({x0})

(rewritten as backward reachability)
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=⇒ ∃k≥0, ∃x′ ∈ X ′, ∃x0 . . .xk, ∃d
t,0
1 . . .d

t,0
k ∈ Dt,0, ∃d0,r

1 . . .d
0,r
k ∈ D0,r :







∀k′ ∈ [0, k−1] : xk′ = x
t,0
k −

∑k

j=k′+1
d
t,0
j + d

0,r
k′

∧ ∀k′ ∈ [0, k] : G(xk′)

∧ xk ∈ τ−1({x′}) ∧ x ∈ τ−1({x0})

(D approximated by the sum (Dt,0 +D0,r))

⇐⇒ ∃k≥0, ∃x′ ∈ X ′, ∃x0,xk, ∃d
t,0 ∈ Dt,0, ∃d0,r ∈ D0,r :







x0 = x
t,0
k − kdt,0 + d

0,r

∧ G(x0) ∧G(xk)

∧ xk ∈ τ−1({x′}) ∧ x ∈ τ−1({x0})

(because Dt,0, D0,r and G are convex and x
0,r
k ∈ D0,r)

=⇒ ∃α≥0, ∃x′ ∈ X ′, ∃x0,xk, ∃d
t,0 ∈ Dt,0, ∃d0,r ∈ D0,r :







x0 = x
t,0
k − αdt,0 + d0,r

∧ xk ∈ τ−1({x′}) ∧ x ∈ τ−1({x0}) ∧ G(x0)

(dense approximation; G(xk) implied by xk ∈ τ−1({x′}))

⇐⇒ x ∈ τ−1

((
(τ−1(X ′))t,• ր (−Dt,0)

)
⊓D•,r ⊓G

)

(because x ∈ τ−1({x′}) ⇒ x′ ∈ D•,r)

2

Example 7 (Polyhedral backward translation with resets). Consider the polyhedron

X ′ = {(x1, x2) | 4≤x1≤5 ∧ 1≤x2≤4} and the transition

τ :

∣
∣
∣
∣
∣
∣

3≤x1 + x2≤5 ∧

1 ≤ ξ≤3 ∧ 0≤x2

→

∣
∣
∣
∣
∣
∣

x′
1 = x1 + 1

x′
2 = ξ

The polyhedronD is {(d1, d2)|d1= 1∧ 1≤d2≤3}. As result of the backward acceleration
(Fig. 11), we obtain the polyhedron {(x1, x2)|−1≤x1≤5∧ 0≤x2 ∧ x1+x2 ≥ 3∧ x1−x2≤
4 ∧ x1+3x2≤17}.

6. Evaluation and Comparison

This section discusses the advantages and shortcomings of abstract acceleration in

comparison with more general abstract-interpretation-basedmethods like standard widen-
ing (Cousot and Cousot (1977)) and the affine derivative closure method of Ancourt et al.
(2010).

6.1. Comparing Abstract Acceleration with Kleene Iteration

Abstract acceleration aims at computing a tight over-approximation of α(
⋃

k≥0
τk(X0))

where X0 is a convex polyhedron and τ is an affine transformation with an affine guard.
Since convex polyhedra are closed under affine transformations (α(τ(X0))= τ(X0)), we
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Fig. 11. Backward acceleration of a loop with translations and resets (Ex. 7) starting from the
initial set X ′. Right-hand side: τ−1(X ′) (dark gray) and

(
(τ−1(X ′)|t ր (−Dt)

)
⊓ G (whole

shadowed area). Left-hand side: final result (whole shadowed area).

have α(
⋃

k≥0
τk(X0)) =

⊔

k≥0
τk(X0). The latter formula is known as Merge-Over-All-

Paths (MOP) solution of the reachability problem (Kam and Ullman (1977)), which
computes the limit of the sequence:

X0 X1 = X0 ⊔ τ(X0) X2 = X0 ⊔ τ(X0) ⊔ τ2(X0) . . .

In contrast, the standard approach in abstract interpretation computes the fixed point
X ′

∞ of X = X0 ⊔ τ(X), known as the Minimal-Fixed-Point (MFP) solution. It proceeds
as follows:

X ′
0 = X0 X ′

1 = X ′
0 ⊔ τ(X ′

0) X ′
2 = X ′

0 ⊔ τ(X ′
0 ⊔ τ(X ′

0)) . . .

