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Abstract: In this paper we propose a Bayesian nonparametric model for clustering partial ranking data.
We start by developing a Bayesian nonparametric extension of the popular Plackett-Luce choice model that
can handle an infinite number of choice items. Our framework is based on the theory of random atomic
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given data, and derive a simple and effective Gibbs sampler for posterior simulation. We then develop a
Dirichlet process mixture extension of our model and apply it to clustering the preferences for university
programmes of Irish secondary school graduates.

Key-words: choice models, generalized Bradley-Terry model, Plackett-Luce model, completely random
measure, Mixture model, Dirichlet process, Markov Chain Monte Carlo
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Modèles de Plackett-Luce bayésiens non paramétriques pour
l’analyse de regroupement de données de rangs

Résumé : Dans cet article nous proposons un modèle bayésien non paramétrique pour la classification
non supervisée de données de rangs partiels. On s’intéresse dans un premier temps à développer une
extension bayésienne non paramétrique du modèle de Plackett-Luce pouvant traiter un nombre poten-
tiellement infini d’éléments. Notre cadre se base sur la théorie des mesures complètement aléatoires,
avec comme a priori une mesure complètement aléatoire. Nous dérivons une caractérisation de la loi a
posteriori et un échantillonneur de Gibbs simple pour approcher la loi a posteriori. Nous développons
ensuite une extension de notre modèle utilisant des processus de Dirichlet à mélange, et l’appliquons à
la classification non supervisée des préférences pour les programmes universitaires de diplômés irlandais
du secondaire.

Mots-clés : Modèles de choix, modèle de Bradley-Terry généralisé, modèle de Plackett-Luce, mesure
complètement aléatoire, méthodes de Monte Carlo par chaı̂ne de Markov, modèle de mélange, processus
de Dirichlet
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1 Introduction
In this paper we consider partial ranking data consisting of ordered lists of the top-m items among a set
of objects. Data in the form of partial rankings arise in many contexts. For example, in this paper we shall
consider data pertaining to the top ten preferences of Irish secondary school graduates for university pro-
grammes. The Plackett-Luce model (Luce, 1959; Plackett, 1975) is a popular model for modeling such
partial rankings of a finite collection of M items. It has found many applications, including choice mod-
eling (Luce, 1977; Chapman and Staelin, 1982), sport ranking (Hunter, 2004), and voting (Gormley and
Murphy, 2008). Diaconis (1988, Chapter 9) provides detailed discussions on the statistical foundations
of this model.

In the Plackett-Luce model, each item k ∈ [M ] = {1, . . . ,M} is assigned a positive rating parameter
wk, which represents the desirability or rating of a product in the case of choice modeling, or the skill of
a player in sport rankings. The Plackett-Luce model assumes the following generative story for a top-m
list ρ = (ρ1, . . . , ρm) of items ρi ∈ [M ]: At each stage i = 1, . . . ,m, an item is chosen to be the ith item
in the list from among the items that have not yet been chosen, with the probability that ρi is selected
being proportional to its desirability wρi . The overall probability of a given partial ranking ρ is then

P (ρ) =
m∏
i=1

wρi(∑M
k=1 wk

)
−
(∑i−1

j=1 wρj
) , (1)

with the denominator in (1) being the sum over all items not yet selected at stage i.
In many situations the collection of available items can be very large and/or potentially unknown. In

this case a nonparametric approach can be sensible, where the pool of items is assumed to be infinite and
the model allows for the possibility of items not observed in previous top-m lists to appear in future ones.
A naı̈ve approach, building upon recent work on Bayesian inference for the (finite) Plackett-Luce model
and its extensions (Gormley and Murphy, 2009; Guiver and Snelson, 2009; Caron and Doucet, 2012), is
to first derive a Markov chain Monte Carlo sampler for the finite model, then to “take the infinite limit”
of the sampler, where the number of available items becomes infinite, but such that all unobserved items
are grouped together for computational tractability.

Such an approach, outlined in Section 2, is reminiscent of a number of previous approaches deriving
the (Gibbs sampler for the) Dirichlet process mixture model as the infinite limit of (a Gibbs sampler for)
finite mixture models (Neal, 1992; Rasmussen, 2000; Ishwaran and Zarepour, 2002). Although intuitively
appealing, this is not a satisfying approach since it is not clear what the underlying nonparametric model
actually is, as it is actually the algorithm whose infinite limit was taken. It also does not directly lead
to more general and flexible nonparametric models with no obvious finite counterpart, nor does it lead
to alternative perspectives and characterisations of the same model, or resultant alternative inference
algorithms. Orbanz (2010) further investigates the approach of constructing nonparametric Bayesian
models from finite dimensional parametric Bayesian models.

Caron and Teh (2012) recently proposed a Bayesian nonparametric Plackett-Luce model based on
a natural representation of items along with their ratings as an atomic measure. Specifically, the model
assumes the existence of an infinite pool of items {Xk}∞k=1, each with its own rating parameter, {wk}∞k=1.
The atomic measure then consists of an atom located at each Xk with a mass of wk:

G =

∞∑
k=1

wkδXk . (2)

The probability of a top-m list of items, say (Xρ1 , . . . , Xρm), is then a direct extension of the finite case
(1):

P (Xρ1 , . . . , Xρm |G) =

m∏
i=1

wρi(∑∞
k=1 wk

)
−
(∑i−1

j=1 wρj
) . (3)

RR n° 8143



BNP Plackett-Luce models for the analysis of clustered ranked data 4

Using this representation, note that the top item Xρ1 in the list is simply a draw from the probability
measure obtained by normalising G, while subsequent items in the top-m list are draws from probability
measures obtained by first removing from G the atoms corresponding to previously picked items and
normalising. Described this way, it is clear that the Plackett-Luce model is none other than a partial
size-biased permutation of the atoms in G (Patil and Taillie, 1977), and the existing machinery of random
measures and exchangeable random partitions (Pitman, 2006) can be brought to bear on our problem.

For example, we may use a variety of existing stochastic processes to specify a prior over the atomic
measure G. Caron and Teh (2012) considered the case, described in Section 3, where G is a gamma
process. This is a completely random measure (Kingman, 1967) with gamma marginals, such that the
corresponding normalised probability measure is a Dirichlet process (Ferguson, 1973). They showed that
with the introduction of a suitable set of auxiliary variables, it is possible to characterise the posterior law
of G given observations of top-m lists distributed according to (3). A simple Gibbs sampler can then be
derived to simulate from the posterior distribution which corresponds to the infinite limit of the Gibbs
sampler for finite models.

In Section 4, we show that this construction can be extended from gamma processes to general com-
pletely random measures, and we discuss extensions of the Gibbs sampler to this more general case. In
particular, we show that a simple Gibbs sampler can still be derived for the generalised gamma class of
completely random measures.

In Section 5 we describe a Dirichlet process mixture model (Ferguson, 1973; Lo, 1984) for heteroge-
neous partial ranking data, where each mixture component is a gamma process nonparametric Plackett-
Luce model. As we will see, in this model it is important to allow the same atoms to appear across the
different random measures of the mixture components, otherwise the model becomes degenerate with all
observed items that ever appeared together in some partial ranking being assigned to the same mixture
component. To allow for this, we use a tree-structured extension of the time varying model of Caron
and Teh (2012). In Section 6 we apply this mixture model to the Irish university preferences data men-
tioned earlier, showing that the model is able to recover clusters of students with similar and interpretable
preferences.

Finally, we conclude in Section 7 with a discussion of the important contributions of this paper and
proposals for future work.

2 A Bayesian nonparametric model for partial ranking
We start this section with a review of a Bayesian approach to inference in finite Plackett-Luce models
(Gormley and Murphy, 2009; Guiver and Snelson, 2009; Caron and Doucet, 2012), and taking the infinite
limit to arrive at a nonparametric model. This will give good intuitions for how the model operates, before
we rederive the same nonparametric model more formally in the next section using gamma processes.

