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Planar dynamics of a rigid body system with
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The objective of this paper is to implement and test the theory presented in a companion
paper for the non-smooth dynamics exhibited in a bouncing dimer. Our approach
revolves around the use of rigid body dynamics theory combined with constraint
equations from the Coulomb•s frictional law and the complementarity condition to
identify the contact status of each contacting point. A set of impulsive differential
equations based on Darboux…Keller shock dynamics is established that can deal w
the complex behaviours involved in multiple collisions, such as the frictional effects, the
local dissipation of energy at each contact point, and the dispersion of energy amon
various contact points. The paper will revisit the experimental phenomena found in
Dorbolo et al. (Dorbolo et al. 2005 Phys. Rev. Lett. 95, 044101), and then present a
qualitative analysis based on the theory proposed in part I. The value of the static
coef“cient of friction between the plate and the dimer is successfully estimated, and
found to be responsible for the formation of the drift motion of the bouncing dimer.
Plenty of numerical simulations are carried out, and precise agreements are obtained b
the comparisons with the experimental results.

Keywords: multiple impacts; Coulomb•s friction; experiments; numerical simulation
* Au
1. Introduction

The non-smooth dynamics exhibited in the dimer bouncing on a vibrated plate
includes single and double impacts with friction, rolling contacts with or without
slip, etc. In this paper, the numerical simulation for the bouncing dimer is
implemented by using the theory developed in part I. Comparisons between the
numerical and experimental results presented inDorbolo et al. (2005) will be
carried out to illustrate and validate the scheme.

Basically speaking, the dynamics of the bouncing dimer will be divided into
two parts: contact dynamicsand impact dynamics. Both of them share a common
set of dynamical equations that are constrained by different physical laws in both
the normal and the tangential directions at each contact point. The Coulomb•s
thor for correspondence (liucs@pku.edu.cn).
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friction law will be applied in both contact and impact dynamics to restrict the
tangential motion at every contact point, while the normal constraints between
them will differ owing to the dissipation and dispersion of energy in impact
processes (Ivanov 1997; Stronge 2000; Ceanga & Hurmuzlu 2001; Liu et al. 2008,
2009). For contact dynamics, the assumption of rigidity at contact surfaces
permits a complementarity condition that has to be satis“ed by the normal
contact force and the normal acceleration at each contact point (Moreau 1994;
Pfeiffer & Glocker 1996; Brogliato 1999; Glocker 2001; Acary & Brogliato 2008).
For impact dynamics, however, this complementarity condition will be replaced
by the energetic coef“cient of restitution to consider the local dissipation of
energy, and a distributing law to consider the redistribution of energy among
each contact point (Liu et al. 2008). Additionally, the contact dynamics takes a
set of ordinary differential equations to describe the global motion of rigid bodies
in macro-size scales. The small time-scale at impacts allows one to introduc
assumptions to ignore the effects from non-impulsive forces and the sma
variation of the con“guration. Thus a set of differential impulsive equations can
be established by using Darboux…Keller shock dynamics (Keller 1986; Zhao &
Liu 2007).

The dif“culty arising in Coulomb•s friction is the indeterminacy of the
tangential constraint when the relative tangential velocity vanishes (Stronge
1994; Bhatt & Koechling 1995; Batlle 1996). In order to identify the contact
status at each contact point, local dynamical equations are established b
transferring the governing equations into the local contact coordinate frame,
in which the normal and tangential accelerations are separated and are directly
connected with the contact forces. Once the relative tangential velocity
disappears at a contact point, acorrelative coef“cient ðmsti Þ of friction for the
contact point can be obtained by using the local dynamical equations with an
assumption for a stick mode. If the correlative coef“cient is located in the interior
of the local frictional cone, a stick mode truly occurs when the tangential velocity
vanishes. Otherwise, a reverse slip may appear, and the tangential constrain
should be replaced by the Coulomb•s friction law for slip. Once the tangentia
constraint is correctly identi“ed, for the contact dynamics, the complementarity
condition combined with the Coulomb•s friction law will provide a solution for
the local dynamical equations to obtain the normal and tangential contact forces
that can make the numerical simulation advanced.

The process of impact is dominated by the contact point with maximal
potential energy, which is linked with the •time-like• independent variable
(Liu et al. 2008; Zhao et al. 2008). Similar to the contact dynamics, the
tangential constraint at the instant of the relative tangential velocity vanishing
can also be identi“ed by the correlative coef“cient ðmsti Þobtained from the local
dynamical equations. If msti is located in the interior of the frictional cone, the
stick mode will appear in the contact point. Otherwise, the slip may reverse its
direction when the relative tangential velocity disappears. Once the tangential
constraints are determined, the combination of the distributing relationship and
the energetic coef“cient of restitution as well as Coulomb•s friction law can
make the impulsive differential equations be linked with a unique time-like
independent normal impulse. Thus, the impulsive differential equations can be
solved and output the post-impact velocities.
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Figure 1. A dimer bouncing on a vibrated plate.
Owing to the special con“guration of the dimer, a singularity will appear when
it lies on the vibrated plate or experiences double impacts with two contact
points sticking on the plate. This gives rise to a superstatic problem where there
exists no solution in rigid body dynamics (Brogliato et al. 2002). The other
problem in simulation is how to identify a transition from a sequence of single
impacts into a contact phase, which is associated with a so-called collisiona
singularity ( Falcon et al. 1998). These two problems are also discussed in deta
in part I, and a scheme for dealing with them within the framework of rigid body
dynamics is developed.

