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Abstract

RNA locally optimal secondary structures provide a concise and exhaustive description of all possible secondary
structures of a given RNA sequence, and hence a very good representation of the RNA folding space. In this paper,
we present an efficient algorithm which computes all locally optimal secondary structures for any folding model
that takes into account the stability of helical regions. This algorithm is implemented in a software called regliss
that runs on a publicly accessible web server: http://bioinfo.lifl.fr/RNA/regliss.

1 Introduction

Noncoding RNAs (ncRNAs) play a wide range of roles in the cell (Mattick & Makunin, 2006), and for
many of them, the function is mainly determined by their three dimensional structure. A single stranded
RNA folds upon itself to form base pairs, which shape the secondary structure of the molecule, and
act as a scaffold for the three dimensional folding. Knowing the secondary structures is thus of critical
importance to understand the function of an RNA molecule. The earliest algorithms for the RNA folding
problem appeared in the late 70’s, see (Eddy, 2004) for a survey. Such algorithms take as input a single
stranded RNA sequence and output a single secondary structure possessing minimum free energy.

However, it became clear early on that computing the single minimum free energy folding is not
enough. For a number of reasons, the biologically correct structure is often not the optimal one, but
rather a structure within a small percentage deviation of the minimum free energy. Firstly, slight changes
in the thermodynamic model may produce very different foldings with a similar energy level. Secondly,
the thermodynamic model does not allow for pseudoknots or base triplets, and it does not reflect the
interactions of the RNA with other molecules in the cell. Thirdly, some biological processes involve
switches, changes of conformation in RNA structures.

All of these reasons make it important to be able to predict multiple foldings, also called suboptimal
foldings, that allow for a deeper insight at the RNA folding space. Moreover, being able to compute
alternative structures may also be useful in designing RNA sequences which not only have low folding
energy, but whose folding landscape would suggest rapid and robust folding.

Several programs produce suboptimal foldings of RNA, including mfold/unafold (Zuker, 1989), RNA-
subopt (Wuchty et al., 1999) and RNAshapes (Steffen et al., 2006).
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Unfortunately, as we will see in Section 2, none of these tools are fully suitable for an exhaustive
enumeration of all possible secondary structures. To address this problem, Clote introduced the con-
cept of locally optimal secondary structures (Clote, 2005a). A secondary structure is locally optimal if no
base pairs can be added without creating a conflict, such as introducing a pseudoknot or a base triplet.
The set of locally optimal secondary structures can be seen as a concise description of the space of all
secondary structures, because each secondary structure is included in a locally optimal secondary struc-
ture. Clote proposed a dynamic programming algorithm to enumerate such structures. One drawback
of this approach is that it uses the Nussinov-Jacobson model (Nussinov & Jacobson, 1980), which does
not produce realistic secondary structures. The problem of locally optimal secondary structures with
an accurate folding model has been recently addressed in (Lorenz & Clote, 2011). The authors present
an algorithm to compute the partition function over all locally optimal secondary structures of a given
RNA sequence, extending the McCaskill’s classical algorithm (J., 1990). This method however does not
effectively produce the set of locally optimal secondary structures.

In this paper, we introduce a novel approach to generate all locally optimal secondary structures
assembled from a set of thermodynamically stable helices. We propose an efficient algorithm for this
problem, which relies on decomposition of secondary structures into structures maximal for juxtaposition.
As far as we know, this property has never been formulated or used to study locally optimal secondary
structures. The paper is organized as follows. Section 2 presents some background information on sub-
optimal and locally optimal secondary structures. Section 3 details our folding algorithms for the locally
optimal structures. For pedagogical reasons, we first expose the main outlines of the algorithm for the
simplistic Nussinov-Jacobson model (Section 3.1). We then explain how to adapt it to deal with ther-
modynamically stable helices (Section 3.2). Section 4 discusses the implementation. Finally, Section 5
presents some experimental results. All proofs are available in Supplementary Material.

2 Background

We give a brief overview of the main suboptimal and locally optimal RNA folding methods.

mfold/unafold (Zuker, 1989). The algorithm returns a sample set of the foldings by considering all possible
base pairs and by computing the best folding that contains this base pair. The suboptimality level option
further selects the suboptimal candidates to return only those within a given free energy range. The re-
sult is that not all possible structures need to be computed, which speeds up computational time. As a
counterpart, even with 100% suboptimality level, the algorithm does not provide all possible suboptimal
secondary structures. The number of calculated structures is intrinsically bounded by the number of
possible base pairs, whatever the suboptimality percentage is: it is quadratic in the length of the input
sequence. By construction, secondary structures that contain at least “two different places” of subopti-
mality are not provided by the algorithm (Figure 1, top). Another consequence is that the algorithm can
output secondary structures that contain another secondary structure with a better free energy (Figure 1,
bottom).

RNAsubopt (Wuchty et al., 1999). Another possibility to produce suboptimal structures is to modify the
standard folding algorithm in order to output all secondary structures within a given energy range above
the minimum free energy. However, if the threshold is set too low, not much variation is possible, and if
it is set too high, too many structures may be generated for the reasonable evaluation. For example, the
toy sequence of Figure 1 provides 4 structures within the energy range 10%, and 177 structures within the
energy range 30%. The number of structures returned grows exponentially with both sequence length
and energy range, and many structures are very similar.

RNAshapes (Steffen et al., 2006) organizes the suboptimal foldings to explore the folding space into classes
of abstract shapes and reduces the potential exponential number of structures to a few classes. But two
secondary structures with no common base pairs can be classified in the same shape.