The MOP solution is more precise than the MFP solution (Kam and Ullman (1977)).
The reason is that, in general, τ does not distribute over ⊔ and we have τ(X1)⊔τ(X2) ⊑
τ(X1 ⊔ X2). For instance, if X0 = [0, 0] and τ : x ≤ 1 → x′ = x+2, we have X2 =
[0, 0] ⊔ [2, 2] ⊔ ⊥ = [0, 2] and X ′

2 = [0, 0] ⊔ τ([0, 2]) = [0, 3]. Since abstract acceleration
should deliver a tight over-approximation of the MOP solution, we should generally have
the relationship

⊔

k≥0
τk(X0) ⊑ τ⊗(X0) ⊑ X ′

∞, i.e. abstract acceleration should be
more precise than the standard abstract interpretation approach (MFP) even without
widening.

Fig. 12 shows an example illustrating this issue: in the standard abstract interpretation
approach (MFP), each iteration translates the approximation added by the convex union
with the result of the previous iteration in each step and converges slowly. Abstract
acceleration translates only the intersection with the guard and takes the union as a last
step. Observe, however, that in the case where X0 is contained in the guard G, MOP
and MFP solutions give identical results for this example (Leroux and Sutre (2007)).

Non-flat systems. Generally, the invariants computed by abstract acceleration of a single
self-loop τ are not inductive, which implies that τ⊗ is not idempotent, i.e. τ⊗(τ⊗(X0)) 6=
τ⊗(X0). While this is not a problem for flat systems, it has negative effects in the presence
of nested loops.

For example, in the system (id ◦ τ∗)∗ we can apply abstract acceleration to the inner-
most loop: (id ◦ τ⊗)∗ = (τ⊗)∗. If τ⊗ is not idempotent (like in Fig. 12b), then the outer
loop might not converge and thus widening is needed. Thus, the considerations w.r.t.
MOP and MFP solutions for τ∗ above apply to (τ⊗)∗ in the same manner.
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(a) MFP: X dark gray, iteration 1 medium gray,
iterations 2 and 3 dashed, final result whole shad-
owed area.

x1

x2

1

1
X G

≥ 1
⊗

(b) Abstract acceleration: X dark gray, iterations
≥ 1 medium gray, final result whole shadowed
area.

Fig. 12. Comparison between standard abstract interpretation (MFP) (a) and abstract acceler-
ation (b): τ : G → (x′

1, x
′
2)=(x1+1, x2+1) with G and X as given in the figures.

Since this problem arises in particular when the initial set is not contained in the

guard G (like in Fig. 12b), Leroux and Sutre (2007) propose to accelerate translations

by the formula τ⊗(X) = τ(X ր D), i.e. without initially intersecting with G, which

is idempotent and hence convergence without widening can be expected more often.

However, this formula is clearly less precise and should not be used for accelerating

non-nested loops.

6.2. Comparing Abstract Acceleration to Widening

In this section, we illustrate by some examples where abstract acceleration helps in-

creasing the predictability and the robustness of the analysis.

Widening in self-loops. We consider Ex. 5, which has the structure depicted in Fig. 13

when analyzed with abstract acceleration or Kleene iteration with widening and descend-

ing iterations respectively.

The standard widening operator for convex polyhedra and refinements of it, like widen-

ing with thresholds (Halbwachs et al. (1997)), may sometimes lead to good results. An-

alyzing such a program using widening after a number N of initial steps resorts to

computing the limit of the sequences

X0 = X X ′
0 = XN

Xn+1 = X0 ⊔ τ(Xn) for n < N X ′
n+1 = X ′

n∇(X ′
n ⊔ τ(X ′

n))

in which Xn, X
′
n are associated with location l1 on Fig. 13 (right-hand side). The proper-

ties of the widening operator∇ guarantee that the sequence (X ′
n)n≥0 converges in a finite

number of steps to X ′
∞ (Cousot and Cousot (1992)), which is an over-approximation of

the reachable valuations at location l1. This result may be improved by computing the

first elements of the narrowing sequence X ′′
0 = X ′

∞, X ′′
n+1 = X0 ⊔ τ(X ′′

n), which does not

necessarily converge.
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X ℓ′1 ℓ1
τ⊗

X ℓ1

τ

Fig. 13. Analysis with acceleration
(left-hand side) and with widening
(right-hand side) for Ex. 5.