The paper is organized as follows. In§2, we present a brief summary for the
basic equations of the bouncing dimer. In terms of the dynamical equations o
the bouncing dimer and the correlative coef“cient de“ned for stick mode as well
as the experimental “ndings in Dorbolo et al. (2005), the static coef“cient of
friction between the dimer and the oscillated plate is estimated in§3. In §4, we
present a qualitative analysis for the origins of the formation of the positive and
negative drift motions in the bouncing dimer, in which the double impacts
and the stick mode at contact points are found to play a signi“cant role for
the complex behaviour of the dimer. The comparison between numerica
and experimental results is carried out in §5, and the difference for the slip
coef“cient of friction between impacts and contacts is claimed. Moreover, the
in”uence of the initial and driving conditions on the formation of the persistent
motions in the dimer is also investigated in §6, and some chaotic behaviours
can be observed. Summaries and conclusions are given in§7.
2. The basic equations of the bouncing dimer

The dimer is shown in “gure 1, in which two steel spheres are rigidly connected
by a light glass rod and placed on a plate that vibrates with a sinusoidal
waveform ypðtÞZ A cosðut C aÞ. A and f are the amplitude and frequency of the
plate oscillation, respectively. a is the initial phase angle of the plate oscillation
related to the reference time for simulation. Let us denote (mb,r), the mass of the
sphere and its radius, respectively. The mass of the rod ismr and its length is
(lK 2r), which is varied to change the aspect ratioAr Z ð1C 0:5l=r Þ (Dorbolo
et al. 2005). JbZ 2mbr 2=5, Jr Z mrðl K 2r Þ2=12 are the inertias of the ball and the
rod with respect to their mass centres, respectively.
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According to the theory developed in part I, the governing equations of the
bouncing dimer are

M ðqÞ qK hðq; _qÞZ K TðqÞF C QgðqÞ; ð2:1Þ

whereM (q) is a mass matrix; qZ ½x1; y1; q�T ; (x1,y1) is the coordinate of the mass
centres of the left ball; andq is the tilt angle of the dimer. K T(q) is the Jacobian
matrix connecting the cartesian coordinates of the two potential contact points
and generalized coordinates.hðq; _qÞ and Qg(q) are the vectors of the inertial
forces and the generalized forces due to gravity, respectively.

The local dynamical equations are established by separately expressing th
normal and tangential accelerations at each potential contact point:

 x n Z AF n C BF t C H n ð2:2Þ

and

 x t Z CF n C DF t C H t ; ð2:3Þ

where  x n Z ½ xn1
;  xn2

�T ,  x t Z ½ xt 1
;  xt 2

�T , F n Z ½Fn1
; Fn2

�T , F t Z ½Ft 1
; Ft 2

�T ,

KM K 1K T Z
A B

C D

 !

:

H n Z ½Hn1
; Hn2

�T and H t Z ½Ht 1
; Ht 2

�T are the terms of the normal and tangential
accelerations induced by the applied and inertial forces.

For the contact dynamics, the local dynamical equations will be constrained
by the following complementarity condition in the normal direction of every
potential contact point:

 dn$Fni
Z 0;  di R 0; Fni

R 0; i Z 1; 2; ð2:4Þ

where di Z xni
K ypðtÞ are the gap functions for the relative displacements

between the tips and the plate.
In the tangential directions of each contact point, the local dynamical

equations will be constrained by the following Coulomb•s law:

Ft i
Z Kmi Fni

sign
vt i

j vt i
j

 !

; if vt i
s 0; i Z 1; 2;

if j Ft i
j % msi

Fni
; then vt i

Z 0 and _vt i
Z 0;

Ft i
Z Kmi Fni

sign
_vt i

j _vt i
j

 !

; if vt i
Z 0 and _vt i

s 0; i Z 1; 2;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð2:5Þ

where vt i
is the relative tangential velocity, and vt i

Z _xt i
, (iZ 1, 2). miO 0 is the

slip friction coef“cient at the tip i. msi
O mi is the static coef“cient of friction.

The local impact dynamics at the impulse level are expressed as

d _xn Z A$dP n C B $dP t ð2:6Þ



and

d _x t Z C $dP n C D $dP t ; ð2:7Þ

w h e r e d_xn Z ½d _xn1
; d _xn2

�T , d _x t Z ½d _xt 1
; d _xt 2

�T , dP n Z ½dPn1
; dPn2

�T , dP tZ
½dPt 1

; dPt 2
�T , d _x Z _xðtiC 1ÞK _xðti Þand

dP Z
ðtiC 1

ti

F dt Z
ðtiC 1

0
F dt K

ðti

0
F dt Z P ðtiC 1ÞK P ðti Þ ð2:8Þ

are the changes of the relative velocities and normal impulses on [ti ,tiC1 ],
respectively.

The local dissipation of energy at each contact point will be con“ned by the
energetic coef“cient of restitution,

e2
s;i Z K

Wr;i

E0;i C Wc;j
Z K

ÐPni
ðt f Þ

Pni
ðt cÞ

_di dPni

E0;i C
ÐPni

ðtcÞ
0

_di

dPni
; ð2:9Þ

where Wc,i%0 and Wr,iR 0 are the works done by the normal contact force at
point j during the compression phase [0,tc] and the expansion phase [tc,t f],
respectively. E0,i! 0 is the initial potential energy at the contact point i.

The dispersion of energy during the impacts will be governed by a distributing
law. For the two tips in the dimer with the same Hertz contact, the increment
of the normal impulse, dPn1

, at the left tip is connected to dPn2
at the right tip by

the following relationship:

dPni

dPnj

Z ðEij ðPni
; Pnj

ÞÞ5=3; i Z 1; 2; i s j ; ð2:10Þ

where Eij Z Ei/ Ej is the ratio of the potential energies between contact pointsi
and j. Ei ðPni

ðtÞÞis the residual potential energy at any instant t associated with a
normal impulse Pni

ðtÞfor the contact point i.

Ei ðPni
ðtÞÞZ E0;i C

1
Tra

ðPni
ðtÞ

0
_di dPni

; ð2:11Þ

where Tra is a parameter to transfer the work done by the normal impulse into
the potential energy: TraZ 1 for a compressional phaseð_di ! 0Þ, and TraZ e2

i for
an expansion phaseð_di O 0Þ.

