POMDPs Make Better Hackers: Accounting for Uncertainty in Penetration Testing

Carlos Sarraute 1 Olivier Buffet 2 Joerg Hoffmann 2, 3
2 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : Penetration Testing is a methodology for assessing network security, by generating and executing possible hacking attacks. Doing so automatically allows for regular and systematic testing. A key question is how to generate the attacks. This is naturally formulated as planning under uncertainty, i.e., under incomplete knowledge about the network configuration. Previous work uses classical planning, and requires costly pre-processes reducing this uncertainty by extensive application of scanning methods. By contrast, we herein model the attack planning problem in terms of partially observable Markov decision processes (POMDP). This allows to reason about the knowledge available, and to intelligently employ scanning actions as part of the attack. As one would expect, this accurate solution does not scale. We devise a method that relies on POMDPs to find good attacks on individual machines, which are then composed into an attack on the network as a whole. This decomposition exploits network structure to the extent possible, making targeted approximations (only) where needed. Evaluating this method on a suitably adapted industrial test suite, we demonstrate its effectiveness in both runtime and solution quality.
Type de document :
Communication dans un congrès
Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12), Jul 2012, Toronto, Canada. 2012
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00755265
Contributeur : Olivier Buffet <>
Soumis le : jeudi 24 janvier 2013 - 17:10:13
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : jeudi 25 avril 2013 - 03:51:01

Fichier

aaai12-b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00755265, version 1

Collections

Citation

Carlos Sarraute, Olivier Buffet, Joerg Hoffmann. POMDPs Make Better Hackers: Accounting for Uncertainty in Penetration Testing. Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12), Jul 2012, Toronto, Canada. 2012. 〈hal-00755265〉

Partager

Métriques

Consultations de la notice

184

Téléchargements de fichiers

98