X ℓ0 ℓ′1 ℓ1

x3≤20 τ⊗

¬G → x′
3=x3+1

X ℓ0 ℓ1
x3≤20

τ

¬G → x′
3=x3+1

Fig. 14. Analysis with acceleration (left-hand side)
and with widening (right-hand side) for Ex. 8.
G = (2x1+2x2≤x3).

We try first an analysis with undelayed widening, i.e. N=0:

X ′
1 = {(x1, x2) | x1+x2≥1} (result of converged widening sequence)

X ′′
1 = {(x1, x2) | x1+x2≥1 ∧ 2x1+x2≤10 ∧ x2≤4 ∧ 0≤x1≤6 ∧ 3x1+5x2≥3}

. . .

X ′′
3 = {(x1, x2) | x1+x2≥1 ∧ 2x1+x2≤10 ∧ 3x2−2x1≤6 ∧ 3x2−4x1≤3∧

5x1−22x2≤8 ∧ 29x1−157x2≤29} ⊐ τ⊗(X)

. . . (descending sequence)

Here, the descending iterations do not converge and improve the result slowly. See Fig. 9
for X ′′

3 .
By increasing the delay to N = 1, we can improve the result, and we get the same

result as with abstract acceleration: X ′′
1 = τ⊗(X). However, this is not guaranteed in

general, because widening is not monotonic. Moreover, abstract acceleration is more
efficient computationally: delaying widening and a long descending sequence increase the
number of iterations. In flat programs, like in Ex. 5, abstract acceleration does not even
require convergence tests.

Widening in nested loops. In the previous example, delayed widening and descending
iterations allowed to get the same result as with abstract acceleration. However, this is less
likely if the loop is embedded in an outer loop as in Fig. 14: descending iterations cannot
be applied during the ascending iterations, but only after convergence of the widening
sequence of the whole program, otherwise convergence would not be guaranteed.

Example 8 (Widening in nested loops). We consider the program depicted in
Fig. 14 in which the inner loop τ is adapted from Ex. 4:

τ :

∣
∣
∣
∣
∣
∣

2x1 + 2x2≤x3

0 ≤ ξ≤1
→

∣
∣
∣
∣
∣
∣
∣
∣
∣

x′
1 = x1+ξ+1

x′
2 = ξ

x′
3 = x3

X=






(x1, x2, x3)

∣
∣
∣
∣
∣
∣

0≤x1 ∧ 1≤x2

x1+x2≤2 ∧ x3=3







The analysis without abstract acceleration yields for any widening delayN ≥ 1 (widen-
ing point ℓ1) and any number of descending iterations N ′′ ≥ 1 the following very weak
invariant:

X ′
1 = {(x1, x2, x3) | 0≤x1 ∧ 3≤x3} X ′′

1 = {(x1, x2, x3) | 0≤x1 ∧ 1≤x1 + x2 ∧ 3≤x3}

Abstract acceleration with widening delayN ≥ 1 (widening point ℓ1) and one descend-
ing iteration gives much better results: we give here a simplified (over-approximated)
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invariant, because the actual result consists of more constraints:

X ′′
1 = {(x1, x2, x3) | 0≤x1≤12 ∧ 0≤x2≤3 ∧ 3≤x3≤20 ∧ 1≤x1 + x2}

One can also consider widening with thresholds. A natural threshold set for our exam-
ple is the postcondition of the guard of τ by the body of τ : τ(⊤) = {(x1, x2) | 0≤x2≤1}.
Yet, this does improve the result.

Extending the threshold set with the postcondition of the guard of the outer loop
x3 ≤ 21 improves the result (all variables are bounded), but it is still less precise than
the result obtained by combining abstract acceleration and widening (in particular the
descending iteration does not converge).

6.3. Comparing Abstract Acceleration to the Affine Derivative Closure Algorithm

The affine derivative closure algorithm of Ancourt et al. (2010) is another abstract
interpretation-based analysis method. The idea is to compute an abstract transformer,
i.e. a relation between variables x and x′, independently of the initial state of the system.
The abstract transformer abstracts the effect of the loop by a polyhedral translation

true → x′ = x+DR with DR = {d | ∃x, ξ,x′ : R(x, ξ,x′) ∧ x′ = x+ d}

where R is the concrete transition relation. The polyhedron DR is called the “derivative”
of the relation R. The effect of several self-loops with relations R1, . . . , Rk is abstracted
by considering the convex union

⊔

iDRi
.