Recall that we have M choice items indexed by [M ] = {1, . . . ,M}, with item k ∈ [M ] having a
positive desirability parameter wk. We will suppose that our data consists of L partial rankings of the
M choice items, with the `th ranking being denoted ρ` = (ρ`1, . . . , ρ`m), for ` = 1, . . . , L, where each
ρ`i ∈ [M ]. For notational simplicity we assume that all the partial rankings are of length m.

2.1 Finite Plackett-Luce model with gamma prior
As noted in the introduction, the Plackett-Luce model constructs a partial ranking ρ` = (ρ`1, . . . , ρ`m)
iteratively. At the ith stage, with i = 1, 2, . . . ,m, we pick ρ`i as the ith item from among those not yet
picked with probability proportional to wρ`i . The probability of the partial ranking ρ` is then as given
in (1). An alternative Thurstonian interpretation, which will be important in the following, is as follows:

RR n° 8143
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For each item k let z`k be exponentially distributed with rate wk:

z`k ∼ Exp(wk)

Thinking of z`k as the arrival time of item k in a race, let ρ`i be the index of the ith item to arrive
(the index of the ith smallest value among (z`k)Mk=1). The resulting probability of the first m items to
arrive being ρ` can be shown to be the probability (1) from before. In this interpretation (z`k) can be
understood as latent variables, and the EM algorithm (Dempster et al., 1977) can be applied to derive an
algorithm to find a ML setting for the parameters (wk)Mk=1 given multiple partial rankings. Unfortunately
the posterior distribution of (z`k)Mk=1 given ρ` is difficult to compute, so we can instead consider an
alternative parameterisation: Let Z`i be the waiting time for the ith item to arrive after the i − 1th item.
That is,

Z`i = zρ`i − zρ` i−1

with zρ`0 defined to be 0. Then it is easily seen that the joint probability of the observed partial rankings,
along with the alternative latent variables (Z`i), is:

P ((ρ`)
L
`=1, ((Z`i)

m
i=1)L`=1|(wk)Mk=1) =

L∏
`=1

m∏
i=1

wρ`i exp

−Z`i
 M∑
k=1

wk −
i−1∑
j=1

wρ`j

 (4)

In particular, the posterior of (Z`i)
m
i=1 is simply factorised, with

Z`i|(ρ`)L`=1, (wk)Mk=1 ∼ Exp

 M∑
k=1

wk −
i−1∑
j=1

wρ`j


being exponentially distributed. The M step of the EM algorithm can be easily derived as well. The result-
ing algorithm was first proposed by Hunter (2004) as an instance of the MM (majorisation-maximisation)
algorithm (Lange et al., 2000) and its re-interpretation as an EM algorithm was recently given by Caron
and Doucet (2012).

Taking a further step, we note that the joint probability (4) is conjugate to a factorised gamma prior
over the parameters, say wk ∼ Gamma( αM , τ) with hyperparameters α, τ > 0. Now Bayesian inference
can be carried out, for example, using with a variational Bayesian EM algorithm, or a Gibbs sampler. In
this paper we shall consider only Gibbs sampling algorithms. By regrouping the terms in the exponential
in (4), the parameter updates are derived to be (Caron and Doucet, 2012):

wk|ρ, (Z`i), (wk′)k′ 6=k ∼ Gamma

(
α

M
+ nk, τ +

L∑
`=1

m∑
i=1

δ`ikZ`i

)
(5)

where nk is the number of occurrences of item k among the observed partial rankings, and

δ`ik =

{
0 if there is a j < i with ρ`j = k,
1 otherwise.

Note that the definitions of nk and δ`ik slightly differ from those in (Hunter, 2004) and (Caron and
Doucet, 2012). In these articles, the authors consider full m-rankings of subsets of [M ] whereas we
consider here partial top-m rankings of all M items.

RR n° 8143
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2.2 Taking the infinite limit
A Gibbs sampler for a nonparametric Plackett-Luce model can now be easily derived by taking the limit
as the number of choice items M → ∞. If item k has appeared among the observed partial rankings,
the limiting conditional distribution (5) is well defined since nk > 0. For items that did not appear
in the observations, (5) becomes degenerate at 0. Instead we can define w∗ =

∑
k:nk=0 wk to be the

total desirability among all the infinitely many unobserved items. Making use of the fact that sums of
independent gammas with the same scale parameter is a gamma with shape parameter given by the sum
of the shape parameters,

w∗|ρ, (Z`i), (wk)k:nk>0 ∼ Gamma

(
α, τ +

L∑
`=1

m∑
i=1

Z`i

)

The resulting Gibbs sampler alternates between updating the latent variables (Z`i), and updating the
desirabilities of the observed items (wk)k:nk>0 and of the unobserved ones w∗.

This nonparametric model allows us to estimate the probability of seeing new items appearing in
future partial rankings in a coherent manner. While intuitive, the derivation is ad hoc in the sense that it
arises as the infinite limit of the Gibbs sampler for finite Plackett-Luce models, and is unsatisfying as it
did not directly capture the structure of the underlying infinite dimensional object, which we will show in
the next section to be a gamma process.

3 A Bayesian nonparametric Plackett-Luce model
Let X be a measurable space of choice items. A gamma process is a completely random measure over
X with gamma marginals. Specifically, it is a random atomic measure of the form (2), such that for each
measurable subset A, the (random) mass G(A) is gamma distributed. Assuming that G has no fixed
atoms (that is, for each element x ∈ X we have G({x}) = 0 with probability one) and that the atom
locations {Xk} are independent of their masses {wk} (that is, the gamma process is homogeneous), it
can be shown that such a random measure can be constructed as follows (Kingman, 1967): each Xk is
iid according to a base distribution H (which we assume is non-atomic with density h(x)), while the set
of masses {wk} is distributed according to a Poisson process over R+ with mean intensity

λ(w) = αw−1e−wτ

where α > 0 is the concentration parameter and τ > 0 the inverse scale. We write this asG ∼ Γ(α, τ,H).
Under this parametrisation, we have that G(A) ∼ Gamma(αH(A), τ). The intensity λ(w) is known as
the Lévy intensity and plays a significant role in characterising the properties of the gamma process.

We shall interpret each atom Xk as a choice item, with its mass wk > 0 corresponding to the de-
sirability parameter. The Thurstonian view described in the finite model can be easily extended to the
nonparametric one, where a partial ranking (Xρ1 , . . . , Xρm) can be generated as the first m items to ar-
rive in a race. In particular, for each atom Xk let zk ∼ Exp(wk) be the time of arrival of Xk and Xρi the
ith item to arrive. The first m items to arrive (Xρ1 , . . . , Xρm) then constitutes our partial ranking, with
probability as given in (3). This construction is depicted on Figure 1. The top row of Figure 2 visualises
some top-5 rankings generated from the model, with τ = 1 and different values of α. Figure 3 shows the
mean number of items appearing in L top-m rankings. For m = 1, one recovers the well-known result
on the number of clusters for a Dirichlet process model.

Again reparametrising using inter-arrival durations, let Zi = zρi − zρi−1
for i = 1, 2, . . . (with

zρ0 = 0). The joint probability of an observed partial ranking of length m along with the m associated

RR n° 8143
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latent variables can be derived to be:

P ((Xρ1 , . . . , Xρm), (Z1, . . . , Zm)|G)

=P ((zρ1 , . . . , zρm), and zk > zρm for all k 6∈ {ρ1, . . . , ρm}) (6)

=

( m∏
i=1

wρi exp(−wρizρi)
)( ∏

k 6∈{ρ1,...,ρm}

exp(−wkzρm)

)

=

m∏
i=1

wρi exp

(
− Zi

( ∞∑
k=1

wk −
i−1∑
j=1

wρj

))

Marginalising out (Z1, . . . , Zm) gives the probability of (Xρ1 , . . . , Xρm) as in (3). Further, conditional
on ρ = (ρi)

m
i=1 it is seen that the inter-arrival durations Z1 . . . Zm are mutually independent, with

Zi|(Xρ1 , . . . , Xρm), G ∼ Exp

( ∞∑
k=1

wk −
i−1∑
j=1

wρj

)
In the next section we shall characterise the posterior distribution over G given observed partial rank-

ings and their associated latent variables. We end this subsection with two observations. Firstly, note that
the Lévy intensity λ(w) of the gamma process satisfies the following two properties:∫ ∞

0

λ(w)dw =∞,
∫ ∞

0

(1− e−w)λ(w)dw <∞ (7)

The first property is equivalent (via Campbell’s Theorem) to the fact that there are an infinite number of
atoms in G with probability one. In other words that we are dealing with a nonparametric model with
an infinite number of choice items. The second is equivalent to the fact that G has finite total mass with
probability one, so that it is a well-defined operation to pick an item with probability proportional to its
rating parameter, as in the generative story for the Plackett-Luce model.

