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Frictionless multiple impacts in multibody
systems. I. Theoretical framework
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A new method is proposed that can deal with multi-impact problems and produce
energetically consistent and unique post-impact velocities. A distributing law related to
the energy dispersion is discovered by mapping the time scale into the impulsive scale for
bodies composed of rate-independent materials. It indicates that the evolution of the
kinetic energy during the impacts is closely associated with the relative contact stiffness

and the relative potential energy stored at the contact points. This distributing law is
combined with the Darboux–Keller method of taking the normal impulse as an
independent ‘time-like’ variable, which obeys a guideline for the selection of an
independent normal impulse. Local energy losses are modelled with energetic coefficients
of restitution at each contact point. Theoretical developments are presented in the first
part in this paper. The second part is dedicated to numerical simulations where
numerous and accurate results prove the validity of the approach.

Keywords: multiple impacts; Darboux–Keller’s dynamics;

energetic restitution coefficient

1. Introduction

Multiple impacts occur in many mechanical systems (granular matter and
kinematic chains), and are a phenomenon of major importance. Systems with
multiple impacts have a time-varying structure due to the unilateral features of
the constraints (Delassus 1920; Bernoulli 1969–1993; Moreau 1994; Pfeiffer &
Glocker 1996; Brogliato 1999; Stronge 2000a; Ceanga & Hurmuzlu 2001;
Frémond 2002; Glocker 2004). Moreover, the configurations and the possible
flexibilities at the contact points significantly influence the outcomes.
Consequently, these phenomena require a special treatment for analytical and
numerical solution methods. There are basically four ways of modelling a
contact–impact phenomenon in multibody systems: (i) a finite-element method
to directly discretize the contact bodies (e.g. Seifried et al. 2003; Schiehlen et al.
2006; Liu et al. 2007b), (ii) compliant models (spring–dashpot, with linear or
nonlinear stiffness) and second-order dynamics (Khulief & Shabana 1987; Yigit
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et al. 1990), (iii) a purely algebraic impact law (or mapping) of the form
_qCZFð _qK; q; pÞ, where p is a set of parameters (Han & Gilmore 1993; Moreau
1994; Pfeiffer & Glocker 1996; Frémond 2002; Leine & van de Wouw 2008), and
(iv) the first-order Darboux–Keller impact dynamics (Darboux 1880; Keller
1986; Stronge 1994, 2000a; Batlle & Cardona 1998; Brogliato 1999; Ceanga &
Hurmuzlu 2001; Liu et al. 2007a).

The approach (iv) is chosen in this paper for reasons that will be made clear
below. Let us consider a mechanical Lagrangian system with an n-dimensional
generalized coordinate q and configuration space C. This system is supposed to
have a mass matrix M ðqÞZMTðqÞO0, and is subjected to several unilateral
constraints hi(q)R0, 1%i%s, where the functions hi($) are supposed differentiable
and the set FZfq 2Cjh1ðqÞR0; h2ðqÞR0;.; hsðqÞR0g has an interior
with positive volume. We define the s hypersurfaces SiZfq 2CjhiðqÞZ0g.
A multiple impact is the one that occurs at the intersection of two (or more than
two) surfaces Si. Physically, this corresponds to having several points at which
contact is established simultaneously.

There are many properties and characteristics that are associated with a
multiple impact, independently of the chosen class of models (i)–(iv). Let us
provide a rapid summary as follows:

(1) the kinetic angle between the surfaces Si involved in the impact,
(2) the continuity of the solutions with respect to the initial data,
(3) the kinetic energy behaviour at the impact,
(4) the wave effects due to the coupling between various contacts,
(5) the local energy loss during impacts,
(6) the ability of the impact rule to span the whole admissible post-impact

velocities domain,
(7) the ability of the parameters defining the impact rule to be identified from

experiments,
(8) the (in)dependence of these parameters on the initial data,
(9) the physical meaning of the parameters of the impact rule,

(10) the ability of the impact rule to provide post-impact velocities in agreement
with the experimental results,

(11) the well-posedness of the non-smooth dynamics when the impact rule is
incorporated in it,

(12) the law should be applicable (or easily extendable) to general mechanical
systems,

(13) the determination of the impact termination, and
(14) the impact law has to be numerically tractable.