Locally optimal secondary structures. The critical evaluation of these software programs suggests that there
is a need of formal definitions for suboptimal secondary structures, that would correspond to local min-
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ACACAAAAGUGUGAAAAACACACAAAAGUGUAAAAUGUGAAACACACAAAAAGUGUGAAACACA
1 ((((....(((((.....)))))....))))....((((...(((((.....)))))...)))) (-17.20)
2 .((((....))))....((((......))))....((((...(((((.....)))))...)))) (-14.40)
3 ((((....(((((.....)))))....))))....((((.....))))....(((.....))). (-13.50)
4 ........((((.....((((......))))...........(((((.....)))))..)))). (-13.50)
5 ((((....(((((.....)))))............((((.....))))....))))........ (-12.50)
6 ........(((((.....)))))....((((...........(((((.....)))))..)))). (-12.42)
7 ((((....(((((.....)))))....((((..........)))).......))))........ (-12.40)
8 .(((....(((((.....)))))....((.....)))))...(((((.....)))))....... (-12.10)
9 ........(((((.....)))))....((.....))(((...(((((.....)))))...))). (-11.50)
10 ........((((........((((...........))))...(((((.....)))))..)))). (-12.10)
11 .((((...(((((....((((((....)))).....))....)))))......))))....... (-11.30)
12 ........((((......(((((....((((............)))).....)))))..)))). (-10.30)
13 ........((.......((((......))))...))(((...(((((.....)))))...))). (-7.50)

? .((((....))))....((((......))))....((((.....))))....(((.....))). (-10.80)

CACACAUAGGAACCUCCACUAAGGAUUCUAUGGACAGUCGAUGCAGGGAGUUCACAGCUCCCUGCAUCGGCGAUUUU
1 ....(((((((.(((......))).)))))))....(((((((((((((((.....)))))))))))))))...... (-40.4)
2 ....(((((((.(((......))).)))))))((..(((((((((((((((.....)))))))))))))))..)).. (-37.3)

Figure 1: (Top) unafold output on a toy sequence (64 nt) with 100% suboptimality. This software produces 13 subopti-
mal secondary structures, displayed in Vienna bracket-dot format, whose free energy ranges from −17.20 kcal/mol
to −7.50 kcal/mol. It misses the structure ? of free energy −10.80 kcal/mol, composed of four stem-loops. Each of
these stem-loops has been identified by unafold (in structures #2 and #3), but the algorithm is not able to recover
the four stem-loops in a same structure. (Bottom) unafold output on sequence AY545598.5 (37939-38015), RF00107 (77
nt). Structure #2 contains structure #1, and has a higher free energy level. Nevertheless, it is selected in the space of
suboptimal structures, because it is the optimal structure containing base pair (33, 75).

ima in the free energy landscape. The notions of saturated structures and locally optimal secondary struc-
tures meet this requirement. In (Zuker & Sankoff, 1984) and (Evers & Giegerich, 2001), a secondary
structure is saturated when the stacking regions are extended maximally in both directions: No base pairs
can be added at the extremity of a stacking region without degrading the free energy. Moreover, there
is no isolated base pair. In (Clote, 2005a), a secondary structure is locally optimal when no base pairs can
be added without creating a conflict: either crossing pairings, or a base triplet. The main drawback of
Clote’s result is that the algorithm relies on the Nussinov-Jacobson folding model. As a consequence, the
number of locally optimal secondary structures is very large, and many of them are not thermodynam-
ically stable in the Nearest Neighbor model. For example, the toy sequence of Figure 1 produces 1107
optimal secondary structures having 18 base pairs, 197,501 locally optimal secondary structures having
17 base pairs, and more than 6 millions of locally optimal secondary structures having 16 base pairs. The
work that we present here is inspired by this research. We start with the nice topological definition of
locally optimal secondary structures, and extend it to take into account the stability of helical regions. In
this context, locally optimal secondary structures are also saturated structures.

3 Algorithms

3.1 Folding at base pair resolution

We begin by considering locally optimal secondary structures for a simple model: All base pairs are
independent, like in the Nussinov-Jacobson model. This model is mainly interesting for pedagogical
purposes, because it allows us to provide basic definitions and ideas. We shall explain in Section 3.2 how
to extend this to energetically stable helices to take into account interactions between adjacent base pairs.
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3.1.1 Definitions

Let α be an RNA sequence of length n over the alphabet {A,C,G,U}: α = α1α2 . . . αn. A base pair (x, y)
on α is an ordered pair of natural numbers such that 1 ≤ x < y ≤ n. Base pairs are sorted according
to the lexicographical order on their positions on the sequence: (x, y) is smaller than (z, t) if x < z, or if
x = z and y < t. Given a set BP of base pairs on α, a structure is any subset of BP. We denote the empty
structure by ε. A secondary structure on BP is a subset of BP such that any two distinct base pairs of S are
either nested or juxtaposed:

• (x, y) is nested in (z, t) if z < x < y < t,
• (x, y) is juxtaposed with (z, t) if z < t < x < y.

The base pairs (x, y) and (z, t) are nested, if (x, y) is nested in (z, t) or (z, t) is nested in (x, y). The base
pairs (x, y) and (z, t) are juxtaposed, if (x, y) is juxtaposed with (z, t) or (z, t) is juxtaposed with (x, y).
Two base pairs that are neither nested nor juxtaposed are said to be conflicting.

Definition 1. Let S and T be two structures on BP. S is strictly included in T , or T is a strict extension of S,
if any base pair of S is present in T , and there exists a base pair of T that is not in S.

Definition 2. Let S be a secondary structure structure on BP. S is locally optimal if it satisfies the following
condition: If T is a structure that is strict extension of S, then T is not a secondary structure.

In other words, a secondary structure is locally optimal if no base pairs can be added without produc-
ing conflict. It follows that any secondary structure is included in a locally optimal structure. We give in
Figure 2 an example of a set of base pairs and all its locally optimal secondary structures, that will serve
as a running example throughout this paper.

The set of all locally optimal secondary structures is potentially very large: It can be exponential in `,
the number of base pairs in BP. The exact upper bound, 3`/3, can be calculated by rephrasing the problem
in terms of Maximal Independent Sets. The set of vertices is BP and an edge links two conflicting base
pairs. The locally optimal structures are exactly the Maximal Independent Sets of the graph (see Figure 1
in Supplementary Materials).

The idea of our algorithm is to reduce the combinatorics by taking advantage of properties of nested
and juxtaposed relations, such as transitivity, to achieve a good running time in practice. We divide the
construction of locally optimal structures into two steps: First applying only juxtaposition operations,
then applying only nesting operations. Structures are thus decomposed into horizontal levels of juxta-
posed base pairs. For that we need two more notations. Given a structure S, Toplevel(S) is defined as the
set of base pairs of S that are not nested in any base pair of S. Given a base pair (x, y) in S, Nested(x, y, S)
is the set of base pairs of S that are nested in (x, y) and that are not nested in any base pair nested in (x, y).
These levels induce a partition of S: S = Toplevel(S) ∪

⋃
(x,y)∈S Nested(x, y, S)

It is routine to verify that S is a secondary structure if, and only if, any two base pairs of Toplevel(S) are
juxtaposed, and for each (x, y) of S, any two base pairs of Nested(x, y, S) are juxtaposed. One important
result for our algorithm is that the property for a secondary structure to be locally optimal can be testified
by looking only at the Toplevel and Nested subsets. We will show that these subsets must be maximal for
juxtaposition.