The constraint in the tangential direction during an impact event is still
governed by the Coulomb•s friction law in equation (2.5), in which the quantities
of contact forces are replaced by the corresponding increments of impulses.

Combining the distributing law with the impulsive differential equation and
Coulomb•s friction law makes frictional multiple impacts solvable. For the
selection of the independent time-like variable, a guideline can be found inLiu
et al. (2008), in which the event of multiple impacts is dominated by a primary
contact point that corresponds to the point taking the maximal potential energy
among the various contacts.
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3. Estimation of the static coef“cient of friction

When a tip has a zero tangential velocity in both contact and impact
phases, the tangential constraint depends on the property of the friction cone
at the contact point (which is associated with the static coef“cient of friction),
and can be identi“ed by using a correlation coef“cient of friction. Let us “rst
consider the correlative coef“cient of friction in the case of the dimer with one
contact point at i.

From equation (2.3) by setting Fnj
Z Ft j

Z 0 (is j ) and  xt i
Z 0, we can express

the correlative coef“cient of friction mi;C
st as

mi;C
st Z

j Ft i
j

Fni

Z
1

b1 C b4 C b5
j b6K bHt i

=Fni
j ; ð3:1Þ

where bZ mbl 2C 4JbC 2Jr, b1Z b=ð2mbC mrÞ, and

b4 Z
ðmb C 0:5mrÞl

2sin2q
2mb C mr

; b5 Z 2rl sin qC 2r 2;

b6 Z ð0:5l 2sin qC rl Þcosq:

9
>=

>;
ð3:2Þ

Since the value ofFni
can be calculated by using the normal constraint of the

complementarity condition, we can obtain the value ofmi;C
st and then compare it

with the value of the static coef“cient of friction msi
to identify the tangential

status at the contact point i. Similarly, we denote the correlative coef“cient of
friction in the case of contact point i with a single impact as mi;I

st , which can be
explicitly expressed as

mi;I
st Z

j dPt i
j

dPni

Z
b6

b1 C b4 C b5
: ð3:3Þ

In the case of double impacts in which the bouncing sphere collides again
the oscillated plate while the other ball stays on the plate, the correlative
coef“cient of friction in this case is denoted asmDI

st , which is

mDI
st Z

j dPt 1
C dPt 2

j
dPn1

C dPn2

Z
rl

b1 C 2r 2

j 1K ðE12Þ
5=3 j

ðE12Þ
5=3 C 1

: ð3:4Þ

When the dimer moves with a drift mode, the term Ht i
is related to _q

2
that is

very small and thus has little effect on the value of mi;C
st . During the double

impacts, the value of E12 is also very small since one ball lies on the oscillate
plate when double impacts occur. So we can approximately adopt a uni“ed value
of mstZ mi;I

st to identify the property of the tangential constraint, which is only
associated with the con“guration of the dimer (the tilt angle q) and the
geometrical parameter Ar. By setting the steel density r steelZ 7.8! 103 kg mK3

and the glass densityr glassZ 1.0! 103 kg mK3 , “gure 2 shows the evolution ofmst
with Ar and the angleq.

Now, let us estimate the stick coef“cient of friction according to the
experimental “ndings in Dorbolo et al. (2005) and the uni“ed correlative
coef“cient of friction mst. The experiments have shown that the dimer is directed
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Figure 2. The value of mst with the variation of Ar and the angleq.
towards the bouncing end ifAr! 5, otherwise the dimer moves in the backward
direction. As shown in the experimental curves (seeDorbolo et al. 2005, “g. 3b),
the reason for this is due to the different behaviour of the double impacts for
small and large Ar. In the caseArZ 3.9, the horizonal velocity at the tip in the
left ball can change with a positive value. This implies that a reverse slip occurs
when the tangential velocity vanishes. However, for the caseArZ 5.7 the positive
value of the tangential velocity is null, thus a stick mode exists in the double
impacts for the dimers with large Ar.

If ArZ 5 is set as the critical value for the occurrence of the stick mode, it is
obvious that the drift behaviour of the dimer should also be changed before and
after this value. Therefore, it seems reasonable that the value ofmst at ArZ 5
and qZ 0 should be assigned on the stick coef“cient of frictionms since the drift
direction is changed afterArO 5. From equation (3.3) and the knowledge that the
slip coef“cient of friction is near to the half value of ms, we estimate that
the coef“cients of friction approximately take the following values:

msz mstðAr Z 5; q Z 0Þz 0:24; mZ mst=2 Z 0:12: ð3:5Þ

4. Qualitative analysis of the drift mode

Now, let us qualitatively analyse the experimental phenomena shown in “g. 3b in
Dorbolo et al. (2005) for the tangential velocities of the dimer with different
aspect ratios. In the case ofArZ 3.9, the slip constraint of Coulomb•s friction will
be kept in double impacts. Therefore, the horizonal velocity can suddenly vary
from a negative value to a positive one at double impacts. After that, the
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sequence of single impacts with the initial tangential velocities_xK
t 1

O 0 will appear
in the motion of the dimer. These single impacts will be constrained by the
tangential constraint, dPt 1

Z K mdPn1
, and thus the tangential impulsive

equations can be explicitly written as

d _xt 1
Z K

1
b

½ðb1 C b4 C b5ÞmC b6�dPn1
: ð4:1Þ

Since the coef“cient before dPn1
is always negative, the tangential velocity _xt 1

decreases during the impact initiated from _xK
t 1

O 0. If the event _xt 1
Z 0 is

checked during the process of the impact, the slip constraint of Coulomb•
friction will be kept, and a negative slip will appear in the contact point.

