Learning Latent Factor Models of Human Travel

Michael Guerzhoy 1, 2 Aaron Hertzmann 1, 3
2 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper describes probability models for human travel, using latent factors learned from data. The latent factors represent interpretable properties: travel distance cost, desirability of destinations, and affinity between locations. Individuals are clustered into distinct styles of travel. The latent factors combine in a multiplicative manner, and are learned using Maximum Likelihood. The resulting models exhibit significant improvements in predictive power over previous methods, while also using far fewer parameters than histogram-based methods. The method is demonstrated on travel data from two sources: geotags from a social image sharing site (Flickr), and GPS tracks from Shanghai taxis.
Type de document :
Communication dans un congrès
NIPS Wokshop on Social Network and Social Media Analysis: Methods, Models and Applications, Dec 2012, Lake Tahoe, Nevada, United States. 2012
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00756192
Contributeur : Thoth Team <>
Soumis le : jeudi 22 novembre 2012 - 15:42:13
Dernière modification le : mercredi 11 avril 2018 - 01:58:59
Document(s) archivé(s) le : samedi 23 février 2013 - 03:45:32

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00756192, version 1

Collections

Citation

Michael Guerzhoy, Aaron Hertzmann. Learning Latent Factor Models of Human Travel. NIPS Wokshop on Social Network and Social Media Analysis: Methods, Models and Applications, Dec 2012, Lake Tahoe, Nevada, United States. 2012. 〈hal-00756192〉

Partager

Métriques

Consultations de la notice

473

Téléchargements de fichiers

285