Definition 3. Let S be a structure on BP. S is maximal for juxtaposition if it satisfies the two following
conditions:

(i) if b and b′ are two distinct base pairs in S, then b and b′ are juxtaposed,
(ii) if b is a base pair of BP not present in S such that {b} ∪ S is a secondary structure, then b is nested in some

base pair of S.

Figure 2-(c) gives examples of structures maximal for juxtaposition. The link between structures maximal
for juxtaposition and locally optimal secondary structures is established by Theorem 5.
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(a) Initial set of base pairs

141 2 3 4 6 7 8 10 11 12 1395

(b) Locally optimal secondary structures

51 2 4 6 7 8 10 11 12 139 14 1 3 6 7 8 10 11 12 1395 14 2 4 7 8 10 12 13

(c) Structures maximal for juxtaposition

51 6 7 8 9 14 2 4 12 1310

(d) From structures maximal for juxtaposition to locally optimal secondary structures

1 6 7 8 9 14

2 4 12 13105

1 3 6 7 8 10 11 12 1395 14

1 2 4 6 7 8 10 11 12 139 14

2 4 7 8 12 135 10

BP[10..13] :{(10, 11), (12, 13)}
Locally optimal secondary structures on

Locally optimal secondary structures on

BP[3..3]: none,

BP[8..7]: none,BP[2..5] :{(2, 4)} and {(3, 5)},

BP[6..9] : {(7, 8)}, BP[13..12]: none

Figure 2: Example and construction of locally optimal secondary structures. (a) The sequence
has 8 base pairs. (b) This set of base pairs contains three locally optimal secondary struc-
tures: {(1, 6), (2, 4), (7, 8), (9, 14), (10, 11), (12, 13)}, {(1, 6), (3, 5), (7, 8), (9, 14), (10, 11), (12, 13)} and
{(2, 4), (5, 10), (7, 8), (12, 13)}. (c) It can form two structures maximal for juxtaposition, {(1, 6), (7, 8), (9, 14)}
and {(2, 4), (5, 10), (12, 13)}. (d) The first structure maximal for juxtaposition extends to the two first locally optimal
secondary structures. The second one extends to a single locally optimal secondary structure.

5



Theorem 1. A structure S on BP is a locally optimal secondary structure if, and only if,

(i) Toplevel(S) is maximal for juxtaposition on BP[1..n],
(ii) for each base pair (x, y) of S, Nested(x, y, S) is maximal for juxtaposition in BP[x+ 1..y − 1]

BP[x..y] denotes the subset of BP composed of base pairs (z, t) such that x ≤ z < t ≤ y. The proof of
Theorem 5 is given in Supplementary materials. Figure 2-(d) gives an illustration of the Theorem.

3.1.2 Construction of structures maximal for juxtaposition

We show how to efficiently construct the structures maximal for juxtaposition. For each pair of positions
i and j of α, we define the set of secondary structures MJ(i, j) as follows.

1. If i ≥ j, then MJ(i, j) = {ε}

2. otherwise, if there is no base pair (i, y), i < y ≤ j, in BP, then MJ(i, j) = MJ(i+ 1, j).

3. otherwise

MJ(i, j) =
⋃{ ⋃

(i,y)∈BP[i..j]{(i, y)} ⊕ MJ(y + 1, j) (a)⋂
(i,y)∈BP[i..j] Filter((i, y),MJ(i+ 1, j)) (b)

The operator ⊕ denotes the concatenation of a base pair to a set of structures: S is in {(i, y)} ⊕MJ(y+1, j)
if, and only if, there exists S′ in MJ(y + 1, j) such that S = {(i, y)} ∪ S′. In rule (3b), a Filter function
is used to check the maximality of structures. It is defined as follows: Given a base pair b, and a set of
secondary structures R, the secondary structure S of R is in Filter(b,R) if, and only if, there exists a base
pair b′ in S such that b and b′ are conflicting. We have the following Theorem.

Theorem 2. Let i and j be two positions on α. MJ(i, j) is exactly the set of all structures maximal for juxtaposition
on BP[i..j].

The question is now how to implement the formula to compute MJ(i, j). The recurrence relation
naturally suggests to use dynamic programming with a two dimensional table, indexed by i and j. This
can be further refined. A close inspection at Theorem 5 shows that not all pairs of positions i and j are
useful for the computation of locally optimal secondary structures: We only need MJ(x+ 1, y − 1) for all
base pairs (x, y) of BP, and intermediate values necessary to obtain MJ(x + 1, y − 1). So we should only
consider pairs of positions of the form (k, y − 1) with x < k < y and (x, y) in BP. The last point that
we want to make here is that in the rule (3b), the computation of Filter((x, y),MJ(i, j)) requires at most
O(y − x) tests for every structure S ∈ MJ(i, j). Indeed, given a structure S in MJ(i, j), let b be the first
base pair of S not nested in (x, y). S belongs to Filter((x, y),MJ(i, j)) if, and only if, such a b exists and is
conflicting with (x, y).

3.1.3 Construction of locally optimal secondary structures

We now explain how to compute the set of locally optimal secondary structures from the set of structures
maximal for juxtaposition. The stepping stone is Theorem 5, stated in Section 3.1.1. This result allows us
to view the set of locally optimal secondary structures as the set of ordered rooted tree whose vertices are
labeled by structures maximal for juxtaposition. More precisely, each tree is such that:

• The root is labeled by an element of MJ(1, n),
• Each node is labeled by an element w of MJ(x+ 1, y − 1) for some base pair (x, y) of BP,
• The out-degree of a node labeled by w is the number of base pairs of w,
• The ith child of a node labeled by w is labeled by an element of MJ(x+ 1, y − 1), where (x, y) is the
ith base pair of w.
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(a) (b) (c)

141 2 4 6 7 8 10 11 12 139

MJ(10, 13)[0] = {(10, 11), (12, 13)}MJ(8, 7) = {ε}

MJ(1, 14)[0] = {(1, 6), (7, 8), (9, 14)}

MJ(3, 3) = {ε}

MJ(2, 5)[0] = {(2, 4)}

MJ(13, 12) = {ε}MJ(11, 10) = {ε}

(10, 13, 0)

(2, 5, 0)

(1, 14, 0)