Items (1), (3) and (6) enter into the geometrical considerations in Glocker
(2004) to develop a framework for multiple impacts, extending Moreau’s sweeping
process rule (Brogliato 1999; Leine & van de Wouw 2008). Item (2) is important as
it implies that sequences of single impacts may completely fail to deduce the
multiple impact law (moreover, in general, impacts are not propagated in a
sequential way through the contacts (Acary & Brogliato 2003; Wei & Liu 2006)).
It is also related to (11) and (1). Indeed, under some conditions on the kinetic
angles, continuity of the solutions (2) may hold. These cases may be considered as
isolated cases, however. Item (4) implies that the coupling between various
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contacts will generate possible ‘distance’ effects, i.e. a collision may be propagated
through the system and induce a detachment at another contact point (this is also
called the dispersion, or the scattering effects). This implies that other relationships
more than the usual restitution coefficients at each contact have to be discovered. For
instance, Ceanga & Hurmuzlu (2001) were the first ones to quantitatively study the
coupling effects by introducing an impulse correlation ratio (ICR) together with
energetic coefficients of restitutions. Their algorithm is tested on chains of balls and on
the rocking block (Hurmuzlu&Ceanga 2001). Another approach using the ICR and a
global energetic coefficient is proposed by Acary & Brogliato (2003). Both Ceanga &
Hurmuzlu (2001), Hurmuzlu & Ceanga (2001) and Acary & Brogliato (2003) belong
to class (iv) of themodels. Other exampleswith different ‘coupling’ coefficientsmay be
found in Moreau (1994) and Frémond (2002); however, they may fail to satisfy
item (9), rendering (7) tricky. Item (5) is related to the meaning of the restitution of
coefficient. Newton’s coefficient reflects the local energy loss on the velocity level,
while Poisson’s coefficient puts the energy loss on the impulse level. Obviously, these
variables must change due to item (4) and may violate the basic law of energy
conservation (Kane & Levinson 1985; Leine & van deWouw 2008). Items (7), (8), (9)
and (10) are related to the choice of the parameters that enter the impact law. They
are fundamental from the point of view of the practical usefulness of the law. For
instance, one may want that some parameters are to be identified through simple
experiments before being injected in a rule for a more complex collision. It is
noteworthy that the main drawback of models (ii) is the necessity to identify stiffness
and damping parameters, which is usually not easy when there are many contacts
with various materials. Item (12) is closely linked to (4), since the wave effects may
differ a lot depending on the bodies’ shapes, materials, etc. Item (4) also indicates that
a guideline should be established for item (13), since the separations of contacts do not
occur simultaneously. The last item is not the least one. It has led several researchers
to look for multiple impact laws that lend themselves to a linear complementarity
problem formulation (Moreau 1994; Pfeiffer & Glocker 1996; Frémond 2002; Glocker
2004), and are extensions of the Newton or Poisson restitution models. Pioneering
works related to the multi-impact problems can also be found in several papers
(see, e.g. Delassus 1920, Bernoulli 1969–1993,Han&Gilmore 1993 andBrogliato 1999
for references).

The contribution of this paper is to extend the Darboux–Keller approach (iv)
to multiple impacts. This allows us to discover a distributing rule that links the
ratios of infinitesimal impulses to the relative contact stiffnesses and the relative
potential energies. This, together with the energetic coefficients of restitution and
a suitable compliant contact model, results in a set of first-order nonlinear
differential equations using normal impulse at the primary contact as an
independent variable. These equations are non-stiff and depend on mechanical
parameters that satisfy items (7), (8) and (9). In the second part of the paper (see
also the report Liu et al. 2008), it is shown, through comparisons between
numerical and experimental results, that the proposed model encapsulates very
well the main features of multiple impacts in chains of balls.

The paper is organized as follows. In §2, a general method to solve multi-
impact problems by using impulsive dynamics is developed, in which the ratios
for the distribution of the increments of normal impulses at all contact points
are established based on a mono-stiffness contact model. Section 3 presents a
similar relationship for the distributing law, which is deduced from a bi-stiffness
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model that satisfies the energetic constraint. A compact formulation for the
analysis procedure of multi-impact problems is presented in §4. Conclusions
are given in §5.

2. The Darboux–Keller multi-impact dynamics

(a ) The impulsive dynamics

Let us consider a multibody system with s frictionless contacts. The maximum
number of degrees of freedom n is obtained when none of the contacts is closed. In
this state, the system may be described by a set of generalized coordinates q2R

n,
and the equations of motion take the form

MðqÞ€qKhðq; _q; tÞKW ðq; tÞLZ 0; ð2:1Þ

where MðqÞZM TðqÞO0 and h($,$,$) contain the inertial and applied forces,

respectively. LZ[l1, l2, ., ls]
T, li is the scalar value of the normal contact forces

along the common normal to the surfaces of the contact bodies for contact
point i. The connection between the normal contact forces and the generalized
forces is defined as W ðqÞZ ½w1ðq; tÞ;w2ðq; tÞ;.;wsðq; tÞ�, which is related to the
Jacobian matrices of the contact points (Pfeiffer & Glocker 1996).

The kinematic state of a contact is determined by the distance di(q, t) between
the contact bodies. Clearly, di(q, t) represents the normal deformation when
contact is established. The relative velocity of the contact points is expressed as

_diðq; tÞZw
T
i ðq; tÞ _qCŵiðq; tÞ; 1% i%s; ð2:2Þ

where ŵiðq; tÞ is a nonlinear term related to time, and is often zero if all
constraints, excluding contact, are ideal and time invariant. The directions of the
relative normal velocities depend on the contact kinematics, and we always
define that _diO0 for the colliding bodies approaching (compression phase), while
_di!0 for separation (expansion phase). In matrix notation, equation (2.2)
becomes (we drop the arguments)

_d1

_d2

«

_ds

2
666664

3
777775
ZW

T
_qCŴ : ð2:3Þ

Let [t0,t f] denote the time interval of the impact, which can be further divided
into much smaller intervals [ti ,tiC1]. According to the Darboux–Keller model
(Brogliato 1999, §4.2.5), an integration over [ti ,tiC1] has to be carried out in
order to achieve a representation of the equations of motion at the impulse level.
Thus, a set of differential equations with respect to the normal impulses can
be obtained,

ðtiC1

ti

½M €q KhKWL�dt ZM ½ _qðtiC1ÞK _qðtiÞ�KW ½PðtiC1ÞKPðtiÞ�

ZM$d _qKW$dP Z 0: ð2:4Þ
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The terms M and W remain unchanged during the integration because of the
assumption of constant configuration q on [t0,t f]. The vector h consists of finite,
non-impulsive terms and therefore vanishes by the integration (Brogliato 1999,
ch. 1). The quantities d _q and dP are the changes of generalized velocities and
normal impulses during [ti ,tiC1], respectively.