The second observation is with regard to a subtle but important difference between the atomic measure
approach described in this section and the finite Plackett-Luce model of the previous section. In particular,
here we specified the choice items Xk as locations in a space X with a prior given by the base distribution
H , while in the finite Plackett-Luce model we simply index the M choice items using 1, . . . ,M . One
may wonder if it is possible to simply index the infinitely many choice items using the natural numbers,
and dispense with the atom locations {Xk} altogether. This turns out to be impossible, if we were to
make the following reasonable assumptions: That item desirabilities are a priori mutually independent,
that they are positive with probability one, and that item desirabilities do not depend on the index of their
corresponding items. With these assumptions, along with an infinite number of choice items, it is easy to
see that the sum of all item desirabilities will be infinite with probability one, so that the Plackett-Luce
generative model becomes ill-defined. Using the atomic measure approach, it is possible to satisfy all
assumptions while making sure the Plackett-Luce generative model is well-defined.

3.1 Posterior characterisation
In this section we develop a characterisation of the posterior law of G under a gamma process prior and
given Plackett-Luce observations consisting of L partial rankings. We shall denote the `th partial ranking
as Y` = (Y`1, . . . , Y`m), where each Y`i ∈ X. Note that previously our partial rankings (Xρ1 , . . . , Xρm)
were denoted as ordered lists of the atoms in G. Since G is unobserved here, this is no longer possible,
so we instead simply use a list of observed choice items (Y`1, . . . , Y`m). Re-expressing the conditional

RR n° 8143
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Figure 1: Bayesian nonparametric Plackett-Luce model. Left: an instantiation of the atomic measure
G encapsulating both the items and their ratings. Right: Arrival times zk and latent variables Zk =
zρk − zρk−1

. The top 5 items are (ρ1, ρ2, . . . , ρ5).

distribution (3) of Y` given G, we have:

P (Y`|G) =

m∏
i=1

G({Y`i})
G(X\{Y`1, . . . , Y` i−1})

In addition, for each `, we will also introduce a set of auxiliary variables Z` = (Z`1, . . . , Z`m) (the
inter-arrival times) that are conditionally mutually independent given G and Y`, with:

Z`i|Y`, G ∼ Exp(G(X\{Y`1, . . . , Y`i−1})) (8)

The joint probability of the item lists and auxiliary variables is then (c.f. (6)):

P ((Y`, Z`)
L
`=1|G) =

L∏
`=1

m∏
i=1

G({Y`i}) exp(−Z`iG(X\{Y`1, . . . , Y` i−1}))

Note that under the generative process described in Section 3, there is positive probability that an item
appearing in a list Y` appears in another list Y`′ with `′ 6= `. Denote the unique items among all L lists
by X∗1 , . . . , X

∗
K , and for each k = 1, . . . ,K let nk be the number of occurrences of X∗k among the item

lists. Finally define occurrence indicators

δ`ik =

{
0 if ∃j < i with Y`j = X∗k ;
1 otherwise.

(9)

RR n° 8143
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Figure 2: Visualisation of top-5 rankings with rows corresponding to different rankings and columns to
items sorted by size biased order. A lighter shade corresponds to a higher rank. Results are shown for a
generalised gamma process with λ(w) = α

Γ(1−σ)w
−σ−1 exp(−τw) with τ = 1 and different values of α

and σ.
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Figure 3: Mean number of items appearing in L top-m rankings for a generalised gamma process with
λ(w) = α

Γ(1−σ)w
−σ−1 exp(−τw) with τ = 1 and different values of α, m and σ.
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Then the joint probability under the nonparametric Plackett-Luce model is:

P ((Y`, Z`)
L
`=1|G)

=

K∏
k=1

G({X∗k})nk ×
L∏
`=1

m∏
i=1

exp(−Z`iG(X\{Y`1, . . . , Y` i−1}))

= exp

(
−G(X)

∑
`i

Z`i

)
K∏
k=1

G({X∗k})nk exp

(
−G({X∗k})

∑
`i

(δ`ik − 1)Z`i

)
(10)

Taking expectation of (10) with respect to G gives:

Theorem 1 The marginal probability of the L partial rankings and latent variables is:

P ((Y`, Z`)
L
`=1) = e−ψ(

∑
`i Z`i)

K∏
k=1

h(X∗k)κ

(
nk,
∑
`i

δ`ikZ`i

)
(11)

where ψ(z) is the Laplace transform of λ(w),

ψ(z) = − logE
[
e−zG(X)

]
=

∫ ∞
0

(1− e−zw)λ(w)dw = α log
(

1 +
z

τ

)
and κ(n, z) is the nth moment of the exponentially tilted Lévy intensity λ(w)e−zw:

κ(n, z) =

∫ ∞
0

wne−zwλ(w)dw =
α

(z + τ)n
Γ(n)

The proof, using the Poisson process characterisation of completely random measures and the Palm for-
mula, is given in the appendix.

Another application of the Palm formula now allows us to derive a posterior characterisation of G.

Theorem 2 Given the observations and associated latent variables (Y`, Z`)
L
`=1, the posterior law of G

is also a gamma process, but with atoms with both fixed and random locations. Specifically,

G|(Y`, Z`)L`=1 = G∗ +

K∑
k=1

w∗kδX∗k (12)

where G∗ and w∗1 , . . . , w
∗
K are mutually independent. The law of G∗ is still a gamma process,

G∗|(X`, Z`)
L
`=1 ∼ Γ(α, τ?, H), τ∗ = τ +

∑
`i

Z`i

while the masses have distributions,

w∗k|(Y`, Z`)L`=1 ∼ Gamma

(
nk, τ +

∑
`i

δ`ikZ`i

)
Proof. Let f : X → R be measurable with respect to H . Then the characteristic functional of the
posterior G is given by:

E[e−
∫
f(x)G(dx)|(Y`, Z`)L`=1] =

E[e−
∫
f(x)G(dx)P ((Y`, Z`)

L
`=1|G)]

E[P ((Y`, Z`)L`=1|G)]
(13)

The denominator is as given in Theorem 1, while the numerator is obtained using the same Palm formula
technique as Theorem 1, with the inclusion of the term e−

∫
f(x)G(dx). Some algebra then shows that the

resulting characteristic functional of the posterior G coincides with that of (12). The proof details are
given in the appendix.
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3.2 Gibbs sampling
Given the results of the previous section, a simple Gibbs sampler can now be derived, where all the
conditionals are of known analytic form. In particular, we will integrate out all of G∗ except for its total
mass w∗∗ = G∗(X). This leaves the latent variables to consist of the masses w∗∗ , (w∗k)Kk=1 and the latent
variables ((Z`i)

m
i=1)L`=1. The update for Z`i is given by (8), while those for the masses are given in

Theorem 2:

Gibbs update for Z`i: Z`i|rest ∼ Exp
(
w∗∗ +

∑
k δ`ikw

∗
k

)
Gibbs update for w∗k: w∗k|rest ∼ Gamma

(
nk, τ +

∑
`i δ`ikZ`i

)
Gibbs update for w∗∗: w∗∗|rest ∼ Gamma

(
α, τ +

∑
`i Z`i

)
(14)

Note that the latent variables are conditionally independent given the masses and vice versa. Hyperpa-
rameters of the gamma process can be simply derived from the joint distribution in Theorem 1. Since the
marginal probability of the partial rankings is invariant to rescaling of the masses, it is sufficient to keep
τ fixed at 1. As for α, if a Gamma(a, b) prior is placed on it, its conditional distribution is still gamma:

Gibbs update for α: α|rest ∼ Gamma
(
a+K, b+ log

(
1 +

∑
`i Z`i
τ

))
Note that this update was derived with w∗∗ marginalised out, so after an update to α it is necessary to
immediately update w∗∗ via (14) before proceeding to update other variables.