141 3 6 7 8 10 11 12 1395 MJ(8, 7) = {ε}

MJ(10, 13)[0] = {(10, 11), (12, 13)}MJ(2, 5)[1] = {(3, 5)}

MJ(1, 14)[0] = {(1, 6), (7, 8), (9, 14)}

MJ(11, 10) = {ε} MJ(13, 12) = {ε}MJ(4, 4) = {ε}

(10, 13, 0)

(2, 5, 1)

(1, 14, 0)

52 4 7 8 10 12 13

MJ(8, 7) = {ε}

MJ(6, 9)[0] = {(7, 8)}

MJ(1, 14)[1] = {(2, 4), (5, 10), (12, 13)}

MJ(3, 3) = {ε} MJ(13, 12) = {ε}

(6, 9, 0)

(1, 14, 1)

Figure 3: (a) Locally optimal secondary structures of Figure 2. (b) Associated ordered trees. MJ(i, j)[k] denotes the
kth element of MJ(i, j). (c) Content of the stack at the end of each iteration of the algorithm of Figure 4 (lines 5, 6
and 7). MJ(i, j)[k] is symbolized by the triplet (i, j, k). Each cell of the stack corresponds to an internal node of the
underlying tree depicted in (b). For example, at iteration 1, the line 5 pushes the triplet (1, 14, 0), corresponding to
MJ(1, 14)[0] = {(1, 6), (7, 8), (9, 14)}, then the nested structures are pushed.

Figure 3-(c) gives the three possible trees for the locally optimal secondary structures of the example of
Figure 2. This representation brings an effective way to compute all locally optimal secondary structures.
The enumeration of all possible such trees can be done easily with a push-down stack whose elements
are structures maximal for juxtaposition. The pseudo-code of the algorithm is given in Figure 4, and an
example of run is given on Figure 3-(d). At each iteration of the algorithm, the stack contains a different
locally optimal secondary structure. The height of the stack is bounded by `′, the maximal number of
structures maximal for juxtaposition present in the locally optimal secondary structure. This value is
much smaller than the number of base pairs of the output structure, and thus smaller than the total size
of BP. Each iteration of the loop is then done in time O(`′). Subsequently, the construction of all locally
secondary structures can be performed in time linear in the size of the output, that is the total number of
base pairs of all locally optimal secondary structures.

3.1.4 Back to Clote’s algorithm

In Section 2, we mentioned the seminal work of (Clote, 2005a) on counting locally optimal secondary
structures for the Nussinov-Jacobson model. This work uses a clever optimization based on the notion
of visible bases and visible positions. Given a secondary structure S, a visible position p in S is a position
outside any base pair of S: ∀(x, y) ∈ S, p < x ∨ y < p. By extension, a character c ∈ {A,C,G,U} is
visible in S if there exists a visible position p such that c = αp. Let v ⊂ {A,C,G,U} be a subset of the
alphabet, and let Loc(i, j)[v] be the set of locally optimal structures between positions i and j where the
bases v, and only these bases, are visible. Then Loc(i, j), the set of all locally optimal structures between
positions i and j, is the union of the different Loc(i, j)[v] for all v ⊂ {A,C,G,U}.

Let now fix a given set of allowed pairings. For example, one can consider only Watson-Crick base
pairs, taking for BP, the set of possible base pairs, the following WC set:
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1 push(1, n, -1)
2 repeat
3 pop(i, j, k) until MJ(i,j)[k+1] exists or stack is empty
4 if the stack is empty, and no MJ(i,j)[k+1] have be found, then exit
5 push(i, j, k+1)

\\ consider MJ(i,j)[k+1]
6 init-down(i, j, k+1)

\\ recursively push on the stack a structure nested in MJ(i,j)[k+1]
\\ (initialisation by choosing the first MJs)

7 init-right(i, j)
\\ recursively push on the stack a structure juxtaposed to MJ(i,j)[k+1],
\\ and compatible with the elements in the stack
\\ (initialisation by choosing the first MJs)

8 output stack content
9 end repeat

Figure 4: Enumeration of all locally optimal secondary structures from the set of all structures maximal for juxta-
position. Each iteration of the loop outputs one locally optimal structure. MJ(i, j)[k] denotes the kth element of
MJ(i, j).

WC = {(x, y) | 1 ≤ x < y ≤ n and ({αx, αy} = {A,U} or {αx, αy} = {C,G})}

The sets of locally optimal structures can then be computed in a very efficient way:

Loc(i, j)[v] =
⋃{ ⋃

(i,y)∈WC[i..j]{(i, y)} ⊕ Loc(i+ 1, y − 1) ⊕ Loc(y + 1, j)[v]

Loc(i+ 1, j)[v − {αi}] ∪ Loc(i+ 1, j)[v − {αi, αi}]

In the second line, αi is the complementary base of αi. As this base αi is never visible in the locally
optimal structures in Loc(i + 1, j)[v − {αi}] and Loc(i + 1, j)[v − {αi, αi}], that guarantees that all such
structures are also locally optimal on WC[i..j] : no Filter function is further required.

It is possible to take advantage of this optimization and to combine it with our construction method
through structures maximal for juxtaposition. We obtain the following recurrence relation for this con-
struction:

MJ(i, j)[v] =
⋃{ ⋃

(i,y)∈WC[i..j]{(i, y)} ⊕ MJ(y + 1, j)[v]

MJ(i+ 1, j)[v − {αi}] ∪ MJ(i+ 1, j)[v − {αi, αi}]

The construction of locally optimal secondary structures from structures maximal for juxtaposition
(as described in Theorem 5) is then unchanged. The same optimization can be adapted to some larger BP
sets, including for example the wobble G–U pairs. However, the efficiency of the method relies on a set of
fixed base pairs, independently of their positions: our algorithm allows far more flexibility, constructing
locally optimal structures on any initial set of base pairs BP.

3.2 Folding at helix resolution

In this section, we extend the construction of locally optimal secondary structures to the framework of
energetically favorable helices. This model is likely to produce more biologically realistic structures,
because it takes into account the stacking energy between base pairs, such as introduced in the Nearest
Neighbor model (Matthews et al., 1999) for example.