For the case of the dimer withArO 5, the stick constraint of Coulomb•s friction
will be kept in double impacts. Therefore, the value of the horizontal velocity is
null after the event of the double impacts. After that, the sequence of single
impacts with the initial tangential velocities _xK

t 1
O 0 will also appear in the

motion of the dimer, and the tangential velocity _xt 1
will decrease during

the impact initiated from _xK
t 1

O 0. If the event _xt 1
Z 0 occurs when the tilt angleq

is small, the correlative coef“cient will be smaller than the stick coef“cient of
friction, and thus the tangential constraint will be transferred into a stick mode
that will make the tangential velocity at the contact point vanish when the
impact “nishes. Therefore, the horizonal velocity in the case of largeAr seems to
be null for a relatively long time. If the event _xt 1

Z 0 appears in the dimer with a
large tilt angle, the correlative coef“cient may be greater than the stick
coef“cient, thus a slip mode will appear in the dimer with ArO 5, and then a
negative horizonal speed is allowed after a single impact.

If the single impact occurs when _xK
t 1

! 0, the tangential constraint at the
contact point becomes dPt 1

Z mdPn1
, which will lead to the following tangential

impulsive differential equation:

d _xt 1
Z K

1
b

½ðb1 C b4 C b5ÞmK b6�dPn1
: ð4:2Þ

Obviously, the sign of the coef“cient before dPn1
will be in”uenced by the

con“guration of the dimer and the slip coef“cient of friction. If ðb1C
b4C b5Þm! b6, the tangential acceleration of d_xt 1

is guaranteed to be greater
than zero, thus may produce a discrete event_xt 1

Z 0 for the impact initiated from
_xK
t 1

! 0 and the tangential constraint will be changed during impacts. However, if
ðb1C b4C b5ÞmO b6, the tangential acceleration of _xt 1

will be always less than
zero during the process of the impact, thus no variation of the tangential
constraint occurs for the impact initiated from _xK

t 1
! 0.

In order to qualitatively analyse the property of the tangential motion in the
impact initiated from _xK

t 1
! 0, we can simplify the coef“cient before dPn1

by
considering the dimer with a small tilt angle during the drift motion and ignoring
the effects of the glass rod. Thus, we can set sinqz 0, cosqz 1 and mrZ 0, and
equation (4.2) becomes

d _xt 1
Z

f ðBrÞ
2ðB 2

r C 1:6Þ
dPn1

; ð4:3Þ
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where BrZ l/ r, and the function f (Br),

f ðB rÞZ mB 2
r K 2Br C 5:6m: ð4:4Þ

The sign of the function f ($) depends on the roots of the equationf (Br)Z 0.
Obviously, if mO 1=

�������
5:6

p
, no real root exists, so d_xt 1

O 0 is guaranteed that will
make _xt 1

/ 0 during the single impact initiated from _xK
t 1

! 0.
If 0 ! m! 1=

�������
5:6

p
, there are two real roots:

Br1
Z

2K
�������������������
1K 5:6m2

p

2m
and Br2

Z
2C

�������������������
1K 5:6m2

p

2m
: ð4:5Þ

When Br 2 ½Br1
; Br2

�, d _xt 1
! 0 and thus the amplitude of _xt 1

will increase
during the impact with an initial condition of _xK

t 1
! 0. So the discrete event of

_xt 1
Z 0 cannot appear in the process of the single impact. IfBr ! Br1

or Br O Br2
,

the tangential velocity _xt 1
will approach zero, thus a transition of the tangential

constraint from a slip mode into a stick mode is possible during the single impact
Whether the stick mode occurs or not depends on the static coef“cient of friction
ms, the value of Ar and the tilt angle q.

From the estimation of the slip coef“cient of friction, mZ 0:12! 1=
�������
5:6

p
and

Br 2 ½Br1
; Br2

�. This illustrates that the single impact initiated from _xK
t 1

! 0
cannot allow an event of _xK

t 1
Z 0, and the tangential constraint is not changed.

Therefore, for the single impact initiated from _xK
t 1

! 0, the amplitude of the
tangential velocity in the tip of the dimer with small or large Ar will increase
until the impact “nishes, since the event of _xt 1

Z 0 cannot occur.
A contact phase is con“rmed by the detailed examination by Dorbolo et al.

(2005) by measuring the electric resistance between the spheres and the plat
which is established by a sequence of single impacts. Obviously, the transitio
will occur if the intensity of the single impact is very small. During a (non-
impacting) contact phase, the tangential constraint at the contact point may also
be changed due to the variation of the tangential velocity. For the dimer with a
drift motion, the effects of inertial forces are in general very small, such that the
qualitative property of the tangential constraint in contact phases is similar to
the case of the dimer experiencing a single impact. Therefore, for a dimer with a
small Ar, the tangential velocity at the contact point will always decrease and
can pass through zero to generate a reverse slip. However, for a dimer with
large Ar, when the tilt angle is very small, the tangential velocity will be
restricted to _xt 1

R 0. Only when the tilt angle is large enough, the lock at the
contact point can be released to permit a reverse slip.

Based on the above analysis, the behaviour of the tangential velocities show
in “g. 3 b in Dorbolo et al. (2005), can be better understood. In the caseArZ 3.9,
no stick mode can appear in the double impacts or the sequential single impact
and the contact phases. So the tangential velocity can freely change without any
restriction on its slip direction. Therefore, a positive tangential velocity can be
obtained after double impacts, and will gradually decrease before its value equal
zero, then increase its amplitude along a negative direction. Through a sequenc
of single impacts, a contact phase between the dimer and the plate can b
established before or after the instant of _xt 1

Z 0, and then a further cycle with a
start of double impacts will begin: thus a positive drift motion is generated.
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In the case ArZ 5.7, however, the double impacts will make the tangential
post-impact velocity vanish due to the occurrence of the stick mode. After that a
sequence of single impacts occurs and then a contact phase can be establish
when the intensity of impacts becomes very small. In the situation of the dimer
with a small tilt angle, the friction cone at the contact point only permits positive
horizonal velocity, thus its value seems to be small or null for a relatively long
time. Once the tilt angle is large enough, the restriction from the friction cone will be
shaken off to admit a reverse slip. Then a negative slip can appear in the dimer.
f

e

5. Comparison between numerical and experimental results

According to Dorbolo et al. (2005), the oscillated plate has a harmonic vibration
with frequency f and amplitude A that is de“ned by a parameter GZ 4p2Af 2=g,
where g is the gravitational acceleration. In terms of the estimation of the
coef“cient of friction, and the restitution coef“cient used in Dorbolo et al. (2005)
(eZ 0.65 is the Newton•s coef“cient of restitution, and is identical to the energetic
coef“cient of restitution es for a ball colliding against a “xed plate), we adopt the
following parameters to carry out the numerical simulations: msZ 0.24, mZ 0.12
and esZ eZ 0.65.