4 Generalisation to completely random measures
The posterior characterisation we have developed along with the Gibbs sampler can be easily extended to
completely random measures (CRM) (Kingman, 1967). To keep the exposition simple, we shall consider
homogeneous CRMs without fixed atoms. These can be described, as for the gamma process before,
with atom locations {Xk} iid according to a non-atomic base distribution H , and with atom masses
{wk} being distributed according to a Poisson process over R+ with a general Lévy measure λ(w) which
satisfies the constraints (7) leading to a normalisable measure G with infinitely many atoms. We will
write G ∼ CRM(λ,H) if G follows the law of a homogeneous CRM with Lévy intensity λ(w) and base
distribution H .

Both Theorems 1 and 2 generalise naturally to homogeneous CRMs. In fact the statements and the
proofs in the appendix still hold with the more general Lévy intensity, along with its Laplace transform
ψ(z) and moment function κ(n, z):

Theorem 1’ The marginal probability of the L partial rankings and latent variables is:

P ((Y`, Z`)
L
`=1) = e−ψ(

∑
`i Z`i)

K∏
k=1

h(X∗k)κ

(
nk,
∑
`i

δ`ikZ`i

)
where ψ(z) is the Laplace transform of λ(w),

ψ(z) = − logE
[
e−zG(X)

]
=

∫ ∞
0

(1− e−zw)λ(w)dw

and κ(n, z) is the nth moment of the exponentially tilted Lévy intensity λ(w)e−zw:

κ(n, z) =

∫ ∞
0

wne−zwλ(w)dw
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Theorem 2’ Given the observations and associated latent variables (Y`, Z`)
L
`=1, the posterior law of G

is also a homogeneous CRM, but with atoms with both fixed and random locations. Specifically,

G|(Y`, Z`)L`=1 = G∗ +

K∑
k=1

w∗kδX∗k

where G∗ and w∗1 , . . . , w
∗
K are mutually independent. The law of G∗ is a homogeneous CRM with an

exponentially tilted Lévy intensity:

G∗|(X`, Z`)
L
`=1 ∼ CRM(λ?, H) λ∗(w) = λ(w)e−w

∑
`i Z`i

while the masses have densities:

P (w∗k|(Y`, Z`)L`=1) =
(w∗k)nke−w

∗
k

∑
`i Z`iλ(w∗k)

κ(nk,
∑
`i Z`i)

.

Examples of CRMs that have been explored in the literature for Bayesian nonparametric modelling
include the stable process (Kingman, 1975), the inverse Gaussian process (Lijoi et al., 2005), the gener-
alised gamma process (Brix, 1999), and the beta process (Hjort, 1990). The generalised gamma process
forms the largest known simple and tractable family of CRMs, with the gamma, stable and inverse Gaus-
sian processes included as subfamilies. It has a Lévy intensity of the form:

λ(w) =
α

Γ(1− σ)
w−1−σe−τw

where the concentration parameter is α > 0, the inverse scale is τ ≥ 0, and the index is 0 ≤ σ < 1.
The gamma process is recovered when σ = 0, the stable when τ = 0, and the inverse Gaussian when
σ = 1/2. The Laplace transform and the moment function of the generalised gamma process are:

ψ(z) =
α

σ
((τ + z)σ − τσ) κ(n, z) =

α

(τ + z)n−σ
Γ(n− σ)

Γ(1− σ)
.

The Gibbs sampler developed for the gamma process can be generalised to homogeneous CRMs as
well. Recall that given the observed partial rankings, the parameters consist of the ratings (w∗k)Kk=1 of the
observed items and the total ratings w∗∗ of the unobserved ones, while the latent variables are (Z`i). A
corollary of Theorems 1’ and 2’ which will prove useful is the joint probability of these along with the
observed partial rankings:

P ((Y`i, Z`i), (w
∗
k), w∗∗) = e−w

∗
∗(

∑
`i Z`i))f(w∗∗)

K∏
k=1

h(X∗k)(w∗k)nke−w
∗
k(

∑
`i δ`ikZ`i)λ(w∗k) (15)

where f(w) is the density (assumed to exist) of the total mass w∗∗ under a CRM with the prior Lévy
intensity λ(w). Note that integrating out the parameters (w∗k), w∗∗ from (15) gives the marginal probability
in Theorem 1’. From the joint probability (15), the Gibbs sampler can now be derived:

Gibbs update for Z`i: Z`i|rest ∼ Exp
(
w∗∗ +

∑
k δ`ikw

∗
k

)
Gibbs update for w∗k: P (w∗k|rest) ∝ (w∗k)nke−w

∗
k

∑
`i Z`iλ(w∗k)

Gibbs update for w∗∗: P (w∗∗|rest) ∝ e−w
∗
∗(

∑
`i Z`i))f(w∗∗)

To be concrete, consider the updates for a generalised gamma process. The conditional distribution for
w∗k can be seen to be Gamma(nk − σ, τ +

∑
`i Z`i), while the conditional distribution for w∗∗ can be
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seen to be an exponentially tilted stable distribution. This is not a standard distribution (nor does it have
known analytic forms for its density), but can be effectively sampled using recent techniques (Devroye,
2009). Another approach is to marginalise out w∗∗ first:

P ((Y`i, Z`i), (w
∗
k)) = e−ψ(

∑
`i Z`i)

K∏
k=1

h(X∗k)(w∗k)nke−w
∗
k(

∑
`i δ`ikZ`i)λ(w∗k)

The MCMC algorithm then consists of sampling the ratings (w∗k) and auxiliary variables (Z`i). Marginal-
ising out w∗∗ introduces additional dependencies among the latent variables Z`i. Fortunately, since the
Laplace transform for a generalised gamma process is of simple form, it is possible to update the latent
variables (Z`i) using a variety of standard techniques, including Metropolis-Hastings, Hamiltonian Monte
Carlo, or adaptive rejection sampling. For these techniques to work well we suggest reparametrising each
Z`i using its logarithm logZ`i instead.

5 Mixtures of Nonparametric Plackett-Luce Components
In this section we propose a mixture model for heterogeneous ranking data consisting of nonparametric
Plackett-Luce components. Using the same data augmentation scheme, we show that an efficient Gibbs
sampler can be derived, and apply the model to a dataset of preferences for Irish university programmes
by high school graduates.

5.1 Statistical model
Assume that we have a set of L rankings (Y`) for ` ∈ [L] of top-m preferred items, and our objective is to
partition these rankings into clusters of similar preferences. We consider the following Dirichlet process
(DP) mixture model:

π ∼ GEM(γ)

c`|π ∼ Discrete(π) for ` = 1, . . . , L,
Y`|c`, Gc` ∼ PL(Gc`)

where GEM(γ) denotes the Griffiths-Engen-McCloskey (GEM) distribution (Pitman, 2006) with concen-
tration parameter γ (also known as the stick-breaking construction) and PL(G) denotes the nonparametric
Plackett-Luce model parameterised by the atomic measure G described in Section 3. The jth cluster in
the mixture model is parameterised by an atomic measure Gj and has mixing proportion πj .

To complete the model, we have to specify the prior on the component atomic measures Gj . An
obvious choice would be to use independent draws from a gamma process Γ(α, τ,H) for each Gj . This
unfortunately does not work. The reason is because if H is smooth then different atomic measures will
never share the same atoms. On the other hand, notice that all items appearing in some observed partial
ranking has to come from the same Plackett-Luce model, thus has to appear as atoms in the corresponding
atomic measure. Putting these two observations together, the result is that any observed pair of partial
rankings that share a common item will have to be assigned to the same component, and the mixture
model will degenerate to using a few very larger components only. In consequence the model will not
capture the fine-scale preference structure that may be present in the partial rankings. This is a similar
problem that motivated the hierarchical DP (Teh et al., 2006), and the solution there as in here is to allow
different atomic measures to share the same set of atoms, but to allow different atom masses.