3.2.1 Definitions

We admit a generic definition for helices. It is an ordered set of base pairs {(x1, y1), . . . , (xk, yk)} such that
x1 < . . . < xk, and y1 > . . . > yk. It can contain bulges and internal loops. The 5’ arm of the helix is the
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set of positions x1, . . . , xk, and the 3’ arm is the set of positions y1, . . . , yk. We denote by f.5start, f.5end,
f.3start and f.3end the first position of the 5’ arm, the last position of the 5’ arm, the first position of the
3’ arm and the last position of the 3’ arm respectively. Given two distinct helices f and g, we define four
different relations between f and g:

• g is nested in f if f.5end < g.5start and g.3end < f.3start, (in this case, any base pair of g is nested
in any base pair of f ),

• g is juxtaposed with f if f.3end < g.5start, (in this case, any base pair of g is juxtaposed with any
base pair of f ),

• g is embedded in f if any base pair of g is also a base pair of f ,
• otherwise, f and g are said to be conflicting,

The concepts of structures, secondary structures, strict inclusion (Definition 1) and locally optimal sec-
ondary structures (Definition 2) on base pairs can easily be adapted to helices:

• A structure is any subset of H. Given a structure S on BP, S is described by the structure {f1, . . . , fk}
on H, if S = f1 ∪ · · · ∪ fk.

• A secondary structure is any subset of H such that any two helices are either nested or juxtaposed.
• Given two structures {f1, . . . , fk} and {g1, . . . , gj} of H, we say that {f1, . . . , fk} is strictly included

in {g1, . . . , gj} if the set of base pairs f1 ∪ · · · ∪ fk is strictly included in g1 ∪ · · · ∪ gj .
• A secondary structure {f1, . . . , fk} of H is locally optimal if it satisfies the following condition: If
{g1, . . . , gj} is a structure on H that is a strict extension of {f1, . . . , fk}, then {g1, . . . , gj} is not a
secondary structure on H.

From now on, we assume that we have a set H of helices of size `, and we work with structures defined
on H. We also assume that helices of H are ranked from 1 to ` according to a total helix ordering <, and
that the order verifies f < g ⇒ f.5start < g.5start. Given two helices f and g in H, H[f..g] denotes the
subset of H composed of helices whose all base pairs are in the interval [f.5start..g.3end], and H]f..g[ the
subset of H composed of helices whose all base pairs are in the interval ]f.5end..g.3start[. As before, for a
structure F on H, Toplevel(F ) is defined as the set of helices of F that are not nested in any helix of F and
Nested(f, F ) is the set of helices of F that are nested in the helix F , and that are not nested in any helix
nested in f .

We now turn to the problem of constructing all locally optimal secondary structures for a set of he-
lices. The two-step method described in Section 3.1 is still valid: First considering structures maximal
for juxtaposition and constructing them by dynamic programming, then recovering locally optimal sec-
ondary structures on the fly with a push-down stack. However, the algorithm needs some adaptation to
take into account the existence of embedded helices and the fact that some helices can combine to form
other helices present in the input set.

3.2.2 Construction of structures maximal for juxtaposition

Definition 3 for base pairs can be adapted to helices.

Definition 4. Given a set of helices H, and a structure F on H, F is maximal for juxtaposition if it satisfies the
two following conditions:

(i) if f and g are two distinct helices of F , then f and g are juxtaposed,
(ii) if f is a helix of H not present in F such that {f}∪F is a secondary structure on H, then f is nested in some

helix of F .

As in Section 3.1, we define for each pair of helices f and g of H a set of secondary structures MJ(f, g)
that contains all structures maximal for juxtaposition for H[f..g].
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1. If f.5start > g.3end, then MJ(f, g) = {ε}

2. otherwise, if f.3end > g.3end, then MJ(f, g) = MJ(f + 1, g)

3. otherwise

MJ(f, g) =
⋃{

{f} ⊕ MJ(nextJuxt(f), g) (3a)
Filter(f,MJ(f + 1, g)) (3b)

Now ⊕ denotes the concatenation of a helix to a set of structures, f + 1 denotes the next helix (wrt the
helix ordering) after f and nextJuxt(f) denotes the smallest helix (wrt the helix ordering) juxtaposed with
f . The definition of Filter is a straightforward translation from the definition on base pairs to helices:
Given a helix h and a set of secondary structures R on H, the secondary structure S of R is in Filter(h,R)
if, and only if, there exists a helix h′ in S such that h and h′ are neither nested nor juxtaposed. We then
have a result analogous to the Theorem 6.

Theorem 3. For each pair of helices f and g of H, MJ(f, g) is exactly the set of structures maximal for juxtaposition
on H[f..g].

3.2.3 Construction of locally optimal secondary structures

The construction of locally optimal secondary structures must take into account the fact that different
sets of helices can describe the same base pair secondary structure in some cases. This happens when
two nested helices can combine to form a new helix. See Figure 5-a. Of course, the algorithm should
output only one structure. To address this problem, we introduce the definition of strong nestedness.
Intuitively, two helices of are strongly nested, if each time they occur simultaneously in a locally optimal
secondary structure, they can be merged into a single helix.

Definition 5. Let f and g be two helices, such that g is nested in f . Helix g is strongly nested in f , if for any
helix h which is either juxtaposed with g, or in which g is nested, then h is not nested in f . The set of helices H is
closed under strong nestedness if for any two helices f and g of H such that g is strongly nested in f , then f ∪ g
is also in H.

For any set of helices H, it is easy to construct its closure under strong nestedness by iteratively adding
a new helix obtained by merging two strongly nested helices until the set is closed (see Figure 5-a). The
set of locally optimal secondary structures is unchanged. From now on, we assume that the set of input
helices H is closed under strong nestedness. In this context, we show that each locally optimal secondary
structure can be written in a unique way as the combination of helices that are mutually not strongly
nested. We call such structures canonical structures.

Definition 6. A structure F is canonical if any two helices of F are not strongly nested.

Property 1. Let H be a set of helices closed under strong nestedness, and let G be a locally optimal secondary
structure on H. There exists a unique canonical structure F , such that F and G describe the same base pairs
structure.

