Near-Optimal BRL using Optimistic Local Transitions

Mauricio Araya-López 1 Vincent Thomas 1 Olivier Buffet 1
1 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : Model-based Bayesian Reinforcement Learning (BRL) allows a sound formalization of the problem of acting optimally while facing an unknown environment, i.e., avoiding the exploration-exploitation dilemma. However, algorithms explicitly addressing BRL suffer from such a combinatorial explosion that a large body of work relies on heuristic algorithms. This paper introduces bolt, a simple and (almost) deterministic heuristic algorithm for BRL which is optimistic about the transition function. We analyze bolt's sample complexity, and show that under certain parameters, the algorithm is near-optimal in the Bayesian sense with high probability. Then, experimental results highlight the key differences of this method compared to previous work.
Type de document :
Communication dans un congrès
International Conference on Machine Learning - ICML 2012, Jun 2012, Edimburgh, United Kingdom. 2012
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00755270
Contributeur : Olivier Buffet <>
Soumis le : mardi 20 novembre 2012 - 18:44:42
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : jeudi 21 février 2013 - 12:32:01

Fichier

icml12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00755270, version 1

Collections

Citation

Mauricio Araya-López, Vincent Thomas, Olivier Buffet. Near-Optimal BRL using Optimistic Local Transitions. International Conference on Machine Learning - ICML 2012, Jun 2012, Edimburgh, United Kingdom. 2012. 〈hal-00755270〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

112