Our solution, which is different from Teh et al. (2006), is to make use of the Pitt-Walker (Pitt and
Walker, 2005) dependence model for gamma processes. Consider a tree-structured model where there is
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a single root G0 and each component atomic measure Gj is a leaf which connects directly to G0. The
Pitt-Walker model allows us to construct the dependence structure between the root G0 and the leaves
(Gj) such that each Gj marginally follows a gamma process Γ(α, τ,H). At the root, G0 is first given a
gamma process prior:

G0 ∼ Γ(α, τ,H)

Since G0 is atomic, we can write it in the form:

G0 =

∞∑
k=1

w0kδXk

Now for each j, define a random measure Uj with conditional law:

Uj |G0 =

∞∑
k=1

ujkδXk

ujk|G0 ∼ Poisson(φw0k) (16)

where φ > 0 is a parameter which, as we shall see, governs the strength of dependence between G0

and each Gj . Note that since G0 has finite total mass, Uj consists only of a finite number of atoms with
positive masses; the other atoms all have masses equal to zero. Using the same Palm formula method as
Section 3.1, we can show the following proposition:

Proposition 3 Suppose the prior law of G0 is Γ(α, τ,H) and Uj has conditional law given by (16). The
posterior law of G0 given Uj is then:

G0 = G∗0 +

∞∑
k=1

w∗0kδXk

where G∗0 and (w∗0k)∞k=1 are all mutually independent. The law of G∗0 is given by a gamma process while
the masses are conditionally gamma,

G∗0|Uj ∼ Γ(α, τ + φ,H)

w∗0k|Uj ∼ Gamma(ujk, τ + φ)

Note that if ujk = 0, we define w∗0k to be degenerate at 0, thus the posterior of G0 consists of a finite
number of atoms in common withUj , along with an infinite number of atoms (those inG∗0) not in common.
The total mass of G∗0 has distribution Gamma(α, τ + φ).

The idea, inspired by Pitt and Walker (2005), is to define the conditional law of Gj given G0 and Uj
to be independent of G0 and to coincide with the conditional law of G0 given Uj as in Proposition 3. In
other words, define

Gj = G∗j +

∞∑
k=1

w∗jkδXk (17)

where G∗j ∼ Γ(α, τ + φ,H) and w∗jk ∼ Gamma(ujk, τ + φ) are mutually independent. Note that if
ujk = 0, the conditional distribution of w∗jk will be degenerate at 0. Hence Gj has an atom at Xk if and
only if Uj has an atom at Xk, that is, if ujk > 0. In addition, it also has an infinite number of atoms
(those in G∗j ) which are in neither Uj nor G0.
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Since the conditional laws of Gj and G0 given Uj coincide, and G0 has prior Gamma(α, τ,H), it
can be seen that Gj will marginally follow the same law Gamma(α, τ,H) as well. More compactly, we
can write the dependence model as:

Uj |G0 ∼ Poisson(φG0)

Gj |Uj ∼ Γ

(
α+ Uj(X), τ + φ,

αH + Uj
α+ Uj(X)

)
As a final observation, the parameter φ can be interpreted as controlling the strength of dependence

between G0 and each Gj . Indeed it can be shown that

E[Gj |G0] =
φ

φ+ τ
G0 +

τ

φ+ τ
H

so that larger φ corresponds to each Gj being more similar to G0.
Our construction to inducing sharing of atoms has a number of qualitative differences from that of

the hierarchical DP (Teh et al., 2006). Firstly, the marginal law of each Gj is known: it is marginally a
gamma process. For the hierarchical DP the marginal laws of the individual random measures are not of
simple analytical forms. Since normalising a gamma process gives a DP, our construction can be used as
an alternative method to induce sharing of atoms across multiple random measures, each of which still
has marginal DP law. Secondly, in our construction only a finite number of atoms will be shared across
random measures (though the number shared can be controlled by the dependence parameter φ), while
in the hierarchical DP all infinitely many atoms are shared. In Caron and Teh (2012) we used the Pitt-
Walker construction for a different purpose: we constructed a dynamical nonparametric Plackett-Luce
model, where at each time t, Gt is a gamma process, with the Pitt-Walker construction used to define a
Markov dependence structure for the sequence of random measures (Gt). The structure of our model,
with a DP mixture with each component specified by a random atomic measure, is reminiscent of the
nested DP of Rodrı́guez et al. (2008) as well, though our model has an additional hierarchical structure
allowing the sharing of atoms among different component measures.

5.2 Posterior characterisation and Gibbs sampling
Assume for simplicity we have observed L top-m partial ranking Y` = (Y`1, . . . , Y`m) (the following will
trivially extend to partial rankings of differing sizes). We extend the results of Section 3 in characterising
the posterior and developing a Gibbs sampler for the mixture model.

Let X∗ = (X∗k)Kk=1 be the set of unique items observed among Y1, . . . , YL. For each cluster index j,
let njk be the number of occurrences of item X∗k among the set of item lists Y` in cluster j, that is, where
c` = j. Let ρ` = (ρ`i)

m
i=1 be defined such as Y` = (X∗ρ`1 , . . . , X

∗
ρ`m

), and δ`ik be occurrence indicators
similar to (9).

As in Section 3, the observed items X∗ will contain the set of fixed atoms in the posterior law of
the atomic measures G0, (Gj). We write the masses of the fixed atoms as w0k = G0({X∗k}), wjk =
Gj({X∗k}), while the total masses of all other random atoms are denoted w0∗ = G0(X\X∗) and wj∗ =
Gj(X\X∗). We also write ujk = Uj({X∗k}) and uj∗ = Uj(X\X∗). As before, we will introduce latent
variables for each ` = 1, . . . , L and i = 1, . . . ,m:

Z`i|Y`, c`, Gc` ∼ Exp

(
wc`∗ +

K∑
k=1

δ`ikwc`k

)
(18)

The overall graphical model is described in Figure 4.

RR n° 8143



BNP Plackett-Luce models for the analysis of clustered ranked data 16

α

G0 Uj Gj ρ` Z` c` π

γφ

j = 1, 2, . . . ` = 1, . . . , L

Figure 4: Graphical model of the Dirichlet process mixture of nonparametric Plackett-Luce components.
The variables at the top in green are hyperparameters, (ρ`) (in orange) are the observed partial rankings,
while the other variables (in blue) are unobserved variables.

Proposition 4 Given the partial rankings (Y`) and associated latent variables (Z`i), (ujk), (uj∗), and
cluster indicators (c`), the posterior law ofGj is a gamma process with atoms with both fixed and random
locations. Specifically,

Gj |(Y`), (Z`i), (ujk), (uj∗), (c`) = G∗j +

K∑
k=1

wjkδX∗k

where G∗j and wj1, . . . , wjK are mutually independent. The law of G∗j is a gamma process,

G∗j |(Y`), (Z`i), (ujk), (uj∗), (c`) ∼ Γ

α+ uj∗, τ + φ+
∑
`|c`=j

m∑
i=1

Z`i, H

 , (19)

while the masses have distributions,

wjk|(Y`), (Z`i), (ujk), (uj∗), , (c`) ∼ Gamma

(
njk + ujk, τ + φ+

∑
`|c`=j

m∑
i=1

δ`ikZ`i

)
(20)

Note that if njk + ujk = 0, then wjk = 0 and Gj will not have a fixed atom at X∗k . To complete
the posterior characterisation, note that conditioned on G0 and Gj the variables uj1, . . . , ujK and uj∗ are
independent, with ujk dependent only onw0k andwjk and similarly for uj∗. The conditional probabilities
are:

p(ujk|w0k, wjk) ∝ fGamma(wjk;ujk, τ + φ)fPoisson(ujk;φw0k) (21)
p(uj∗|w0∗, wj∗) ∝ fGamma(wj∗;α+ uj∗, τ + φ)fPoisson(uj∗;φw0∗) (22)

where fGamma is the density of a Gamma distribution and fPoisson is the probability mass function for a
Poisson distribution. The normalising constants are available in closed form (Mena and Walker, 2009):

p(wjk|w0k) = exp(−φw0k)1wjk,0

+ I−1

(
2
√
wjkφw0k(τ + φ)

)(
φ(τ + φ)w0k

wjk

)1/2

exp (−φ(wjk + w0k)− τwjk)

(23)

p(wj∗|w0∗) =Iα−1

(
2
√
wj∗φw0∗(τ + φ)

)
(τ + φ)

α+1
2

(
wj∗
φw0∗

)α−1
2

exp(−φ(wj∗ + w0∗)− τwj∗)

(24)
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where 1a,b = 1 if a = b, 0 otherwise, and I is the modified Bessel function of the first kind. It is there-
fore possible to sample exactly from the discrete distributions (21) and (22) using standard retrospective
sampling for discrete distributions, see for example Papaspiliopoulos and Roberts (2008). Alternatively,
we describe in the appendix a Metropolis-Hastings procedure that worked well in the applications.