(b ) The distributing rule for the normal impulses in a mono-stiffness model

Based on experiments or some approximate theory, different types of local
compliance models could be found in the existing literature. If no dissipation
occurs at contact points, usually the force–indentation mapping at the contact
point i could take the following form:

li ZKiðdiÞ
hi ; ð2:5Þ

where Ki is the contact stiffness and the exponent hi determines the kind of
contacts between bodies (hiZ(3/2) is for a Hertz contact, hiZ1 is linear
elasticity). The variable di is the normal deformation, which is assumed to be
only a function related to the generalized coordinates q. Therefore, the term ŵi in
_di equals zero in (2.2).
This force–indentation mapping is denoted as a mono-stiffness model, since it

is identical for the compression and expansion phases. Let Pi(t) denote the total
normal impulse accumulated during the time interval [0,t ], PiðtÞZPið0ÞCÐ t
0 liðsÞds. So, ðdPi=dtÞðtÞZliðtÞ and

dli
dt

Z
dli
dPi

dPi

dt
Z li

dli
dPi

: ð2:6Þ

In terms of the compliant model expressed by (2.5), we have

dli
dt

Z hiKiðdiÞ
hiK1 _di ZhiKiðdiÞ

hiK1
w

T
i _q: ð2:7Þ

Note that di can always be expressed as

di Z
li

Ki

� �ð1=hiÞ
: ð2:8Þ

Substituting (2.8) and (2.7) into (2.6) leads to

l
1=hi
i dli Z hiK

1=hi
i w

T
i _q dPi: ð2:9Þ

The initial value of the normal impulse can be set to Pi(0)Z0, and the static
contact force before impact is li(0)Z0 for the case without initial precompression
energy. The integration of equation (2.9) leads to

liðPiðtÞÞZ ðhi C1Þ

ðPiðtÞ

0
K

1=hi
i w

T
i _q dPi

� �hi=ðhiC1Þ

: ð2:10Þ

Noting that liZdPi/dt and considering only the variation in space, the ratio of
the changes of normal impulses at the contact points i and j can therefore be
expressed as

dPj

dPi

Z
ðhj C1Þhj=ðhjC1ÞðKjÞ

1=ðhjC1Þ

ðhi C1Þhi=ðhiC1ÞðKiÞ
1=ðhiC1Þ

Ð PjðtÞ
0 wT

j _q dPj

� �hj=ðhjC1Þ

Ð PiðtÞ
0 wT

i _q dPi

� �hi=ðhiC1Þ
: ð2:11Þ
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We should note that dPi and dPj are the variations of the normal impulses of the
two contact points during the same time interval. Meanwhile, Pi(t) and Pj(t) are
the accumulated normal impulses during the same time interval [0,t]. The work
functions are defined as

Ei Z

ðPiðtÞ

0
w

T
i _q dPi and Ej Z

ðPjðtÞ

0
w

T
j _q dPj : ð2:12Þ

It is easy to find that Ei and Ej are just the work done by the normal contact
forces at contact points i and j from the beginning of impacts to the time when
the respective impulses are Pi and Pj.

These terms can also be thought of as the potential energy stored in the
springs at the contact points i and j. During the compression phase, the spring
will transfer the kinetic energy of the contact point into potential energy, such
that E($) increases with P($). Once the potential energy at the contact point ($) is
saturated due to _dð$ÞZ0, the expansion phase of the spring will begin to release
the potential energy that has been stored, such that E($) will decrease with P($)

and the kinetic energy is transferred. Clearly, the exchange process between
kinetic and potential energies will finish at the instant when E($)Z0.

Expression (2.11) can be further simplified if hiZhjZh. In this case, we can
introduce the ratios of contact stiffnesses gjiZKj/Ki , and define

Ejib
Ej

Ei

Z

Ð PjðtÞ
0 wT

j _q dPjÐ PiðtÞ
0 wT

i _q dPi

R0; j Z 1; 2;.; s; jsi; ð2:13Þ

to represent a ratio of the energies stored at any time t at the contact points i and j.
This ratio varies during the impacts to make the contact bodies change their
motions. At the same time, the relationship between dPi and the changes of normal
impulses at other contact points can be expressed using (2.11) and (2.13) as

dPj Zg
1=ðhC1Þ
ji ðEjiðPj ;PiÞÞ

ðhC1Þ=h dPi; j Z 1; 2;.; s; jsi: ð2:14Þ

Obviously, these expressions reflect the wave behaviours generated in multiple
impacts and depend only on the properties of the contact constraints: the relative
stiffness and the relative potential energies accumulated in the contact points.

(c ) The selection for the independent variable

Combining the distributing relationships (2.14) with the Darboux–Keller
model (2.4), the impulsive equations (2.4) can be expressed as a set of first-order
differential equations with respect to a single integral variable related to the
normal impulse Pi , in which the new integration dumb variable is tZPi(t).

A problem arising when solving the first-order differential equations is which
normal impulse among all the contact points can be selected as a ‘time-like’
independent variable. Since all normal impulses are initially monotonously
increasing for the points keeping contact, in principle, any one among all the
normal impulses can be taken as the independent variable. However, inappropriate
selection for the independent variable will result in certain numerical difficulties.
For instance, if the normal impulse at a contact point with little potential energy is
selected as the independent variable, it is clear from (2.13) and (2.14) that a little

C. Liu et al.3198

Proc. R. Soc. A (2008)

 on November 22, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


change of the independent variable will make the normal impulses at other contact
points vary abruptly. In order to avoid the numerical difficulties and respect the
physical meaning that the multiple impacts should be dominated by the contact
point that takes the maximum value of potential energy, we present a guideline for
the selection of the independent variable. If the energy at the contact point i satisfies

EiREj ; j Z 1; 2;.; s; jsi;

then the normal impulse corresponding to this contact point can be selected as the
independent variable. We denote it as the primary colliding point.1 Once the
primary colliding point is determined, the impulse related to this point can be
considered to increase monotonously like the time variable. The normal impulses at
other contact points will increase according to the relationship (2.14).