Let us “rst investigate the two cases exhibited in Dorbolo et al. (2005) for the
dimer with ArZ 3.9 and 5.7. In both cases, the dimer is driven by the oscillated
plate with the same parameters:fZ 25 Hz andGZ 0.9. The initial con“guration of
the dimer is denoted by a tilt angle q0 and an initial height h0, the distance
between the tip (the potential contact point) in the lower end of the dimer and
the equilibrium position of the oscillated plate. The simulation starts at the
instant when the waveform of the plate oscillation is expressed asyp(t)Z K A sin ut,
whereuZ 1/ f and A can be calculated according to the parameterG.

For the dimer with ArZ 3.9, we computel Z 2ðAr K 1Þr Z 27:55 mm. Initially,
the dimer is set with a con“guration of q0Z 58, and freely drop into the plate from
a height h0Z 0.25 mm. Figure 3 shows the numerical results for the vertical
positions of the tips in the left (black solid curve) and right (black dashed curve)
balls of the dimer. After several bounces to adjust the con“guration of the dimer
for participating impacts, a periodical vertical motion can be formed, in which
the tip in the left ball of the dimer will stay on the plate, while the tip in the right
ball will bounce off the plate periodically.

Except for the normal periodic motion, a novel horizontal drift can be
observed in“gure 4 for the tangential velocities at the left and right tips. From
this “gure, we can clearly observe the scenario for the complex motion of the
dimer experiencing the drift mode: after the initial free motion of the dimer,
the left sphere will collide repeatedly against the oscillated plate before the right
ball reaches the plate. These single impacts will make the tangential velocities o
both tips quickly decrease. After that, a strong collision between the right sphere
and the plate occurs that makes the tangential velocities in both tips
immediately change with a new positive direction. Then the right end of the
dimer bounces far away from the plate, while the left end of the dimer
experiences a sequence of single impacts. The next cycle for the right end of th
dimer experiencing one collisionper period of the plate oscillation begins.
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dimer with ArZ 3.9 obtained from numerical simulation. The parameters for simulation are:
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Figure 3. The vertical positions of the left (solid curve) and right (dashed curve) contact points of
the dimer with ArZ 3.9 as a function of time obtained from numerical simulation, in which
fZ 25 Hz, GZ 0.9, esZ 0.65, msZ 0.24 andmZ 0.12. The thin broken curve is the vertical position of
the plate.
Through the self-organization of the dimer motion experiencing a few cycles o
the plate oscillation, the left ball will stay on the oscillated plate before the right
ball collides against the plate. Then the single impact between the right ball and
the plate will be transferred into double impacts. After that, a periodically
complex motion will be formed that consists of double impacts, a sequence of sing
impacts at the left ball, and a contact phase between the left ball and the plate.



e
l

t

t

,
l

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

time (s)

ta
ng

en
tia

l d
is

pl
ac

em
en

t x
 (

×
10–3

m
)

Figure 5. The horizontal position of the left tip of the dimer as a function of time in the drift
mode for ArZ 3.9 obtained from the simulation parameters:esZ 0.65, msZ 0.24, mZ 0.12, fZ 25 Hz
and GZ 0.9.
The evolution of the tangential velocities at the tips in the left and right balls
shown in “gure 4 can also be better understood according to the qualitative
analysis of the dimer dynamics. Since all the correlative coef“cients in the dimer
with ArZ 3.9 are smaller than the stick coef“cient of friction ms, the tangential
velocities at the tips can freely pass through zero when the contact between th
dimer and the plate is closed. So no stick mode appears in the tangentia
constraints of the contact points, such that the double impacts can make the
tangential velocities of both tips positive, and a single impact at the left ball can
make its horizonal velocity decrease rapidly, while the contact between the lef
sphere and the plate can slip reversely.

It is obvious that the stable persistent drift motion is generated by the
repeated complex motion, which is periodic but rather subtle and much
sophisticated in each cycle.Figure 5 shows the horizontal position of the left tip
of the dimer in the caseArZ 3.9. It is clear that the horizontal drift motion can be
approximated as a uniform rectilinear motion with an approximately constant
mean speed,hui z 3.3 mm sK1 , obtained by dividing the distance x over 10 cycles
by the corresponding time.

In comparison with the experimental results for the dimer with ArZ 3.9 (see
Dorbolo et al. 2005, “g. 3), a deviation at the quantitative level can be observed
in the numerical results: the value of the mean drift speed obtained from
simulation is lower than the one in experiments. From“gure 4, one “nds that the
horizonal displacement is synthesized by the positive and negative slip of the lef
tip in each cycle of the complicated periodic motion. Therefore, the difference
between them will determine the magnitude of the mean drift speed, which will
be in”uenced by the amplitudes of the positive and the negative horizonal speed
and the durations for each part. Since no stick mode appears in the tangentia
constraints for the dimer with ArZ 3.9, these quantities will be affected by the
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Figure 6. The vertical positions of the left (solid curve) and right (dashed curve) contact points of
the dimer with ArZ 5.7 as a function of time obtained from numerical simulation, in which
fZ 25 Hz, andGZ 0.9, esZ 0.65,msZ 0.24,mZ 0.12. The thin broken curve is the vertical position of
the plate.
slip coef“cient of friction only. This illustrates that the estimated value mZ 0.12
used in the simulation is not appropriate, and a modi“cation for that will be
discussed later.