Armed with the posterior characterisation, a Gibbs sampler can now be derived. Each iteration of the
Gibbs sampler proceeds in the following order (details are in appendix):

1. First note that the total masses Gj(X) are not likelihood identifiable, so we introduce a step to
improve mixing. We simply sample them from the prior:

G0(X) ∼ Gamma(α, τ)

Uj(X)|G0(X) ∼ Poisson(φG0(X))

Gj(X)|Uj(X) ∼ Gamma(α+ Uj(X), τ + φ)

The individual atom masses (wjk, wj∗) are scaled along with the update to the total masses. Then
the Poisson masses (ujk), (uj∗) are updated using (21) and (22).

2. The concentration parameter α and the masses w0∗, (wj∗) and (uj∗) associated with other unob-
served items are updated efficiently using a forward-backward recursion detailed in the appendix.

3. The masses (w0k) and w0∗ of the atoms in G0 are updated via an extension of Proposition 3. In
particular, for each item k = 1, . . . ,K, the masses are conditionally independent with distributions:

w0k|u1:J,k, φ ∼ Gamma
(∑J

j=1 ujk, Jφ+ τ
)

while the total mass of the remaining atoms have conditional distribution:

w0∗|u1:J∗, φ ∼ Gamma
(
α+

∑J
j=1 uj∗, Jφ+ τ

)
4. The latent variables (Z`i) are updated as in (18).

5. Conditioned on (Z`i), (ujk) and (uj∗), the masses (wjk) are updated via (20), while the total mass
of the unobserved atoms is wj∗ ∼ Gamma(α∗j , τ

∗
j ) from (19).

6. The allocation variables c` are updated using a slice sampler for mixture models (Walker, 2007;
Kalli et al., 2011).

7. Finally, the scale parameter γ of the Dirichlet process is updated using (West, 1992) and the de-
pendence parameter φ is updated by a Metropolis-Hastings step using (23) and (24) with the latent
(ujk) and (uj∗) marginalised out.

The resulting algorithm is a valid partially collapsed Gibbs sampler (Van Dyk and Park, 2008). Note
however that permutations of the above steps could result in an invalid sampler.

6 Irish University Programmes
Applications to third level degree programmes in Ireland are handled by a centralised applications system
called the College Application Office (CAO). When students apply for degree programmes they rank
up to ten courses, in order of preference, from a list of more than five hundred degree programmes.
Places in these degree programmes are allocated on the basis of the applicants performance in the Irish
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Table 1: Description of the different clusters. The size of the clusters, the entropy and a cluster description
are provided.

No Size Ent. Description No Size Ent. Description
1 3091 0.71 Social Science/Tourism 15 1832 0.47 Teaching/Arts
2 3081 0.70 Science 16 1819 0.68 Art/Music - Dublin
3 3026 0.58 Arts 17 1671 0.54 Medicine
4 2869 0.63 Bus./Marketing - Dublin 18 1658 0.71 Engineering
5 2756 0.67 Construction 19 1615 0.66 Galway
6 2598 0.63 Business/Commerce 20 1558 0.69 Arts/Religion/Theology
7 2549 0.65 CS - outside Dublin 21 1514 0.76 Arts/History - Dublin
8 2225 0.66 CS - Dublin 22 1508 0.68 Engineering - Dublin
9 2224 0.66 Arts/Social - ouside Dublin 23 1262 0.70 Limerick
10 2154 0.63 Business/Finance - Dublin 24 1249 0.79 Art/Bus./Language - Dublin
11 2089 0.65 Arts/Psychology - Dublin 25 1249 0.65 Law
12 2001 0.63 Comm./Journalism - Dublin 26 1215 0.72 Business - Dublin
13 1994 0.62 Cork 27 1075 0.74 Sciences/Maths - Dublin
14 1858 0.71 Bus./Tourism/Waterford

Leaving Certificate examination; students with a high “points” score are more likely to get their high
preference choices. We consider the application of the mixture of Plackett-Luce to the year 2000 cohort
of applications to the College Application Office; these data correspond to top-10 rankings of college
degree courses for 53757 applicants.

Flat priors are used for the hyperparameters and we run the Gibbs sampler with 20000 iterations. The
partition from the last sample is taken as the point estimate. Given this partition, we run a Gibbs sam-
pler with 2000 iterations so that to obtain the posterior mean Plackett-Luce parameters for each cluster.
Clusters are then reordered by decreasing size. Table 1 shows the sizes of the 27 clusters which have a
size larger than 10. In addition, a coclustering matrix was computed based on the first MCMC run which
records for each pair of students the probability of them belonging to the same cluster. Figure 5 shows
the coclustering matrix to summarise the clustering of the 53757 students, where students are rearranged
by their cluster membership (members of the first cluster first, then members of the second cluster, etc.).

An examination of the Plackett-Luce parameter for each cluster reveals that the subject matter of
the degree programme is a strong determinant of the clustering of students (Table 1). For example,
clusters 5, 17 and 25 are characterised as construction, medicine and law, respectively. Besides the type
of degree, geographical location is a strong determinant of course choice. Clusters 13, 19 and 23 are
respectively concerned with applications to college degrees in Cork, Galway and Limerick. There is a lot
of heterogeneity in the subject area of the college degrees for these clusters, as can be seen for example
for the Cork cluster 13 in Table 4. A number of clusters are also defined by a combination of both subject
area and location, for example, for clusters 7 and 8 in Tables 2 and 3, which correspond to computer
science respectively outside and inside Dublin.

There is a common perception in the Irish society and media that students pick courses based on pres-
tige rather than subject area. Such a phenomenon should be evidenced by a cluster of students picking
courses in medicine, actuarial science and law, but no such cluster was found. In fact, medicine, law and
actuarial science applicants are clustered separately into clusters 17, 25 and 27, respectively. Therefore,
the clustering suggests that students are primarily picking courses on the basis of subject area and ge-
ographical considerations; this finding is in agreement with the results found in (Gormley and Murphy,
2006; McNicholas, 2007).

It is also of interest to look at the variability of the student choices within each cluster. This can be
quantified by the normalized entropy, which takes its values between 0 and 1, and defined for each cluster
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Figure 5: Coclustering for the CAO data. The clusters are arranged according to size and are described
in Table 1.

Table 2: Cluster 7: Computer Science - outside Dublin
Rank Aver. Norm. Weight University Degree

1 0.080 Cork IT Computer Applications
2 0.079 University of Limerick Computer Systems
3 0.078 Limerick IT Software Development
4 0.062 Cork IT Software Dev & Comp Net
5 0.059 Waterford IT Applied Computing
6 0.041 IT Carlow Computer Networking
7 0.044 University College Cork Computer Science
8 0.038 Athlone IT Computer and Software Engineering
9 0.036 University of Limerick Information Technology

10 0.036 Dublin City University Computer Applications
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Table 3: Cluster 8: Computer Science - Dublin
Rank Aver. Norm. Weight University Degree

1 0.144 Dublin City University Computer Applications
2 0.057 University College Dublin Computer Science
3 0.050 NUI - Maynooth Computer Science
4 0.047 Dublin IT Computer Science
5 0.041 National College of Ireland Software Systems
6 0.040 Dublin IT Business Info. Systems Dev.
7 0.038 Trinity College Dublin Computer Science
8 0.036 Dublin IT Applied Sciences/Computing
9 0.030 University College Dublin B.A. (Computer Science)

10 0.030 Trinity College Dublin Information & Comm. Tech.