At the beginning of the impact, a problem will arise for the selection of the
independent variable since no energy is stored at any contact point (recall that
we assume there is no precompression between the bodies, i.e. di(t0)Z0 for all
iR2 and li(0)Z0 in (2.10)). This corresponds to a singular point in the
simulation. Let us denote DPi(1) and DPj(1) the possible increments of the

normal impulses. _d
0
i and _d

0
j are the initial relative velocities at the contact points i

and j. For simplicity, the exponents at various contact points are assumed to be
equal (hiZh, iZ1,2,., s). In terms of (2.11) and (2.2), we have

DPið1Þ

DPjð1Þ
Z

Ki

Kj

� �1=ðhC1Þ _d
0
iDPið1Þ

_d
0
jDPjð1Þ

 !h=ðhC1Þ

: ð2:15Þ

This form can be further simplified to

DPið1Þ

DPjð1Þ
Z

Ki

Kj

_d
0
i

_d
0
j

 !h
: ð2:16Þ

Obviously, the impact behaviours will be firstly dominated by the contact point
at which the relative velocity takes the maximum value. Therefore, the normal
impulse at this point can be selected as the initial independent variable. The
normal impulses at other contact points will vary with the independent variable
in terms of the expression (2.16).

(d ) The energetic constraint for the local energy loss

The strong interactions between contact points usually dissipate a part of the
energy that cannot be recovered by the expansion phase. For the colliding bodies
made of materials without viscosity (i.e. rate-independent materials), the
dissipation is mainly due to the plastic deformation at the local contact region
(Johnson 1992). So, the energetic coefficient can always be expressed as a
function with respect to the work done by the contact force during the
compression phase (the potential energy stored in the elastic deflection;

1The primary colliding point may change from one contact point to another during the impact due
to the exchange and transformation of the energy. In some cases, there may be several possible
candidates for the primary colliding point (when equality holds). There is no strict limitation for
the selection of the primary impulse when Ei and Ej are near the same value for some i and j.
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Stronge 2000a). Then, we can use ej as an energetic constraint to define the local
energy loss at contact j. According to the definition given by Stronge (2000a) and
his predecessors such as Routh and Boulanger (see Brogliato 1999, p. 147), the
energetic constraint ej at contact j is given by

e2j ZK
Wr;j

Wc;j

ZK

Ð Pjðt fÞ

PjðtcÞ
_dj dPj

Ð PjðtcÞ
0

_dj dPj

ZK

Ð Pjðt fÞ

Pjðt cÞ
wT

j _q dPj

Ð PjðtcÞ
0 wT

j _q dPj

; ð2:17Þ

where Wc, jR0 and Wr, j%0 are the work done by the normal contact force at
point j during the compression phase [0,tc] and the expansion phase [tc,t f ],
respectively. Obviously,Wc, j also corresponds to the potential energy accumulated
during the compression phase, and can be obtained by summing the scalar product
of dPj and _dj from the beginning of the impact to the instant of Pj(tc) that

corresponds to _djðtcÞZ0. Thus,

PjðtcÞZ

ðtc
0
dPj ; _djðPjðtcÞÞZ 0 ð2:18Þ

and

Wc;j Z

ðPjðtcÞ

0
dPj

_dj ; _djðPjðtcÞÞZ 0: ð2:19Þ

If the contact point j is the primary colliding point, dPj will define the size of the
numerical step. Otherwise, dPj is calculated by the distributing rule in (2.14).
The time tc can be thought of as an instant when the potential energy is
saturated. After that, the potential energy will be transferred into kinetic energy
through the expansion phase. Since ej can always be identified as off-line (as a
function of Wc, j), the total recovered energy Wr, j can be determined by ej and
Wc, j . For instance, Wr, j equals Wc, j for a fully elastic impact and Wr, jZ0 for a
plastic impact. At any instant, during the compression phase Pj(t), the residual
energy equals

EjðPjðtÞÞZ

ðPjðtÞ

0
dPj

_dj : ð2:20Þ

When Pj(t) is located in the expansion phase, Ej is

EjðPjðtÞÞZ

ðPjðt cÞ

0
dPj

_dj C

ðPjðtÞ

Pjðt cÞ
dPj

_dj : ð2:21Þ

Since _dj is continuous and equal to wT
j _q, the expressions (2.20) and (2.21) can

always take the same form as in (2.12), and represent the potential energy stored
at the contact point j. If the normal impulse reaches the instant of Pj(t f)
satisfying

EjðPjðt fÞÞZWc;jKWr;j ZWc;jð1Ke2j Þ; ð2:22Þ

the process of energy transfer at the contact point j will finish, as the residual
potential energy Ej(Pj(t f)) will be dissipated based on the energetic constraint
expressed by (2.17). At this time, the outcome of the post-impact velocities at
this contact point can be obtained if it does not again participate in impacts, and
all the ones related to the termination of multiple impacts can be determined
when all the accumulated energy is completely released.