So the problem of computing all locally optimal secondary structures reduces to construct all canoni-
cal locally optimal secondary structures. How to solve it ? In Section 3.1, we saw that locally optimal
secondary structures for base pairs could be obtained exactly from structures maximal for juxtaposition.
Here, each locally optimal secondary structure can still be decomposed into levels of helices that are
maximal for juxtaposition. However, the reciprocal result is no longer true. Figure 5-b shows an example
where some combination of structures maximal for juxtaposition gives a secondary structure that is not
locally optimal. This fact comes from the existence of embedded helices. So we have to identify which
combinations of structures maximal for juxtaposition lead to locally optimal secondary structures. With
canonical secondary structures, the local optimality could be established by looking at all helices not
present in the structure. This allows us to formulate a simple condition that guarantees that a given helix
in a secondary structure cannot be replaced by an embedding helix.
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Figure 5: (Left, a.) This helix set contains six helices, numbered from 1 to 6. The union of helices 1 and 3 gives
the same set of base pairs as the union of helices 2 and 4. Thus {1, 3} and {2, 4} are two descriptions of the same
structure on base pairs. Helix 3 is strongly nested in helix 1, and helix 4 is strongly nested in helix 2. The closure is
obtained by adding the helix 1 ∪ 3. The locally optimal secondary structures are {1 ∪ 3}, {2, 5}, {4, 6}, and {5, 6}.
(Right, b.) Structures maximal for juxtaposition and locally optimal secondary structures on helices. The set of
helices H contains seven elements, ranked according to a helix ordering. Helix 5 is embedded in helix 3. There are
five structures maximal for juxtaposition for H[1..3]: {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}. There are six locally optimal
secondary structures: {1, 3, 7}, {1, 4, 6}, {1, 4, 7}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}. Importantly, the structure {1, 5, 7} is not
locally optimal, even if its substructures at Toplevel and Nested levels are maximal for juxtaposition. The reason is
that it is strictly included in {1, 3, 7}.

Definition 7. Let f be a helix of H, and T be a subset of H. We say that f fulfills the condition (?) in T if for any
helix h of H such that f is embedded in h, h is conflicting with some helix of T .

On Figure 5-b, the helix 5 does not fulfill the condition (?) in the structure {1, 5, 7}, as the helix 3 is not
conflicting with any helix of the structure. Finally, Theorem 5 on base pairs is replaced by Theorem 8 on
helices.

Theorem 4. Let F be a canonical secondary structure on H. F is locally optimal if, and only if, it fulfills the two
following properties:

(i) Toplevel(F ) is maximal for juxtaposition,
(ii) for each helix f of F , Nested(f, F ) is maximal for juxtaposition on H]f..f [, Nested(f, F ) is not a single

helix, and f fulfills the condition (?) in F .

It follows that the construction of locally optimal secondary structures from the sets of structures
maximal for juxtaposition can be performed using the same algorithm described in Section 3.1.3 and on
Figure 4, based on a push-down stack whose elements are structures maximal for juxtaposition. The only
difference, at line 5 (push of an element) and at lines 6 and 7 (push of nested and juxtaposed structures),
is that structures containing exactly one helix (Condition (ii)-b of Theorem 8), and the structures that do
not meet the (?) condition (Condition (ii)-c of Theorem 8) are not pushed on the stack.

4 Implementation and availability

The algorithm for locally optimal secondary structures with helices was implemented in C in a soft-
ware called regliss (for RNA energy landscape and secondary structures). It is freely available on the server:
http://bioinfo.lifl.fr/RNA/regliss. The input of regliss is an RNA sequence together with a
set of putative helices given by the user. The helices can also be computed directly by the server from the
RNA sequence. The output is the set of all locally optimal structures, sorted according to the free energy
as computed with rnaeval (Hofacker et al., 1994). We also produce an energy landscape graph, useful for
visualizing at a glance all found structures.

Running times. We show on Table 1 the running times of regliss for a selection of RNA sequences.
The program was run on a Athlon Core 2 Duo with 2 GB RAM. The running time mainly depends of

11



sequence number of number of running
sequence family species length helices structures time

tRNA – RF00005 S. pombe 76 nt 54 511 < 0.2 s
GcvB – RF00022 Enterobacter sp.1 208 nt 62 3663 0.08 s
SRP-euk-arch – RF00017 M. voltae 298 nt 76 49775 0.62 s
RNase P – RF00010 P. marinus 405 nt 76 93142 1.49 s
5S rRNA – RF00001 D. radiophilus 119 nt 124 304059 2.51 s
RNase P – RF00010 S. usitatus 358 nt 104 1071968 20.92 s

Table 1: Running times and output size of regliss for some RNA sequences.

the number of output structures. When there are only some hundred stuctures, regliss runs almost
instantaneoulsy. However, as the number of structures can be exponential is the number of putative
helices, regliss can be longer for some sequences.

5 Experimentations

5.1 Example on a SECIS element

SECIS elements (selenocysteine insertion sequence) occur in messenger RNAs encoding selenoproteins (Wal-
czak et al., 1996) and direct the cell machinery to translate UGA stop codons as selenocysteines. They
are around 60 nucleotides in length and adopt a stem-loop structure. Here we work with sequence
Y11109.1/1272-1330, from Oreochromis niloticus (RFAM RF00031 (Gardner et al., 2009)). We first ran un-
afold asking “all” suboptimal structures (100% suboptimality, option -P 100). This gives 30 structures,
displayed in Figure 6. The expected consensus secondary structure is not present in this set of structures.
We also observe that several predictions are redundant: structure #2 is a strict extension of structure #1,
structures #4 and #6 are both strict extensions of structure #3, and structure #20 is a strict extension of
structure #11. We kept all non-redundant structures, from them we extracted all putative helices. By do-
ing so, we obtained 39 helices and launched regliss on this helix set. regliss generates 192 locally optimal
secondary structures. Structure #14 found by regliss is consistent with the consensus structure provided
in RFAM for this family.

5.2 Comparison between regliss and unafold

We generalized the experiment of the previous paragraph, analyzing the size of the output of regliss
and comparing it to unafold on a large number of RNA sequences from RFAM database. We selected all
families of RFAM having sequences shorter than 200nt, then picked up five sequences randomly for each
family. This gives 5308 sequences. As in the preceding example, we run unafold with 100%-suboptimality,
and we provide regliss with helices coming from non-redundant suboptimal unafold structures. Fig-
ure 7 shows the number of structures found with regliss compared to the theoretical upper bound of
Section 3.1.1, as well as the number of structures produced by unafold on the same data. As expected,
unafold generates at most a quadratic number of suboptimal structures, even with a 100% suboptimality
level, whereas regliss produces an exponential number of locally optimal structures.