Let us now investigate the case of the dimer withArZ 5.7, in which it will be
directed to drift backwards from the bouncing end (a negative direction). The
initial conditions and the parameters used in simulation are the same as fo
the case ArZ 3.9: h0Z 0.25 mm, q0Z 58, lZ 2(ArK 1)rZ 44.65 mm, msZ 0.24,
mZ 0.12 andesZ 0.65.

Similarly to the caseArZ 3.9, a periodic bouncing motion in the normal direction is
observed in“gure 6, in which the bouncing end of the dimer will repeatedly collide
against the oscillated plate, while the left sphere seems to stay on the plate.

However, the tangential motion of the dimer with ArZ 5.7 will signi“cantly
differ from the one with ArZ 3.9. Figure 7 depicts the evolution of the tangential
velocities of the tips in the left and right balls for ArZ 5.7. Let us check the
complex motion of the dimer in this case.

The correlative coef“cient mst with a con“guration qZ 58 is larger than the
stick coef“cient of friction. The initial single impact in the left sphere, after a
free motion of the dimer, will therefore not take a stick mode in its tangential
constraint. Consequently, the tangential velocity in the tip can change
from zero to a negative value, and then the sequential detachment at the lef
ball will generate a sequence of single impacts that also makes the right ba
approach the plate quickly. When the tilt angle q is so small to make the
correlative coef“cient mst be less than the stick coef“cient of friction ms, a stick
mode will appear in the single impactsat the tips of the left and right balls.
Thus, the tangential post-impact velocities of the tips will vanish after the
single impacts. Together with the decrease of the intensity in these single
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Figure 7. The tangential velocities of the left (solid curve) and right (dashed curve) tips for the
dimer with ArZ 5.7 obtained from numerical simulation. The parameters for simulation are:
esZ 0.65, msZ 0.24, mZ 0.12, fZ 25 Hz and GZ 0.9.
impacts, a contact between the left ball and the plate can be established
Then double impacts will appear in the dimer when the right ball reaches
the plate again. Owing to the stick mode in the tangential constraint, the
tangential velocities at both tips of the left and right balls will be equal to zero
after the double impacts. The sequential single impacts at the left ball will
make its tangential velocity approximately null due to the stick mode of the
tangential constraint. Once the tilt angle q is large enough to makemstO ms,
the stick mode at the tip of the left sphere will be shaken off, and the left ball
can slip reversely. The repeated process will make the dimer drift backward
since the positive tangential velocity is absent in this case.

It is obvious that the complex periodic motions in the dimer with respective
ArZ 3.9 and 5.7 take a similar structure except for the variation of the tangential
constraint during impacts and contact phases. Moreover, in comparison with
the caseArZ 3.9, the numerical simulations shown in“gure 7 are close to the
experimental results (see “g. 3 inDorbolo et al. 2005).

Let us present an explanation for the deviation between the numerica
simulations and the experimental “ndings for the dimer with the two different
aspect ratios. For the dimer with ArZ 5.7, the mean drift motion mainly depends
on the negative amplitude of the tangential velocity at the tip of the left sphere
before the double impacts occur. The negative tangential velocity is generated b
the slip rolling motion that starts from a stick mode in the left sphere. The small
error between the numerical and experimental results illustrates that the slip
coef“cient of friction for a contact phase used in simulation is approximately
correct. However, for the dimer with ArZ 3.9, the positive drift motion is
synthesized by positive and negative slip motions that depend on the property o
the slip friction in double impacts. Therefore, we may postulate the following
for the frictional behaviour between bodies.
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Claim 5.1. Even though the stick coef“cient of friction between bodies in impac
and contact phases may take the same value, the slip coef“cient of friction i
impact phases should be less than the one in contact phases.1

In order to re”ect the difference of the frictional behaviours in contact and
impact phases, let us denote asmi the slip coef“cient of friction during impacts,
and mc the one in contacts. The slip coef“cient of friction for contacts is kept as
the value of mcZ 0.12, and the one in impacts is estimated from a “tting method
with a value of miZ 0.08, which can make the corresponding numerical simulation
better coincide with the experimental results.

Under the same parameters as used in the above simulations except for th
slip coef“cient of friction during the impacts, “gure 8 shows the horizonal
velocities at the tips of the left ball for the dimers with the aspect ratios of
ArZ 3.9 and 5.7. Detailed observation for the horizonal velocities is presented in
“gure 9, zoomed from“gure 8. Clearly, the new numerical results precisely agree
with the experimental results in “g. 3 a in Dorbolo et al. (2005).

The mean horizonal speed for the dimer withArZ 3.9 and 5.7 can be calculated
by the horizonal displacements at the tip of the left ball shown in“gure 10. In the
caseArZ 3.9, the mean horizonal speed ishui Z 8.7 mm sK1 and the horizonal
distance at the left tip over 120 ms is approximatelyxt 1

Z 1:044 mm. For the case
1 It is not easy to give rigorous support for this statement unless a lot of experiments are
carried out. Intuitively, the strong interaction during impacts will weaken the tangential
resistance due to the local plastic deformation, such that the slip coef“cient of friction during
impacts will be lessened.
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Figure 10. Horizonal displacements of the left tip of the dimer in the drift mode for ArZ 3.9 (solid
curve) and ArZ 5.7 (dashed curve).
of ArZ 3.9, hui Z K 6.7 mm sK1 approximately, and xt 1
Z K 0:804 mm over a timer

interval 120 ms. Both of them are very close to the values shown in “g. 3a in
Dorbolo et al. (2005).