C. Liu et al.3200
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Some complex situations may appear in the process. For example, the contact
point may experience multiple compression–expansion phases due to the
interactions between contact points,2 i.e. the relative velocity _dj may change from
_dj!0, related to an expansion phase, to _djO0, which corresponds to a new
compression phase.We denote this as themultiple compression phenomenon. In this
case, before all the potential energy Wc, j is transferred into the kinetic energy (the
kinetic energy that can be transformed is equal to Wr, j), the contact point may
experience a new compression phase to absorb the external kinetic energy. Let us
denote the beginning instant of the new expansion phase as P�

j , in which

Ej P�
j

� �
ZE �

jOEjðPjðt fÞÞZ 1Ke2j
� �

Wc;j and _dj P�
j

� �
Z 0: ð2:23Þ

During the new compression phase, Ej will increase again and obtain a new value
EjðP

��
j Þ at the instant P ��

j ZPjðt��Þ, in which _djðP
��
j ÞZ0. We can put the

energetic constraint ej on the potential energy EjðP
��
j Þ to define the kinetic

energy W ��
c;jðP

��
j Þ that will be recovered during a new expansion phase. In other

words, if

Ej Pj t
�
fð Þ

� �
Z 1Ke2j
� �

W ��
c;j ; ð2:24Þ

the impact at the contact point j finishes at the instant Pjðt
�
f Þ.

Remark 2.1. When the force–indentation relationship in (2.5) is used, it is
obvious that ej cannot constrain the energy loss appearing in the compression
phases before the last one, which is detected when equality (2.24) is satisfied.
This flaw can be overcome by using the bi-stiffness compliant model in §3.

Another interesting phenomenon can also be found in the process of multiple
impacts. At the same contact point, bodies will participate again in impacts after
separation. We denote this case as a repeating impact. Obviously, a new process
of energy accumulation and transfer will appear at that point, and the energetic
constraints can be applied on each isolated impact based on the potential energy
obtained from the compression phases. It is possible to introduce a variation
of the restitution coefficient as a function of the number of impacts, based, for
example, on experimental results (Schiehlen et al. 2006). If the plastic deforma-
tion remains small enough, we may, however, assume in a first study that the
coefficients ej are constant, even when repeated impacts occur.

3. The distributing rule for the compliant bi-stiffness contact model

The distributing rule in (2.14) is based on the assumption that the compression and
expansion phases satisfy the same relationship between the contact forces and the
indentation. The energetic coefficient is applied as a constraint to take into account
the local dissipation of energy at the last compression phase. We should, however,
use two different modes of the contact forces to represent the compression and
expansion phases, respectively, such that the dissipated energy at each loading–
unloading cycle can be involved in the compliant contact model (Schiehlen et al.
2006). In this section, we will adopt a compliant contact model that satisfies the
definition in (2.17) to discuss the distributing rule.

2 Interestingly enough, such phenomena have also been noted for single impacts with Coulomb
friction (Batlle & Cardona 1998).
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(a ) The bi-stiffness compliant contact model

A compliant contact model has been proposed in Lankarani & Nikravesh
(1994) to represent the relationship between the contact force and the indentation
for the compression and expansion phases, respectively. This model lacks
fundamental mechanical meaning as no material seems to satisfy such laws;
however, it has been proved to be quite useful in various contexts of impact
dynamics (Sadd et al. 1993; Stronge 2000a,b, 2003). This bilinear model is the
simplest means of representing the plastic deformation (Schiehlen et al. 2006). It
has certain drawbacks such as not limiting maximal force. Nevertheless, it gives a
correct form of dissipation for rate-independent materials. It is not supposed to
accurately represent any real material, and may be seen as an approximate
representation of the plastic indentation effect in elastic solids (Johnson 1992,
§6.4). Figure 1 shows the bi-stiffness compliant contact model by setting different
force–indentation relationships for the expansion and compression phases. The
relationship for the compression phase at the contact point j is expressed as

lc; j ZKjðdc;jÞ
hj ð3:1Þ

and the one for the expansion phase is

le;j Z lM;j

de;jK dr; j

dM;jK dr;j

� �hj
; ð3:2Þ

where dr, j is the plastic deformation, and lM, j and dM, j correspond to the maxima of
the normal contact force and normal deformation at the end of the compression
phase, which corresponds to the values when _djZ0. Clearly, the dissipated energy is
just the area enclosed by the compression and expansion curves. For simplicity, we
omit the subscript j in the following expressions (and also in figure 1).

The scalar dr represents the permanent plastic deformation generated when
the compression phase finishes (the elastic part of the deformation generated in
the compression phase will be recovered in the expansion phase). Its value should

O

Figure 1. The bi-stiffness compliant contact model.
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depend on the dissipated energy at the contact point, such that the energetic
constraint should be applied. At any contact point j, work done during the
compression and restitution phases is obtained from the integration of the
expressions (3.1) and (3.2)

Wc Z

ð
dM

0
lcðdcÞ ddc Z

1

hC1
KðdMÞ

hC1

and

Wr Z

ð
dr

dM

leðdeÞ dde ZK
1

hC1
KðdMÞ

hðdMKdrÞ:

9
>>>>>>>=
>>>>>>>;

ð3:3Þ

Based on the assumption in (2.17), Wc and Wr can be connected by a function
eZf(Wc). In the case of a constant e, we have from (3.3) and (2.17)

dr Z dMð1Ke2Þ; ð3:4Þ

so that eZ1 implies drZ0 (no plastic deformation occurs). The indentation dM
corresponds to the first instant tc such that _dðtcÞZ0, so it is not a parameter of
the impact dynamics. From (3.4), neither is dr. When the energetic coefficient
takes a constant value, the energetic definition presents a linear relationship
between the local plastic deformation dr and the maximum indentation dM, such
that the dissipation of energy is reflected in an average level.