We then evaluated the free energy of each structure with rnaeval, and selected structures whose energy
is greater than or equal to 80% of the optimal energy (we call them “20%-suboptimality structures”). The
5308 sequences divide in three groups:

• 10% sequences: unafold finds more structures than regliss. Typically, some of these structures are
redundant, and are discarded by regliss;

• 25% sequences: unafold and regliss find the same number of 20%-suboptimality structures. In this

12



(a) All suboptimal structures found by unafold

GUUUCUCAGUGAAGGCUACAGAUUAAACCUCUGGCCUCUGGAGCCAGAUGCAUUGAAAC
RFAM <<<<<........<<<<.<<<<.....<<...>>..>>>>.>>>>.........>>>>>
1 .....((((((..(((((.((.......)).)))))((((....))))..))))))... (-15.7)
2 (((..((((((..(((((.((.......)).)))))((((....))))..))))))))) (-14.6)
3 .....((((((..((((.((((..............)))).)))).....))))))... (-14.14)
4 .....((((((..((((.((((.....((...))..)))).)))).....))))))... (-13.9)
5 (((((.(((...((((((.((.......)).)))))))))..((.....))...))))) (-13.2)
6 .....((((((..((((.((((.((......))...)))).)))).....))))))... (-12.7)
7 .....((((((..((............))((((((.......))))))..))))))... (-12.1)
8 (((((.((....((((((.((.......)).))))))(((....))).))....))))) (-11.9)
9 (((((...(((.....)))..........((((((.......))))))......))))) (-11.6)
10 (((((.(((...(((............))))))((.((((....)))).))...))))) (-11.2)
11 ..(((.(((...((((((.((.......)).))))))))))))................ (-11.1)
12 (((((((...((.(((((.((.......)).)))))))..)))..)))).......... (-10.7)
13 .....((((((.....((.....))....((((((.......))))))..))))))... (-10.6)
14 .....((((((.((........)).....((((((.......))))))..))))))... (-10.4)
15 .((((.....))))....((((.......))))((.((((....)))).))........ (-10.2)
16 (..(((..((..((((((.((.......)).)))))).....)).)))..)........ (-9.9)
17 .....(((((....((..((((.......))))...((((....)))).)))))))... (-9.7)
18 .((((.....))))...............((..((.((((....)))).))...))... (-9.3)
19 .....((((((.......((.........((((((.......))))))))))))))... (-9.1)
20 ..(((.(((...((((((.((.......)).)))))))))))).(((.....))).... (-9.1)
21 (((((...((................)).((((((.......))))))......))))) (-9.09)
22 ((((.((.(((.....))).))..)))).((((((.......))))))........... (-9.0)
23 .((((.....))))........((((...((((((.......))))))....))))... (-8.9)
24 ........((..((((((.((.......)).))))))(((....)))..........)) (-8.6)
25 .....((((((..((((..........((..........)))))).....))))))... (-8.6)
26 .....((((((............((....((((((.......))))))))))))))... (-8.2)
27 ((.(((......)))..))..........((((((.......))))))........... (-8.1)
28 .((((.....))))....(((........((((((.......))))))....))).... (-7.4)
29 ((((...(((....)))..))))......((((((.......))))))........... (-7.1)
30 .....((((((..((((......((..((...))....)).)))).....))))))... (-5.1)

(b) Structure found with regliss

GUUUCUCAGUGAAGGCUACAGAUUAAACCUCUGGCCUCUGGAGCCAGAUGCAUUGAAAC
RFAM <<<<<........<<<<.<<<<.....<<...>>..>>>>.>>>>.........>>>>>
14 (((((.((.....((((.((((.....((...))..)))).))))...))....))))) (-10.5)

Figure 6: Results for SECIS element (Y11109.1/1272-1330). (a) unafold results, all structures. (b) Structure # 14, not
found by unafold and found by regliss.
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Figure 7: Left: Number of structures produced by regliss on 5308 sequences from RFAM. The line is the 3`/3 theo-
retical upper bound. On average, there are 2.98 times more locally optimal structures than structures maximal for
juxtaposition. Right: Number of structures produced by unafold (100% suboptimality) on the same set on helices.
unafold never generates more than 84 structures.

group, almost all sequences have few putative helices and consequently a very small number of
20%-suboptimality structures (1205 sequences have at most 10 different 20%-suboptimality struc-
tures). Both programs often find exactly the same 20%-suboptimality structures;

• 65% sequences: regliss finds more 20%-suboptimality structures than unafold, and so offers a larger
variety of structures.

5.3 Structured versus random sequences

In (Clote, 2005a), it is proved that for some families, structured RNA has a different folding landscape
than random RNA of the same dinucleotide frequency. We reproduce here this experimentation using
regliss. We used the sequence of a Hammerhead type III ribozyme sequence, that is also used in (Clote,
2005a). For this sequence, we generated 100 randomized sequences with the same length and the same
dinucleotide composition. This computation has been performed with the dishuffle program1 that imple-
ments the dinucleotide shuffle algorithm described in (Altschul & Erickson, 1985). We then compared
the distributions of locally optimal secondary structures between these randomized sequences and the
initial sequence. Result is shown on Figure 8. Graphs obtained with regliss are even more convincing
that those obtained with RNALOSS. Figure 8 also shows graphs obtained on a 5S rRNA and on a tRNA
sequence. Again, these tend to confirm that the folding landcapes, seen as the distribution of locally
optimal structures, are different between structured RNAs and random sequences.

6 Conclusion

We introduced a novel approach to produce locally optimal secondary structures of an RNA sequence,
which enables us to break down the complexity of the problem into simpler steps. This work shows that
all locally optimal secondary structures of a given RNA can effectively be computed. From a practical
point of view, these structures can also be filtered out using some post-processing criterium such as the
free energy or the shape of the structure. This is a fruitful alternative to existing software programs,
and the set of locally optimal secondary structures brings a new look into the folding space of an RNA
sequence. Another advantage of the method is that the user can provide its own set of helices, based on
the thermodynamic Nearest Neighbour model or any other model.

1http://clavius.bc.edu/clotelab/RNAdinucleotideShuffle
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Figure 8: Top: Density of locally optimal secondary structures of Hammerhead type III ribozyme (54 nt, RFAM
RF0008, AF170503) versus average density of all locally optimal secondary structures of 100 random sequences of
same dinucleotide frequency and same length. Left: RNALOSS results (Figure from (Clote, 2005a)), right: regliss
results. Below: same experiment with 5S rRNA (RFAM RF00001, DQ397844.1/16860-16979), and tRNA (E.coli
PDB 00313).
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Supplementary Materials

Proof of Theorem 1 – Section 3.1.1

Theorem 5. A structure S on BP is a locally optimal secondary structure if, and only if,

(i) Toplevel(S) is maximal for juxtaposition on BP[1..n],
(ii) for each base pair (x, y) of S, Nested(x, y, S) is maximal for juxtaposition in BP[x+ 1..y − 1]

The proof of this Theorem comes from the two following lemmas.

Lemma 1. Let S be a locally optimal secondary structure on BP. S fulfils the following properties.