Then, the reflexive and transitive closure

R∗ = {(x,x′) | ∃k≥0 : x′=x+kd ∧DR(d)}

is applied to a polyhedron X of initial states:

R∗(X) = {x′ | ∃x : R∗(x,x′) ∧X(x)}

The final result is obtained by computing one “descending” iteration, in the same way
as it is done in standard abstract interpretation after widening.

The affine derivative closure algorithm is implemented in the code optimization tool
Pips 3 .

In single self-loops with translations or translations/resets, the method works similarly
to abstract acceleration, as illustrated by the following example involving resets and
inputs:

Example 9 (Single loop).

τ :

∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 ≤ 4

x2 ≤ 4

0 ≤ ξ≤ 1

→

∣
∣
∣
∣
∣
∣

x′
1 = x1+ξ+1

x′
2 = ξ+2

X=






(x1, x2)

∣
∣
∣
∣
∣
∣

x1≤1 ∧ x2≤1

x1+x2≥1







The transition relation
R = {(x1, x2, ξ, x

′
1, x

′
2) | x

′
1 = x1+ξ+1 ∧ x′

2 = ξ+2 ∧ x1 ≤ 4 ∧ x2 ≤ 4 ∧ 0 ≤ ξ ≤ 1}

expressed in terms of derivatives is

3 http://pips4u.org

21



X

G

x1

x2

1

1

(a) Derivative closure method:
R

∗ applied to X (whole shad-
owed area), final result (dark
gray).

X
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x2

1

1

(b) Abstract acceleration: itera-
tions ≥ 1 (dark gray), final result
(whole shadowed area).

Fig. 15. Comparison between the affine derivative closure algo-
rithm (a) and abstract acceleration (b), Ex. 9.

x1 ≤ 9 →
x′
1 = x1 + 1 ∧ x′

2 = 0

x2 ≤ 9 →
x′
1 = x1 ∧ x′

2 = x2 + 1

x′
1 = 0 ∧ x′

2 = 0

Fig. 16. Ex. 10.

DR = {(d1, d2) | ∃x1, x2, ξ, x
′
1, x

′
2 : R(x1, x2, ξ, x

′
1, x

′
2) ∧ x′

1 = x1+d1 ∧ x′
2 = x2+d2}

= {(d1, d2) | 1≤d1≤2 ∧ d1−d2≤3}

The closure of the loop starting from X gives

R∗(X) = {(x′
1, x

′
2) | ∃k≥0, x1, x2 : x′

1≥x1 + k ∧ x′
1≤x1 + 2k∧

x′
1 − x′

2≤x1 − x2 + 3k ∧X(x1, x2)} =

= {(x′
1, x

′
2) | 0≤x′

1 ∧ 2x′
1 + x′

2 ≥ 1}

Finally, a descending iteration is computed:

X ⊔ τ(R∗(X))={(x′
1, x

′
2) | x′

1+x′
2≥1 ∧ x′

1−2x′
2≤1 ∧ x′

1−x′
2≤3∧

x′
2≤3 ∧ x′

1−x′
2≥−1}

This result equals the one obtained by abstract acceleration (see Fig. 15).

Resets cannot be expressed as polyhedral translations: for instance, if R(x, x′) =
(x′ = 0), then DR = {d |∃x, x′ : x′ = 0 ∧ x′ = x+ d} = ⊤. However, this information is
recovered during the descending iteration. Hence, similarly to widening, these descending
iterations may fail in the presence of multiple loops:

Example 10 (Multiple loops). For the CFG in Fig. 16, the derivatives for the upper
and the lower loop are DR1

= (d1 =1) and DR2
= (d1 =0 ∧ d2 =1) respectively. Their

convex union is DR1,2
= (0≤d1≤1). The transitive closure applied to X = (x1=x2=0)

gives R∗
1,2(X) = (x1≥0), and the final result after the descending iteration is X ′ = (x1≥

0 ∧ x2≤10). Here, the descending iteration fails to recover the upper bound of x1.
In contrast, abstract acceleration converges after two ascending iterations with the

invariant X2 = (0≤x1≤10 ∧ 0≤x2≤10).