(b ) The potential energy at a contact point

The potential energy at a contact point will be accumulated during the
compression phase and released in the expansion phase. Let us pick a point p in
the curve of the compression phase. The potential energy Ep at p is equal to the

work done by the contact force along the path cOp,

Epðd
pÞZ

ð
dp

0
lcðdÞ dd: ð3:5Þ

Let us assign a time factor on the compression process. d
p denotes the

deformation when the contact point moves along the path cOp to the point p
within a time interval [0,t]. This means that, at any instant t during the interval
[0,t], lc(t) can always be expressed as lc(t)Z(dP(t)/dt), in which P(t) is the
normal impulse accumulated in the time interval [0,t]3[0,t] corresponding to a
deformation d(t). Thus, we have

Epðd
pÞZ

ð
dp

0
dPðtÞ

ddðtÞ

dt
: ð3:6Þ

Since P(t) and d(t) can be connected by a one-to-one mapping during the
compression phases, we can use the variable P(t) to replace d(t) as the integral
variable. Thus,

EpðPðtÞÞZ

ðPðtÞ
0

_djðPðtÞÞdPðtÞ; ð3:7Þ

where P(t) is the normal impulse that is needed to make the indentation change
from zero to d

p by obeying the relationship (3.1).
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The accumulation of energy at the contact point j will be ended when the
compression process finishes. After that, the potential energy will be released
through an expansion phase. Let us select a point R in the curve of the expansion

phase dM�r2, as shown in figure 2. The work done by the contact force along the
compression path O1M can be expressed as

WcðdMÞZ

ð
dM

0
lcðdÞdd: ð3:8Þ

This term is related to the potential energy accumulated in the compression phase,

and corresponds to the area enclosed by the curvedOM�M. The total energy that
can be recovered through the expansion phase is e2Wc, based on the energetic

constraint and is associated with the area enclosed by the curved�r2M�M.
When the contact point j moves from M to R along the expansion curve, the

recovered energy is
Ð
dR
dM

lrðdÞdd, where dR is the deformation related to the contact
force lR,

ð
dR

dM

lrðdÞddZ

ð
dr2

dM

lrðdÞddK

ð
dr2

dR

lrðdÞddZKe2
ð
dM

0
lcðdÞddK

ð
dr2

dR

lrðdÞdd: ð3:9Þ

The second term in expression (3.9) equals the area enclosed by the curve
d�r2R�R. Let us determine the value of the potential energy ER when the contact
point is located at R, which should make the expansion force generate the work

with a value equal to the area enclosed by the curve d�r2R�R, such that the
contact point can move from R to dr2 along the expansion curve. The following
result is based on the properties of the contact force and the energetic constraint
and deals with the residual energy.

1

3
4

O

′

A

2

Figure 2. The potential energy when the contact point is located at the expansion phase.

C. Liu et al.3204

Proc. R. Soc. A (2008)

 on November 22, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Theorem 3.1. When the contact point is expanded from M to reach the position
R, the residual potential energy ER at this point is equal to the work done by the
contact force along the compression path moving from O to the position R 0,in
which the contact force takes the same value lR as the one in position R.

Proof. The proof is omitted for the sake of briefness of the paper. It can be
found in Liu et al. (2008). &

Theorem 3.1 shows that a compression–expansion cycledOR0�r1 (curves 1 and 3)

is equivalent, from the energetic point of view, to a cycledAR�r2 (curves 2 and 4),
where the compression would end at R0 (respectively at R). The work done by
the expansion force from R to dr2 along curve 4 can be expressed as

ð
dr2

dR

lrðdÞddZKe2ER: ð3:10Þ

Substituting (3.10) into (3.9) leads to

ER Z

ð
dM

0
lcðdÞddC

1

e2

ð
dR

dM

lrðdÞdd: ð3:11Þ

Similar to the compression phase, the residual potential energy for a dynamical
process reaching the position R within a time interval [0,t] can be expressed as

ER Z

ðPc

0

_dðPðtÞÞdPðtÞC
1

e2

ðPðtÞ
Pc

_dðPðtÞÞdPðtÞ; ð3:12Þ

where Pc is the normal impulse when the compression phase finishes (so dZdM),
and P(t) is an integral variable that is related to the normal impulse of the
contact force experiencing a time interval [0,t] by obeying the energetic relationship
defined by the compliant contact model.

(c ) The energetic constraint for a complex impact

In some cases, the contact point may take some initial energy due to the
precompression or the experience of a complex process with multiple compression
phases owing to the coupling between the contact points. In a physical sense, it is
obvious that the dissipated energy should depend on the energy stored at the
contact points. Here, we will extend the energetic coefficient e into the situations
where the contact point has some initial energy or is experiencing multiple
compression phases (the multiple compression phenomenon).

Let us assume that the contact point j has an initial pressure l0 that makes the
contact point with an initial energy E0 and an initial deformation d0.
Furthermore, we suppose that l0 and d0 satisfy the compression relationship
expressed in (3.1). Then, integration yields

E0 Z

ð
d0

0
lcðdÞddZ

ðl0Þ
ðhC1Þ=h

ðhC1ÞK1=ðhC1Þ
R0: ð3:13Þ
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Under the initial pressure, the energetic constraint is defined as follows:

Wr ZKe2ðWc CE 0Þ; ð3:14Þ

where WrZ
Ð
dr
dm

leðdÞdd is the work done by the expansion force; WcZ
Ð
dm
d0

lcðdÞdd
is the work done by the compression force; and dr is in (3.4) and figure 1.

