R. E. Bellman, Dynamic Programming, 1957.

B. Bonet, An e-optimal grid-based algorithm for partially observable Markov decision processes, Proc. of the 19th Int. Conf. on Machine Learning (ICML-02), 2002.

C. Boutilier and D. Poole, Computing optimal policies for partially observable decision processes using compact representations, Proc. of the Nat. Conf. on Artificial Intelligence, 1996.

R. Brafman, A heuristic variable grid solution method for POMDPs, Proc. of the Nat. Conf. on Artificial Intelli- gence, 1997.

A. R. Cassandra, E. Mcdonald-madden, M. A. Mccarthy, B. Wintle, M. Linkie et al., Exact and Approximate Algorithms for Partially Observable Markov Decision Processes When to stop managing or surveying cryptic threatened species, Ph.D. Dissertation Dept. of Computer Science. Chadès, I PNAS, vol.105, pp.13936-13940, 1998.

I. Chadès, T. G. Martin, S. Nicol, M. A. Burgman, H. P. Possingham et al., General rules for managing and surveying networks of pests, diseases, and endangered species, Proceedings of the National Academy of Sciences, vol.108, issue.20, pp.8323-8328, 2011.
DOI : 10.1073/pnas.1016846108

V. Conitzer and T. Sandholm, Definition and complexity of some basic metareasoning problems, Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pp.1099-1106, 2003.

D. A. Keith, T. G. Martin, E. Mcdonald-madden, and C. Walters, Uncertainty and adaptive management for biodiversity conservation, Biological Conservation, vol.144, issue.4, pp.1175-1178, 2011.
DOI : 10.1016/j.biocon.2010.11.022

W. Lovejoy, Computationally Feasible Bounds for Partially Observed Markov Decision Processes, Operations Research, vol.39, issue.1, pp.162-175, 1991.
DOI : 10.1287/opre.39.1.162

O. Madani, S. Hanks, and A. Condon, On the undecidability of probabilistic planning and related stochastic optimization problems, Artificial Intelligence, vol.147, issue.1-2, pp.5-34, 2003.
DOI : 10.1016/S0004-3702(02)00378-8

S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, Planning under Uncertainty for Robotic Tasks with Mixed Observability, The International Journal of Robotics Research, vol.21, issue.3, pp.1053-1068, 2010.
DOI : 10.1177/0278364910369861

C. H. Papadimitriou and J. N. Tsitsiklis, The Complexity of Markov Decision Processes, Mathematics of Operations Research, vol.12, issue.3, pp.441-450, 1987.
DOI : 10.1287/moor.12.3.441

J. Pineau, G. Gordon, and S. Thrun, Point-based value iteration: An anytime algorithm for POMDPs, Proc. of the Int. Joint Conf. on Artificial Intelligence, 2003.

P. Poupart, N. Vlassis, J. Hoey, R. , and K. , An analytic solution to discrete Bayesian reinforcement learning, Proceedings of the 23rd international conference on Machine learning , ICML '06, 2006.
DOI : 10.1145/1143844.1143932

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. E. Poupart and N. Vlassis, Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes The Optimal Control of Partially Observable Markov Decision Processes Perseus: Randomized point-based value iteration for POMDPs, Ph.D. Dissertation Journal of Artificial Intelligence Research, vol.24, pp.195-220, 1971.

C. J. Walters and R. Hilborn, Ecological Optimization and Adaptive Management, Annual Review of Ecology and Systematics, vol.9, issue.1, pp.157-188, 1978.
DOI : 10.1146/annurev.es.09.110178.001105

B. Williams, Markov decision processes in natural resources management: Observability and uncertainty, Ecological Modelling, vol.220, issue.6, pp.830-840, 2009.
DOI : 10.1016/j.ecolmodel.2008.12.023

R. Zhou and E. Hansen, An improved grid-based approximation algorithm for POMDPs, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, 2001.