Table 4: Cluster 13: Cork
Rank Aver. Norm. Weight University Degree

1 0.103 University College Cork Arts
2 0.074 University College Cork Computer Science
3 0.073 University College Cork Commerce
4 0.068 University College Cork Business Information Systems
5 0.059 Cork IT Computer Applications
6 0.052 Cork IT Software Dev & Comp Net
7 0.036 University College Cork Finance
8 0.032 University College Cork Accounting
9 0.029 University College Cork Law

10 0.024 University College Cork Biological and Chemical Sciences

j by
−
∑K
k=1 (π̂jk log π̂jk)− π̂j∗ log π̂j∗

log(K + 1)

where π̂jk are the averaged normalized weights of item k in cluster j obtained from the second MCMC
run; the normalized entropy values for each cluster are reported in Table 1. A low value indicates low
variability in the choices within a cluster, whereas a large value indicates a lot of variability. Interestingly,
cluster 15 has very low normalized entropy, where 56% of the students in that cluster are likely to take one
of the three most popular courses of that cluster (Drumcondra, Froebel or Marina) as their first choice;
these courses are the main teacher education courses in Ireland and thus many members of this cluster
have a strong interest in teacher education as a degree choice. Further, there is much more variability in
cluster 7, where students choices are spread across various computing degrees, and only 24% of the stu-
dents are likely to take one of the three most popular courses as their first choice. The highest normalized
entropy is for cluster 24, where only 11% of the students are likely to take one of the top three courses as
their first choice and course preferences are approximately equally spread between the various courses in
arts and courses involving business with a language subject that characterize this cluster.

The coclustering matrix reveals some interesting connections between clusters, which have not been
explored in previous analyses of the CAO data. For example, the plot reveals that a number of applicants
have high probability of belonging to clusters 3 and 20 which are both in the arts. Cluster 3 is characterised
by arts degrees which do not require the applicants to select their major in advance, whereas cluster 20
is characterised by arts degrees where the student needs to specify their major in advance. However,
there is some evidence of co-membership of the medical (cluster 18) and law (cluster 22) clusters and the
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law (cluster 22) and mathematical science (cluster 27) clusters which suggests that there may be some
applicants who are choosing courses by prestige. This phenomenon is difficult to observe in the individual
cluster parameters but becomes more apparent in the coclustering results.

7 Discussion
We have proposed a Bayesian nonparametric Plackett-Luce model for ranked data. Our approach is based
on the theory of completely random measures, where we showed that the Plackett-Luce generative model
corresponds exactly to a size-biased permutation of the atoms in the random measure. We characterised
the posterior distribution, and derived a simple MCMC sampling algorithm for posterior simulation.
Our approach can be seen as a multi-stage generalisation of posterior inference in normalised random
measures (James et al., 2009; Griffin and Walker, 2011; Favaro and Teh, 2012).

We also developed a nonparametric mixture model consisting of nonparametric Plackett-Luce com-
ponents to model heterogeneity in partial ranking data. In order to allow atoms to be shared across com-
ponents, we made use of the Pitt-Walker construction, which was previously only used to define Markov
dynamical models. Applying our model to a dataset of preferences for Irish university programmes, we
find interesting clustering structure supporting the observation that students were choosing programmes
mainly based on subject area and geographical considerations.

It is worthwhile comparing our mixture model to another nonparametric mixture model, DPM-GM,
where each component is a generalised Mallows model (Busse et al., 2007; Meilă and Bao, 2008; Meilă
and Chen, 2010). In the generalised Mallows model the component distributions are characterised by
a (discrete) permutation parameter whereas in the Plackett-Luce model the component distributions are
characterised by a continuous rating parameter. Thus the Plackett-Luce model offers greater modelling
flexibility to capture the strength of preferences for each item. On the other hand, the scale parameters
in the generalised Mallows model can accommodate varying precision in the ranking. Additionally,
inference for the generalized Mallows models can be difficult.

A Proof of Theorem 1
The marginal probability (11) is obtained by taking the expectation of (10) with respect to G. Note how-
ever that (10) is a density, so to be totally precise here we need to work with the probability of infinitesimal
neighborhoods around the observations instead, which introduces significant notational complexity. To
keep the notation simple, we will work with densities, leaving it to the careful reader to verify that the
calculations indeed carry over to the case of probabilities.

P ((Y`, Z`)
L
`=1)

=E
[
P ((Y`, Z`)

L
`=1|G)

]
=E

[
e−G(X)

∑
`i Z`i

K∏
k=1

G({X∗k})nke−G({X∗k})
∑
`i(δ`ik−1)Z`i

]

The gamma prior on G =
∑∞
j=1 wjδXj is equivalent to a Poisson process prior on N =

∑∞
j=1 δ(wj ,Xj)

defined over the space R+ × X with mean intensity λ(w)h(x). Then,

=E

e− ∫
wN(dw,dx)

∑
`i Z`i

K∏
k=1

∞∑
j=1

wnkj 1(Xj = X∗k)e−wj
∑
`i(δ`ik−1)Z`i


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Applying the Palm formula for Poisson processes to pull the k = 1 term out of the expectation,

=

∫
E

e− ∫
w(N+δw∗1 ,x

∗
1

)(dw,dx)
∑
`i Z`i

K∏
k=2

∞∑
j=1

wnkj 1(Xj = X∗k)e−wj
∑
`i(δ`ik−1)Z`i


× (w∗1)n1h(X∗1 )e−w

∗
1

∑
`i(δ`i1−1)Z`iλ(w∗1)dw∗1

=E

e− ∫
wN(dw,dx)

∑
`i Z`i

K∏
k=2

∞∑
j=1

wnkj 1(Xj = X∗k)e−wj
∑
`i(δ`ik−1)Z`i


× h(X∗1 )

∫
(w∗1)n1e−w

∗
1

∑
`i δ`i1Z`iλ(w∗1)dw∗1

Now iteratively pull out terms k = 2, . . . ,K using the same idea, and we get:

=E
[
e−G(X)

∑
`i Z`i

] K∏
k=1

h(X∗k)

∫
(w∗k)nke−w

∗
k

∑
`i δ`ikZ`iλ(w∗k)dw∗k

=e−ψ(
∑
`i Z`i)

K∏
k=1

h(X∗k)κ

(
nk,
∑
`i

δ`ikZ`i

)
(25)

This completes the proof of Theorem 1.

B Proof of Theorem 2
The proof is essentially obtained by calculating the numerator and denominator of (13). The denominator
is already given in Theorem 1. The numerator is obtained using the same technique with the inclusion of
the term e

∫
f(x)G(dx), which gives:

E
[
e−

∫
f(x)G(dx)P ((Y`, Z`)

L
`=1|G)

]
=E

[
e−

∫
(f(x)+

∑
`i Z`i)G(dx)

] K∏
k=1

h(X∗k)

∫
(w∗k)nke−w

∗
k(f(X∗k)+

∑
`i δ`ikZ`i)λ(w∗k)dw∗k

By the Lévy-Khintchine Theorem (using the fact that G has a Poisson process representation N ),

= exp

(
−
∫

(1− e−w(f(x)+
∑
`i Z`i))λ(w)h(x)dwdx

)
×

K∏
k=1

h(X∗k)

∫
(w∗k)nke−w

∗
k(f(X∗k)+

∑
`i δ`ikZ`i)λ(w∗k)dw∗k (26)

Dividing the numerator (25) by the denominator (26), the characteristic functional of the posterior G is:

E
[
e−

∫
f(x)G(dx)|(Y`, Z`)L`=1

]
= exp

(
−
∫

(1− e−wf(x))e−
∑
`i Z`iλ(w)h(x)dwdx

)
×

K∏
k=1

h(X∗k)

∫
e−f(X∗k)(w∗k)nke−w

∗
k

∑
`i δ`ikZ`iλ(w∗k)dw∗k∫

(w∗k)nke−w
∗
k

∑
`i δ`ikZ`iλ(w∗k)dw∗k
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Since the characteristic functional is the product of K + 1 terms, we see that the posterior G consists
of K + 1 independent components, one corresponding to the first term above (G∗), and the others cor-
responding to the K terms in the product over k. Substituting the Lévy measure λ(w) for a gamma
process, we note that the first term shows that G∗ is a gamma process with updated inverse scale τ∗. The
kth term in the product shows that the corresponding component is an atom located at X∗k with density
(w∗k)nke−w

∗
k

∑
`i δ`ikZ`iλ(w∗k); this is the density of the gamma distribution over w∗k in Theorem 2. This

completes the proof.