Involving the initial potential into the energetic constraint permits the use of
the coefficient e as the index to describe the local dissipated energy for the
contact point with multi-compression phases.

Let us present a clear scenario by conducting an example of the contact point j
with two compression phases. Figure 3 shows that the contact point j will first

experience a compression phase along the curve dOM1, then begin an expansion
process from M1 to R. Before the total potential energy is released, a new
compression phase starts at R, and the contact point will begin a second

compression phase along the curvedRM2. This second compression phase stops at
M2 and then the accumulated potential will be completely released through an

expansion phase along the curve dM2B.
Let us assume that the relationship between the contact force and the

indentation is not changed for the second compression–expansion cycle.
Therefore, the residual potential ER at R can be thought of as an initial energy
for a new compression–expansion cycle. So, from (3.14) we get

Wr ZKe2ðWc CERÞ: ð3:15Þ

The energy ER can be obtained by using (3.11) or (3.12),

Wr Z

ð
dB

dM2

leðdÞdd and Wc Z

ð
dM2

dR

lcðdÞdd: ð3:16Þ

O

1

A

2

B

1

12

2

Figure 3. The contact point with two compression phases.
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Let us set a time interval [0,t] on the micro-movement of the contact point and
replace t by PðtÞZ

Ð t
0 lðtÞdtR0. The potential energy at the point Q of the

force–indentation mapping in different phases can be expressed as

EðPðtÞÞZ

E0 C
Ð PðtÞ
0

_dðPðtÞÞdPðtÞ; Q2dOM1;

EM1
C

1

e2

ðPðtÞ
PM1

_dðPðtÞÞdPðtÞ; Q2dM1R

ERC
Ð PðtÞ
PR

_dðPðtÞÞdPðtÞ; Q2dRM2;

EM2
C

1

e2

ðPðtÞ
PM2

_dðPðtÞÞdPðtÞ; Q2dM2B;

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:17Þ

where E($) and P($) are the residual potential energy and the normal impulse at
the location ($)ZM1, R and M2, respectively.

(d ) The distributing rule for the bi-stiffness compliant contact model

Since the compression and expansion forces adopt different relationships, we
should separately analyse the evolution of energy during the compression and
expansion phases. Let us suppose that the initial pressure at the contact point j is
l0, j, such that, at the beginning of the impact process, the point will take the initial
energy E0, j, given by (3.16). Based on (2.13) and setting lj(0)Zl0, j, we can obtain

ljðPjðtÞÞZð1ChjÞ
hj=ðhjC1ÞK

1=ðhjC1Þ
j

!
ðl0;jÞ

ðhjC1Þ=hj

ðhj C1ÞK
1=ðhjC1Þ
j

C

ðPjðtÞ

0

_dðPjðtÞÞdPjðtÞ

0
@

1
A
hj=ðhjC1Þ

Z ð1ChjÞ
hj=ðhjC1ÞK

1=ðhjC1Þ
j ðEðPjðtÞÞÞ

hj=ðhjC1Þ; ð3:18Þ

where E(Pj(t)) takes the form of the first term in (3.17). In terms of the
compliant model expressed in (3.2) for the expansion force, we can deduce

le;j dle;j Z hjlm;j

djK dr;j

dm;jK dr;j

� �hjK1 _dj

dm;jK dr;j
dPj : ð3:19Þ

Since dm;jK dr;jZe2j dm;j and

djK dr;j

dm;jK dr;j
Z

le;j

lm;j

� �1=hj
; ð3:20Þ

the expression (3.19) can be further simplified to

ðle;jÞ
1=hj dle;j Zhjðlm;jÞ

1=hj
_dj

e2j dm;j

dPj : ð3:21Þ

At the end of the compression phase, the maximum compression force lm, j can
always be expressed as

lm;j ZKjðdm;jÞ
hj : ð3:22Þ

3207Frictionless multiple impacts. I

Proc. R. Soc. A (2008)

 on November 22, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


So,

ðle;jÞ
1=hj dle;j Z

1

e2j
hjðKjÞ

1=hj _dj dPj : ð3:23Þ

The initial value of the normal impulse at the beginning of the expansion phase is
set as Pc, j , which is related to _djZ0. The contact force at this instant, i.e. l(Pc, j),
can be obtained using (3.18)

lðPc;jÞZ ð1ChjÞ
hj=ðhjC1ÞK

1=ðhjC1Þ
j ðEðPc;jÞÞ

hj=ðhjC1Þ: ð3:24Þ

The integration of (3.23) and using (3.24) leads to

ðle; jÞ
ðhjC1Þ=hj Z ðlðPc;jÞÞ

ðhjC1Þ=hj Cðhj C1ÞðKjÞ
1=ðhjC1Þ 1

e2j

ðPjðtÞ

Pc; j

_dj dPj

Z ðhj C1ÞðKjÞ
1=ðhjC1Þ EjðPc;jÞC

1

e2j

ðPjðtÞ

Pc; j

_dj dPj

 !