Hence, even though the derivative closure method elegantly deals with multiple loops
by taking the convex union of the derivatives, it is also less precise than abstract acceler-
ation for such programs. However, the main advantage of the derivative closure method
is that it is more general than abstract acceleration, because it automatically approxi-
mates any kind of transformations. Moreover, since it computes abstract transformers,
it is modular and can be used in the context of interprocedural analyses.
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size nbACCel Nbac

Gate 1 7 0.73 ?
Escalator 1 12 0.49 ?
Traffic 1 18 0.19 3.49
Traffic 2 18 0.35 ?
LCM Quest 0a-1 7 0.04 0.05
LCM Quest 0a-2 6 0.05 0.19
LCM Quest 0b-1 19 0.08 ?
LCM Quest 0b-2 17 0.20 ?
LCM Quest 0c-1 28 0.16 0.86

size nbACCel Nbac

LCM Quest 0c-2 25 0.24 14.8
LCM Quest 1-1 114 0.92 2.45
LCM Quest 2-1 247 7.84 12.8
LCM Quest 3-1 483 8.49 3.76

LCM Quest 3b-1 1724 43.8 19.1

LCM Quest 3c-1 1319 34.2 ?
LCM Quest 3d-1 281 5.43 ?
LCM Quest 3e-1 638 20.6 ?
LCM Quest 4-1 4482 186 50.1

Table 1. Experimental comparison between nbACCel and Nbac (size. . . number of locations
of the enumerated CFG; times in seconds; ?. . . property not proved)

7. Applying Abstract Acceleration

Control flow graphs. Program analysis using abstract interpretation in general and ab-

stract acceleration in particular, is done on a control flow graph (CFG) of the program,
which manipulates only numerical variables. This graph can be easily obtained from

imperative programs by associating control points to programming constructs.
As mentioned in the introduction our goal is to analyze logico-numerical data-flow

programs such as Lustre (Caspi et al. (1987)) programs: In order to reduce such a

program to a purely numerical CFG, all possible valuations of Boolean state variables
need to be enumerated and encoded in locations of the CFG. This partitioning and partial

evaluation process may lead to a combinatorial explosion of control locations.
Jeannet (2003) presented abstract interpretation methods for analyzing such programs

using controlled partitioning, i.e. some Boolean states are encoded explicitly as locations
in the CFG, whereas the other Boolean variables are handled symbolically. Pursuing

this approach, we have developed methods for applying abstract acceleration to such a
logico-numerical CFG (see Schrammel and Jeannet (2011) for details).

Pre-processing. Some transformations are necessary in order to prepare a self-loop in
a CFG for abstract acceleration. These comprise especially the elimination of Boolean

input variables resulting in a non-deterministic CFG and splitting non-convex guards
into convex ones. Methods for dealing with multiple self-loops in a single location are
described by Gonnord (2007).

Experimental results. Table 1 shows some experimental results comparing our tool nbAC-

Cel, which implements the methods presented in this article, with the tool Nbac (Jean-

net (2003)). The benchmarks have quite different sizes from ten up to a few hundred
lines of Lustre code. The safety properties we want to prove about the small examples

require a very good precision on the numerical variables. We observe that we are able to
prove some benchmarks that are not provable using Nbac. This is due to the precision

gained by abstract acceleration. But also on the other examples nbACCel is mostly
faster than Nbac; except for some of the larger benchmarks where the more sophisti-

cated dynamic partitioning techniques employed in Nbac start to pay off. Further results
including a comparison with Aspic (Gonnord (2009)) can be found in Schrammel and
Jeannet (2011).
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8. Related Work

As already outlined in the introduction, there are essentially two approaches to the
reachability problem: Those that aim at computing exact results using additive integer
(Presburger) or real arithmetic without guarantee of termination (in the cases mentioned
in the introduction); and those that are based on abstract interpretation which terminate
but generally ignore divisibility properties and deliver only conservative approximations.

Presburger-based approaches. Bultan et al. (1997) use Presburger formulas to represent
the state space of integer variables in symbolic model checking of concurrent programs,
but they use an abstract-interpretation-like widening operator in order to accelerate loops
and actually compute an over-approximation.

Boigelot and Wolper (1994); Boigelot (1999) introduce a representation called periodic
vector sets of the form ∃k ∈ Z

m : x = Ck+d∧Pk ≤ q for capturing the transitive closure
of affine transformations, and apply it to communication protocols involving integer
variables. Their method tries to accelerate selected cycles in so-called meta-transitions,
but without guarantee for termination.