C Gibbs sampler for the mixture of nonparametric Plackett-Luce
components

Let J be the number of different values taken by c. The Gibbs sampler proceeds with each of the following
updates in turn:

1. a. Update G0(X) given α, then for j = 1, . . . , J , update Gj(X) given (G0(X), α, φ, c)

b. For j = 1, . . . , J , update (uj , uj∗) given (w0, w0∗, wj , wj∗, φ, α, c)

2. a. Update α given (Z, φ, c)

b. Update w0∗ given (Z, φ, c, α)

c. For j = 1, . . . , J , update uj∗ given (Z, φ, c, α, w0∗)

d. For j = 1, . . . , J , update wj∗ given (Z,α, uj∗, φ, c)

3. Update (w0k), w0∗ given (U1:J , α)

4. For ` = 1, . . . , L, update Z` given (wc` , wc`∗, c`)

5. For j = 1, . . . , J , update (wj , wj∗) given (Z,α, uj , uj∗, φ, c)

6. For ` = 1, . . . , L, update c` given w1:J , w1:J∗

7. Update γ given c

8. Update φ given w0, w0∗, w1:J , w1:J∗, α, φ

The step are now fully described.

1.a) Update G0(X) given α, then for j = 1, . . . , J , update Gj(X) given (G0(X), α, φ, c)

We have
G0(X)|α ∼ Gamma(α, τ)

and for j = 1, . . . , J
Gj(X) ∼ Gamma(α+Mj , τ + φ)

where Mj ∼ Poisson(φG0(X)).

1.b) For j = 1, . . . , J , update (uj , uj∗) given (w0, w0∗, wj , wj∗, φ, α, c)

Consider first the sampling of uj . We have, for j = 1, . . . , J and k = 1, . . . ,K

p(ujk|w0k, wjk) ∝ p(ujk|w0k)p(wjk|ujk)
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where
p(ujk|w0k) = fPoisson(ujk;φw0k)

and

p(wjk|ujk) =

{
δ0(wjk) if ujk = 0
fGamma(wjk;ujk, τ + φ) if ujk > 0

Hence we can have the following MH update. If wjk > 0, then we necessarily have ujk > 0. We sample
u∗jk ∼zPoisson(φw0k) where zPoisson(φw0k) denotes the zero-truncated Poisson distribution and accept
u∗jk with probability

min

(
1,
fGamma(wjk;u∗jk, τ + φ)

fGamma(wjk;ujk, τ + φ)

)
If wjk = 0, we only have two possible moves: ujk = 0 or ujk = 1, given by the following probabili-

ties

P (ujk = 0|wjk = 0, w0k) =
exp(−φw0k)

exp(−φw0k) + φw0k exp(−φw0k)(τ + φ)
=

1

1 + φw0k(τ + φ)

P (ujk = 1|wjk = 0, w0k) =
φw0k exp(−φw0k)(τ + φ)

exp(−φw0k) + φw0k exp(−φw0k)(τ + φ)
=

φw0k(τ + φ)

1 + φw0k(τ + φ)

Note that the above Markov chain is not irreducible, as the probability is zero to go from a state
(ujk > 0, wjk > 0) to a state (ujk = 0, wjk = 0), even though the posterior probability of this event is
non zero in the case item k does not appear in cluster j. We can add such moves by jointly sampling
(ujk, wjk). For each k that does not appear in cluster j, sample u∗jk ∼ Poisson(φw0k) then set w∗jk = 0
if u∗jk = 0 otherwise sample w∗jk ∼ Gamma(ujk, τ + φ). Accept (u∗jk, w

∗
jk) with probability

min

(
1,

exp(−w∗jk
∑
`|c`=j

∑m
i=1 Z`i)

exp(−wjk
∑
`|c`=j

∑m
i=1 Z`i)

)

We now consider sampling of uj∗, j = 1, . . . , J . We can use a MH step. Samplew∗j∗ ∼ Poisson(φw0∗)
and accept with probability

min

(
1,
fGamma(uj∗;α+ u∗j∗, τ + φ)

fGamma(uj∗;α+ u∗j∗, τ + φ)

)

2.a) Update α given (Z, φ, c)
We can sample from the full conditional which is given by

α|(Z, γ, φ, c) ∼ Gamma (a+K, b+ y0 + log(1 + x0))

where

x0 =

J∑
j=1

φZ̃j

1 + φ+ Z̃j

y0 = −
J∑
j=1

log

(
1 + φ

1 + φ+ Z̃j

)

with Z̃j =
∑
`|c`=j

∑m
i=1 Z`i.
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2.b) Update w0∗ given (Z, φ, c, α)
We can sample from the full conditional which is given by

w0∗|(Z, φ, c, α) ∼ Gamma (α, τ + x0)

where x0 is defined above.

2.c) For j = 1, . . . , J , update uj∗ given (Z, φ, c, α, w0∗)
We can sample from the full conditional which is given, for j = 1, . . . , J by

uj∗|(Z, φ, c, α, w0∗) ∼ Poisson

(
1 + φ

1 + φ+ Z̃j
φw0∗

)

where Z̃j is defined above.

2.d) For j = 1, . . . , J , update wj∗ given (Z,α, uj∗, φ, c)
We can sample from the full conditional which is given, for j = 1, . . . , J by

wj∗|uj∗, Z, c, α ∼ Gamma
(
α+ uj∗, τ + φ+ Z̃j

)
where Z̃j is defined above.

3) Update (w0k), w0∗ given (U1:J , α)
For each item k = 1, . . . ,K, sample

w0k|u1:J,k, φ ∼ Gamma

 J∑
j=1

ujk, Jφ+ τ


Sample the remaining mass

w0∗|u1:J∗, φ ∼ Gamma

α+

J∑
j=1

uj∗, Jφ+ τ


4) For ` = 1, . . . , L, update Z` given (wc` , wc`∗, c`)

For ` = 1, . . . , L and i = 1, . . .m, sample

Z`i|c, w,w∗ ∼ Exp

(
wc`,∗ +

K∑
k=1

δ`ikwc`,k

)

5) For j = 1, . . . , J , update (wjk), wj∗ given (Z,α, uj , uj∗, φ, c)
For each cluster j = 1, . . . , J

• For each item k = 1, . . . ,K, sample

wjk|ujk, {ρ`|c` = j} ∼ Gamma

njk + ujk, τ + φ+
∑
`|c`=j

{
m∑
i=1

δ`ikZ`i

}
if ujk + njk > 0, otherwise, set wjk = 0.
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• Sample the total mass

wj∗|uj∗, {ρ`|c` = j} ∼ Gamma

α+ uj∗, τ + φ+
∑
`|c`=j

m∑
i=1

Z`i


6) For ` = 1, . . . , L, update c` given w1:J , w1:J∗

The allocation variables (c1, . . . , cL) are updated using the slice sampling technique described in (Walker,
2007; Kalli et al., 2011).

7) Update γ given c
The scale parameter γ of the Dirichlet process is updated using the data augmentation technique of

West (1992).

8) Update φ given w0, w0∗, w1:J , w1:J∗, α, φ
We sample φ using a MH step. Propose φ∗ = φ exp(σε) where σ > 0 and ε ∼ N (0, 1). And accept

it with probability

min

1,
p(φ∗)

p(φ)

φ∗

φ

J∏
j=1

[
p(wj∗|φ∗, w0∗)

p(wj∗|φ,w0∗)

K∏
k=1

p(wjk|φ∗, w0k)

p(wjk|φ,w0k)

]
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