Some numerical simulations are also performed inDorbolo et al. (2005), in
which an event-driven algorithm is established by using Newton•s equations o
the dimer with the conditions for the occurrence of the various kinds of collisions
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and the forces acting on the dimer. In particular, the transition between the
stick and slip modes of the tangential constraint at contact points is also taken
into account in their numerical schemes, such that the main feature of the
drift motion in the dimer can be captured qualitatively. However, there is a
signi“cant deviation between their theory and experimental “ndings (see “g. 5b,c
in Dorbolo et al. 2005) because an oversimpli“ed method is used to identify the
transition of the tangential constraints, and to obtain the outcomes of the single
and double impacts.

Let us check the in”uence of the aspect ratioAr and the frequency f on the
dynamics of the dimer in drift mode after the modi“cation of the slip coef“cient
of friction. The simulations are carried out for the dimers with various Ar
between 2.1 and 8.5 at three different frequencies of the plate vibration under the
same energyGZ 0.9. Each point shown in“gure 11 is the scaled mean drift speed
huið fgK 1Þ102, where hui is the mean horizonal speed obtained by dividing the
drift distance over ten cycles with the corresponding time. When the plate
oscillates with a low frequencyf and the dimer with a small aspect ratio Ar, the
excitation of the drift mode is more sensitive to the initial conditions.
In particular, the drift mode cannot be excited for the dimer with Ar! 2.1
bouncing on the plate with fZ 2.5 Hz.

A persistent stable drift mode strictly depends on the periodic behaviours of
the dimer bouncing on the plate, in which each cycle of the repeated bouncin
motion consists of complex motions such as double impacts, a sequence of sin
impacts and the contacts with friction effects. In general, a stable repeated cycle
can be formed only if the dimer is released with an initial condition de“ned in a
special range. If the initial conditions are not appropriate, the drift mode cannot
be generated. At this stage, “nding the basin of attraction of stable periodic
motions is still an open problem.
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Figure 12. The vertical positions of the left (solid line) and right (dashed line) tips for the dimer
with ArZ 6.5 obtained from numerical simulation used in the following parameters:fZ 25 Hz andGZ
0.9,esZ 0.65,msZ 0.24,mcZ 0.12 andmiZ 0.08. The thin broken curve is the vertical position of the plate.
From “gure 11, we can also “nd that the positive drift speed will decrease with
the increase of the aspect ratio whenAr2 (3.1,5), and the value of the frequency
has little in”uence on the scaled mean drift motion. Meanwhile, an in”exion
exists at ArZ 3.1, in which the scaled mean drift speed in the casefZ 25 Hz will
rapidly decrease whenAr changes from 3.1 to 2.9, and then increases by furthe
diminishing the value of Ar. In the cases offZ 50 and 75 Hz, the scaled mean drift
speed seems to be a constant during the scope ofAr2 (2.5,3.1), and then rapidly
increases when the value ofAr is further reduced.

In the case ArZ 5, a transition from forward to reversal drift motion
will suddenly occur. Indeed, the symmetric structure of the tangential velocity
with small Ar (see the relevant “gures forArZ 3.9) collapses and is spontaneousl
transferred into the negative drift mode. Obviously, the symmetry breaking is due
to the variation of the frictional behaviour at the contact point. In the negative
drift mode, the absolute value of the scaled mean drift speed will also decreas
whenAr increases, and be signi“cantly in”uenced by the value of the frequency o
the plate. In the casefZ 25 Hz, the absolute value of the scaled mean drift spee
will decrease rapidly, and vanish whenArO 6.2. This situation is mostly similar to
a single pendulum, in which one end of the dimer is “xed on the oscillated plate
and the other swings beyond the plate and collides against it once every cycle
Figure 12 shows the normal motion for the dimer with ArZ 6.5 released with zero
velocities from an initial condition of h0Z 2.25 mm andq0Z 128, in which a small
swing appears in the right ball even though the mean drift speed equals zero.

In the cases offZ 50 and 75 Hz, the occurrence for the zero mean drift spee
are ArZ 8.2 and 7.6, respectively. Under the same parameterG, the external and
inertial forces applied in the dimer will vary with the frequency of the plate
oscillation; thus, the critical value for the occurrence of the single pendulum
mode will be translated.
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6. Other stable persistent motion shown in the dimer

For a “xed Ar, the mode of the persistent motion triggered in the dimer will be
signi“cantly in”uenced by the initial and driving conditions. For instance, the
experiments in Dorbolo et al. (2005) clearly show that the dimer dynamics is
sensitive to the initial conditions, and the transition from a drift mode to the
higher energy jump and ”utter modes could be observed when the parameterG
related to the plate oscillation is varied. In the following, we carried out some
numerical simulations and made an attempt to give an illustration for the
transition between different modes.

Once a stable persistent motion is established, the total energy involved in
the dimer should be approximately constant such that a quasi-periodic motion
holds. Let us analyse the energy involved in the drift, jump and ”utter modes for
the dimer.

In the case of the dimer with a stable drift mode, one ball stays on the plate,
while the other ball swings beyond the plate and hits the plate once every cycle o
the plate vibration. Most importantly, the swing motion of the dimer on the plate
is seemingly periodic and the maximal height of the hitting end at every cycle
seems to be kept approximately constant. As a simple way for the estimation o
the total mechanical energies involved in drift mode we simplify the dimer
dynamics as a system of an elastic ball bouncing off a “xed ground, in which the
time interval between two sequential bounces of the •elastic ball• is just equal to
the period of the plate oscillation, T. The total mechanical energy in this
simpli“ed model is

Ed Z mghmax Z mg$
1
2

gðT =2Þ2 Z
1
8

mg2T 2; ð6:1Þ

which can be thought of as the approximately constant energy involved in the
dimer with a drift mode.