Fribourg and Olsén (1997) compute the reachable state space of Petri nets with un-
bounded markings using a decision procedure over Presburger arithmetic.

Finkel and Leroux (2002); Bardin et al. (2004) apply Presburger-based acceleration to
communication protocols. They extend the results of Boigelot (1999) to periodic affine
transformations as defined in Sec. 3. Their methods have also been applied to FIFO
queues using subclasses of regular expressions (Boigelot and Godefroid (1997); Abdulla
et al. (2004)). Bardin et al. (2003) describes the tool Fast for analyzing flattable pro-
grams, i.e. without nested loops. Bardin et al. (2005) present an overall framework for
various classes of systems that can be treated by exact acceleration.

Bozga et al. (2010) unifies the computation of transitive closures of such as differ-
ence relations, octagonal relations and finite monoid affine transformations by defining
the notion of ultimately periodic relations. Their method is also based on Presburger
arithmetic. Like us, this work investigates the case of relations instead of deterministic
functions. Difference relations (and their octogonal generalization) have an incomparable
expressive power compared to translations/resets with inputs and simple guards seen as
relations:

• Difference relations can express for instance variables permutation, unlike transla-
tions/resets;

• but they cannot express translations/resets involving guards with general linear

constraints, such as (x1+2x2≤10) →

∣
∣
∣
∣

x′
1=x1+1

x′
2=x2+2

or (ξ1+2ξ2=3) →

∣
∣
∣
∣

x′
1=x1+ξ1

x′
2=x2+ξ2

Last, finite monoid affine transformations, which are deterministic, correspond to the
periodic case that we did not consider in Sec. 3.

Acceleration has also been used in the analysis of timed and hybrid automata. For
example, the concepts of Boigelot (1999) were developed further by Boigelot et al. (2003)
to the acceleration of general affine relations R(x,x′). The basic technique applies to
relations of the form G(x) ∧ G′(x′) ∧ P (x′ − x) where G, G′ and P are conjunctions
of linear inequalities. Observe that, if G′ is true, such relations can be expressed in our
setting as pure translations with inputs and simple guards, defined by G(x) ∧ P (ξ) →
x′ = x + ξ. Boigelot and Herbreteau (2006) develop transformation methods (based
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mainly on variable changes) to reduce subclasses of affine relations to this basic case. It
would be interesting to apply and adapt their methods to abstract acceleration. These
two papers apply this approach to the verification of rectangular hybrid systems (as
defined by Alur et al. (1995)) that include timed automata.

Recent research exhibited results on the transitive closure of affine integer tuple re-
lations (Beletska et al. (2009)). Their goal is to compute multiple clause relations,
i.e. several self-loops, with commutative transition relations: τ1 ◦ τ2 = τ2 ◦ τ1, e.g.
τ1 : x′

1 = x1 + 1;x′
2 = 2x2 and τ2 : x′

1 = x1 + 3;x′
2 = 5x2. They use Presburger-based

methods and apply their results in the context of program parallelization.

Abstract interpretation-based approaches to acceleration are comparatively recent. Also
our method falls into this category and extends the work of Gonnord and Halbwachs
(2006) and Gonnord (2007). Apart from self-loops of translations and translations with
resets for which we developed our extensions, they also deal with periodic affine transfor-
mations and some special cases of multiple self-loops. Furthermore, they describe methods
for unfolding multiple self-loops in order to compute the fixed point more efficiently.

The affine derivative closure algorithm (Ancourt et al. (2010)) that we explained in
more detail in Section 6.3 is also based on abstract interpretation methods, but unlike
abstract acceleration it neither inspects the types of transitions in order to apply an
optimized acceleration formula nor specializes w.r.t. a given initial state.

9. Conclusion and Discussion

We have presented an extension of abstract acceleration to numerical inputs for for-
ward and backward analysis. Table 2 shows a summary of the formulas. This extension
is less straightforward than supposed – most notably due to the observation that inputs
can be used to turn translations into arbitrary affine transformations; also, resetting vari-
ables to input values may cause some subtle behavior. Regarding approximations, Table 2
shows the cases where our method is precise in the sense that we perform only dense and
convex approximations, and the more complex cases for which additional approximations
are necessary to abstract away the number of iterations.