Z ðhj C1ÞðKjÞ
1=ðhjC1ÞEjðPjðtÞÞ: ð3:25Þ

Thus, the contact force at the impulse instant Pj(t) is

le; j Z ð1ChjÞ
hj=ðhjC1ÞK

1=ðhjC1Þ
j ðEjðPjðtÞÞÞ

hj=ðhjC1Þ: ð3:26Þ

Since the contact forces can always be expressed as the differential of the normal
impulse with respect to time, from (3.26) and assuming the exponent hj in the
force–indentation relationship takes equal values h at all contacts, the ratios
between the increments of normal impulses among various contact points j can
be expressed as in (4.2), i.e.

dPj

dPi

Zg
1=ðhC1Þ
ji ðEjiðPj ;PiÞÞ

ðhC1Þ=h; i Z 1; 2;.; s; isj: ð3:27Þ

The distribution of the increments of normal impulses depends on the relative
stiffness and the relative potential energy among various contact points.

Remark 3.2. The distributing law in (3.27) takes the same form as the one
expressed in (2.14), even though we adopt two different kinds of constitutive
relationships for the compliances at the contacts. One may thus expect that an
impulsive process with any kind of compliance can be dominated by the underlying
law with the form expressed in (3.27). In other words, the evolution of motion in an
impulsive process just depends on the relativity of the contact stiffness and of the
potential energy resided in the system. This may extremely facilitate the
understanding of the energy transmitted through a network of contacts.

4. The compact formulation for the analysis procedure
of multi-impact problems

Based on the distributing law proposed in this paper for mono- and bi-stiffness
models, multi-impact problems can be solved using the Darboux–Keller impulsive
equations plus the energetic constraint to take into account the local energy loss.
Let us provide a compact formulation for the analysis procedure of multi-impact
problems (the exponents hi at various contacts take the same value h).
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—Contact parameters: gij ; ej; 1%i%s; 1%j%s (hZ1(linear stiffness) orZ3/2
(Hertz contact), or other suitable values); E0, j; and l0, j for the initial pre-
compression cases.

—Dynamical equation:

M
d _q

dPi

ZW
dP

dPi

; if EjiðPj ;PiÞ%1 for all jsi; ð4:1Þ

with
dPj

dPi

Zg
1=ðhC1Þ
ji ðEjiðPj ;PiÞÞ

ðhC1Þ=h ð4:2Þ

and

Eji Z
EjðPjÞ

EiðPiÞ
; 1% i%s; 1% j%s: ð4:3Þ

The calculation for the potential energyEj (Pj) and the termination of each contact
depend on the compliance model added at the contact points.

—Mono-stiffness model:

EjðPjÞZE0;j C

ðPjðtÞ

0
w

T
j _q dPj and W ��

c;j ZEjðP
�
j ðt�ÞÞC

ðPjðt��Þ

P�
j
ðt�Þ

w
T
j _q dPj ;

ð4:4Þ

where the time t�� at the contact j is calculated from _djðt��ÞZ0 for the last loading–
unloading cycle, while t� is the instant when the compression phase in the last cycle
begins. For the contact with a single loading–unloading cycle,

W ��
c;j ZEjðPjðt��ÞÞZE0;j C

ðPjðt��Þ

0
w

T
j _q dPj : ð4:5Þ

The impact at contact j will be terminated at the instant t f when
EjðPjðt fÞÞZð1Ke2j ÞW

��
c;j . Part of the potential energy in the expansion phase of

the last cycle is discarded in order to take into account the local energy loss.
—Bi-stiffness model:

EjðPjÞZE0;j C
1

Tra

ðPjðtÞ

0
w

T
j _q dPj : ð4:6Þ

Tra is a parameter to transfer the work done by the normal impulse into
the potential energy, in which TraZ1 if _dO0 and TraZe2j if _d!0. When

EjðPjðt fÞÞZ0 and _d!0, the contact j will be open at time Pj(tf).

Remark 4.1. The solution of the set of ordinary differential equations (4.1)–(4.6)
is the function _qðtÞZ _q+PK1

i ðtÞ on the impulsive intervals, wherePi is the dominant
impulse. It is denoted as the derivative of the position for obvious reasons; however,
it is to be considered as the solution of this particular set of differential equations
since the energy is mapped into the velocity–impulse level. The assumption that the
position is constant is imposed for equation (4.1), and the infinitesimal time interval
for the impact duration is adopted for the calculation of the post-impact velocities.

3209Frictionless multiple impacts. I

Proc. R. Soc. A (2008)

 on November 22, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


5. Conclusions

This paper presents a method to solve impact problems with multiple frictionless
points of contact between bodies composed of rate-independent materials. The
theoretical analysis indicates that, except for the local energy loss, the dispersion of
energy during impacts must be considered by adding compliances into the rigid
body model. The local energy loss is confined by using an energetic constraint that
can be defined by energetic coefficients, while the dispersion of energy during
impacts (or the wave effects) is well represented by mapping the impact process
into a velocity–impulse level, hence extending the Darboux–Keller approach to
multiple shocks. A distributing law that seems to be independent of the compliant
contact model is developed by using mono-stiffness and bi-stiffness models. It
shows that the distribution of the increments of normal impulses in space is
associated with the relative potential energy and the relative stiffness between
various contact points. Combining this distributing law with the impulsive
dynamics, one can deduce a set of first-order nonlinear differential equations with
respect to an independent time-like normal impulse that corresponds to a so-called
primary colliding point, in which the potential energy takes the maximum value.
This method clearly separates dissipation and wave effects during multiple impacts
and gives a legible picture for the dynamics of multiple impacts. The validity and
the advantages of this method are illustrated in part II (Liu et al. in press) and Liu
et al. (2008), where numerous numerical results are presented and carefully
compared with the experimental results.
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