For the case of a jump mode, both the left and right balls will collide with the
plate once every cycle of the plate oscillation. In this mode, the bouncing heights
of the two balls are nearly the same. Since the glass rod is very light, the dime
resembles the situation of two separated particles bouncing on an oscillated plat
with the same period that equals the period of the plate oscillation. From this
simple model, the total mechanical energy of the dimer involved in the jump
mode can be approximated as

Ej Z 2mghmax Z 2mg$
1
2

gðT =2Þ2 Z
1
4

mg2T 2: ð6:2Þ

The scenario for the dimer with a ”utter mode is that both the left and right balls
hit the plate out of phase at every other period of oscillation. In this mode the
time interval between two sequential bounces is approximately equal to twice
the period of the plate oscillation. Therefore, when the mode is simpli“ed as the
situation of two separated particles bouncing on an oscillated plate with the same
period, the total mechanical energy of the dimer involved in the ”utter mode can
be estimated by

Ef Z 2mghmax Z 2mg$
1
2

gðT Þ2 Z mg2T 2: ð6:3Þ
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Figure 13. The vertical position of the tips in left (solid curve) and right (dashed curve) ball for
the dimer (ArZ 3.9, fZ 50 Hz and GZ 0.9) in a jump mode generated by an initial condition of
h0Z 10.25 mm andq0Z 88. Parameters of simulations areesZ 0.65,msZ 0.24,mcZ 0.12 andmiZ 0.08.
The thin broken curve is the vertical position of the plate.
Therefore, the ratio of the energy for the drift, jump, and ”utter modes is
approximately Ed : Ej : EfZ 1 : 2 : 8, which is consistent with the statement in
Dorbolo et al. (2005) and the numerical observation presented in this paper.

Obviously, the formation of a persistent motion means that the energy taken
by the dimer will converge to a stable energy level that is maintained by its
external environment. The convergence of the energy depends on the mechanis
of the exchange between energies in the dimer and the oscillated plate. Th
exchange is implemented through the collisions between the dimer and the plate
and the stick-slip modes. Therefore, the initial conditions of the dimer, the plate
oscillation and the property of the frictional collisions will signi“cantly in”uence
the formation of the persistent motion.

Let us “rst investigate the effects from the initial energy on the modes of the
persistent motions in the dimer. For a dimer with ArZ 3.9 under a plate
oscillation with fZ 50 Hz and GZ 0.9, the numerical simulation shows that a
stable drift mode can be formed when it is released with a small initial potential
energy. However, the increase of the initial energy will trigger a transition from a
drift to a jump mode. The vertical position for the dimer released with the
initial conditions h0Z 10.25 mm andqZ 88is shown in “gure 13, in which a jump
mode where both tips collide against the plate once every cycle appears
the dimer, and a horizonal reciprocating movement appears in the tips as show
in “gure 14.

As noted in Dorbolo et al. (2005), the external energy involved in the plate
oscillation also plays a signi“cant role for the formation of the persistent motion.
For example, Dorbolo•s experiments have shown that, for a dimer with “xed
ArZ 3.9 and fZ 25 Hz, a stable persistent drift motion can be observed ove
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Figure 15. The horizonal position of the tip in the left (solid curve) and right (dashed curve) balls
for dimer (ArZ 3.9, fZ 25 Hz and GZ 0.2) generated by an initial condition of h0Z 0.25 mm and
q0Z 128. Parameters of simulations areesZ 0.65, msZ 0.24, mcZ 0.12 andmiZ 0.08. The thin broken
curve is the vertical position of the plate.
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Figure 14. The horizonal position of the tip in the left (solid curve) ball for dimer ( ArZ 3.9,
fZ 50 Hz, GZ 0.9) in a jump mode generated by an initial condition of h0Z 10.25 mm andq0Z 88.
Parameters of simulations areesZ 0.65, msZ 0.24, mcZ 0.12, miZ 0.08.
a range ofG2 [0.5,1.1], while the drift mode will spontaneously collapse to rest if
G! 0.5, or will be unstable with respect to the transition to the higher energy
jump and ”utter modes and their combinations if GO 1.1.
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Figure 16. The horizonal position of the tip in the left (solid curve) and right (dashed curve) balls
for dimer (ArZ 3.9, fZ 25 Hz and GZ 1.4) generated by an initial condition of h0Z 0.25 mm and
q0Z 108. Parameters of simulations areesZ 0.65, msZ 0.24, mcZ 0.12 andmiZ 0.08. The thin broken
curve is the vertical position of the plate.
Figure 15 shows the numerical results for a dimer withArZ 3.9 falling on the
plate with an oscillation fZ 25 Hz and GZ 0.2. We can “nd that the dimer will
quickly rest on the plate for the case of the plate with a weakening vibration.

Let us “x the values of ArZ 3.9 and fZ 25 Hz, but increase the magnitude of
the plate vibration ( GZ 1.4). Figure 16 shows the simulation results for
the dimer freely dropped on theplate with initial conditions h0Z 0.25 mm and
q0Z 108. In this case, the vertical motion of the left ball seems to be harmonic
with the plate oscillation, while the ri ght ball will alternately collide against
the plate with a big and a small bounce in each two adjacent cycles of the
plate oscillation.

The above mode is unstable and sensitive to the initial conditions of the dimer
Let us carry out the numerical simulation by setting h0Z 3.25 mm and q0Z 108
for the same dimer dropped on the plate with the same oscillation.Figure 17
shows that a combination of jump and ”utter modes appears in the dimer
motions, in which the left ball collides against the plate once during every cycle
while the right ball bounces on the plate once during every two cycles of the plate
oscillation. The increases of the initial energies involved in both the left and right
balls will make the two adjacent bounces at the right ball be merged, and
generate a big separation between the left ball and the oscillated plate.

The formation of an ordered persistent motion is also in”uenced by the initial
value of the tilt angle in the dimer. A new mode is triggered when the dimer is
released with a small height and a small tilt angle.Figure 18 shows the results
obtained by setting the initial conditions with h0Z 0.25 mm and q0Z 58. The
small initial tilt angle degrades the impact intensity at the right ball and thus
makes the dimer•s motion converge to a new stable status. The local picture
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