Abstract acceleration elegantly integrates into an abstract interpretation-based veri-
fication tool, where it is usually used in combination with widening: as pointed out in
Sec. 6.2, due to its monotonicity property it is possible to accelerate the innermost loops
precisely while using widening for the outer loops in nested loop situations. Thus, much
better invariants can be computed for programs where a lot of information is lost when
using widening only.

In comparison to other abstract interpretation-based transitive closure methods, for
instance the affine derivative closure algorithm of Ancourt et al. (2010), abstract acceler-
ation deals only with some frequently occurring types of self-loop transitions, for which
it yields more precise results (especially for transitions with resets), but it needs to resort
to widening in the general case.

We have reported some first experimental results that give evidence about the potential
of abstract acceleration w.r.t. improving reachability analysis in terms of precision and
performance.

Regarding future work, we could extend slightly the transformations we consider.
Firstly, we conjecture that it is possible to generalize our results from the case where C
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Forward acceleration:

Translations τ⊗(X) = X ⊔ τ
(
(X ⊓G) ր D

)

Translations/resets τ⊗(X) = X ⊔ τ (X) ⊔ τ
((

(τ (X) ⊓G)t,0 ր Dt,0
)
+D0,r

)

Backward acceleration:

Translations τ−⊗(X ′) = X ′ ⊔
(
(τ−1(X ′) ր (−D)

)
⊓G

Translations/resets τ−⊗(X ′) = X ′ ⊔ τ−1(X ′)⊔

⊔τ−1

((
(τ−1(X ′)t,• ր (−Dt,0)

)
⊓D•,r ⊓G

)

with

τ : (

G0(x, ξ)
︷ ︸︸ ︷

Ax+ Lξ ≤ b∧

G1(ξ)
︷ ︸︸ ︷

Jξ ≤ k) −→ x′ = Cx+Tξ + u C diagonal with 0 or 1 only

G(x) = ∃ξ : G0(x, ξ) D = {d | ∃ξ : d = Tξ + u ∧G1(ξ) ∧ ∃x : G0(x, ξ)}

Approximations:

In all cases dense and convex approximation

L 6= 0 G and D are decoupled.

Translations/resets D is approximated by the Cartesian product Dt ×Dr.

Table 2. Overview of abstract acceleration formulas

is a diagonal matrix with either 0 or 1 to the case where C is periodic with prefix p and
period l as defined in Sec. 3. This could be done in the same way as Finkel and Leroux
(2002) by rewriting

⋃

k≥0
τk as

τ0 ∪ . . . ∪ τp−1 ∪
⋃

k≥0

(τ l)k ◦ τp ∪ . . . ∪
⋃

k≥0

(τ l)k ◦ τp+l−1

and accelerating τ l on the image of τp+i with 0 ≤ i ≤ l−1.
Secondly, it should be also possible to generalize and unify the two classes of relations

induced resp. by forward and backward translations/resets with inputs and simple guards
to a more general symmetrical class, and to consider the acceleration of such relations.
A candidate could be

R(x,x′) ⇔







Ax ≤ b ∧ Jξ ≤ k

A′x′ ≤ b′
∧







x′
t−xt = Ttξ + ut (translated dimensions)

x′
f = Tfξ + uf (forward reset dimensions)

xb = Tbξ + ub (backward reset dimensions)

in which the set of dimensions is partioned into three classes.
Regarding integer (e.g., divisibility) properties, our techniques based on convex poly-

hedra cannot express them and Remark 2 discusses the effect of the induced dense approx-
imation. To improve on this we could combine our techniques with the linear congruence
abstract domain introduced in Granger (1991). This domain satisfies the finite ascending
condition, hence it does not require widening nor acceleration. By this means we are
able to tighten the results. For instance, if the abstract acceleration results in a convex
polyhedron 2≤x1≤8∧2x1+x2≤9, and we know from the linear congruences domain that
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x1=1 mod 4∧x2=0 mod 2 (typically because (x1, x2) are iteratively translated by (4, 2)
from a known value), then the convex polyhedron can be tightened to x1=5∧2x1+x2≤8.
Compared to Presburger arithmetic, we still limit ourselves to convex sets with such a
technique. The general goal would be to add congruence constraints in the guard of the
transformation τ and to exploit them as sketched above.

The question under which condition translations/resets with inputs viewed as rela-
tions are ultimately periodic relations in the sense of Bozga et al. (2010) could be also
investigated. We conjecture that this is only true in the cases where our methods perform
only dense and convex approximations (see Table 2).
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