(i) Toplevel(S) is maximal for juxtaposition on BP[1..n],
(ii) for each (x, y) in S, Nested(x, y, S) is maximal for juxtaposition on BP[x+ 1..y − 1].

Proof. (i) Assume that Toplevel(S) is not in MJ(1, n): It means that there exists a base pair b in BP −
Toplevel(S) such that {b} ∪ Toplevel(S) is a secondary structure and b is not nested in any base pair of
Toplevel(S). The latter point implies that b is not in S. So {b} ∪ S is a secondary structure on BP that is a
strict extension of S. This contradicts the hypothesis that S is locally optimal.

(ii) Assume there exists (x, y) in S such that Nested(x, y, S) is not maximal for juxtaposition on BP[x+
1..y−1]. By Definition 3, this implies that there exists a base pair b in BP[x+1..y−1]−Nested(x, y, S) such
that {b} ∪ Nested(x, y, S) is a secondary structure and b is not nested in any base pair of Nested(x, y, S).
Again, it follows that {b}∪S is a secondary structure on BP that is a strict extension of S, which contradicts
the hypothesis that S is locally optimal.

Lemma 2. Let S be a structure on BP such that

(i) Toplevel(S) is maximal for juxtaposition on BP[1..n],
(ii) for each (x, y) in S, Nested(x, y, S) is maximal for juxtaposition on BP[x+ 1..y − 1].

Then S is a locally optimal secondary structure.
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Proof. It is clear that S is a secondary structure. Indeed, any two base pairs of Toplevel(S) are juxtaposed,
and for each (x, y) in S, any two base pairs of Nested(x, y, S) are juxtaposed.

Now assume that S is not locally optimal on BP. It implies that there exists a base pair b of BP which
does not belong to S such that {b}∪S is a secondary structure. As Toplevel(S) is maximal for juxtaposition,
b is necessary nested in some base pair of Toplevel(S). If (x, y) is the base pair of S immediately nesting b,
this contradicts the assumption that Nested(x, y, S) is maximal for juxtaposition on BP[x+ 1..y − 1].

Proof of Theorem 2 – Section 3.1.2

Theorem 6. Let i and j be two positions on α. MJ(i, j) is exactly the set of all structures maximal for juxtaposition
on BP[i..j].

Proof. We first establish that for all i and j, all elements of MJ(i, j) are structures maximal for juxtaposi-
tion. The proof is by recurrence on j − i.

If i ≥ j, then, following rule (1), MJ(i, j) contains only the empty structure ε, and this structure is locally
optimal. This is the initial case of the recurrence.

Otherwise, let S be a structure on MJ(i, j). It is easy to verify that any two distinct base pairs of S are
juxtaposed. So it remains to prove that for any base pair b of BP[i..j] not present in S such that {b} ∪ S is
a secondary structure, b is nested in some base pair of S.

– If S is obtained by rule (2): There is no base pair of BP[i..j] starting at position i. It follows that b is in
BP[i+ 1..j]. On the other hand, S belongs to MJ(i+ 1, j). So, by recurrence hypothesis, it is maximal for
juxtaposition on BP[i+ 1..j] It follows directly that b is nested in some base pair of S.

– If S is obtained by rule (3a): Let y, i < y ≤ j, and S′ ∈ MJ(y + 1, j) such that S = (i, y) ∪ S′. There are
exactly two possibilities for b: it is nested in (i, y), or it is juxtaposed with (i, y). In the first case, we have
directly the expected conclusion. In the second case, b is necessarily in BP[y+1..j]. On the other hand, S′

is maximal for juxtaposition on BP[y + 1..j] by recurrence hypothesis. It follows that b is nested in some
base pair of S′, and thus is some base pair of S.

– If S is obtained by rule (3b): b cannot start at position i, because it would be conflicting with some base
pair of S, by definition of the Filter function. So b is in BP[i + 1..j]. We also know that S is maximal for
juxtaposition for BP[i+ 1..j], by recurrence hypothesis. The expected result follows.

Conversely, let S be a structure maximal for juxtaposition on BP[i..j]. We show that S is in MJ(i, j).
The proof is by recurrence on j − i. If i ≥ j, the only such S is the empty structure. Otherwise, let (x, y)
be the smallest base pair of S and S′ the subset of BP[y + 1..j] such that S = {(x, y)} ∪ S′.

– If x = i: Definition 3 implies that S′ is maximal for juxtaposition on BP[y+1..j]. Thus S′ is in MJ(y+1, j)
by recurrence hypothesis. Then rule (3a) applies and S is in MJ(i, j).

– If x > i: Then S is included in BP[i+ 1..j]. Moreover, it is maximal for juxtaposition on BP[i+ 1..j] by
Definition 3. So, by recurrence hypothesis, S is in MJ(i + 1, j). It remains to show that it is transferred
to MJ(i, j). If no base pair of BP starts at position i, then rule (2) applies, and S is also in MJ(i, j). If not,
consider any base pair of the form (i, y) in BP. Since x > i, (i, y) does not belong to S. As S is maximal
for juxtaposition on BP[i..j], (i, y) is necessarily conflicting with some base pair of S. So rule (3b) applies
and S is in MJ(i, j).

Lemma 3. Given a structure S in MJ(i, j), let b′ be the first base pair of S not nested in b. S belongs to
Filter(b,MJ(i, j)) if, and only if, such a b′ exists and is conflicting with b.

Proof. – If b′ does not exist, then by definition, S does not belong to Filter(b,MJ(i, j)).

– If b′ exists and is conflicting with b, then by definition S belongs to Filter(b,MJ(i, j)).
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– If b′ exists and is not conflicting with b, then no element of S is conflicting with b. Indeed, in this case, b′

is juxtaposed with b. This implies that all base pairs greater than b′ are juxtaposed with b. By construction
of b′, we also know that all base pairs smaller that b′ are not conflicting with b. So S does not belong to
Filter(b,MJ(i, j)).

Proof of Theorem 3 – Section 3.2.2

Theorem 7. For each pair of helices f and g of H, MJ(f, g) is exactly the set of structures maximal for juxtaposition
on H[f..g].

Proof. The proof is identical to the proof of Theorem 6.

Proof of Property 1 – Section 3.2.3

We first establish the following Lemma.

Lemma 4. Let F be a locally optimal secondary structure on H. If there are some helices f and g of F , such that
Nested(f, F ) = {g}, then g is strongly nested in f .

Proof. Assume g is not strongly nested in f . By Definition 5, there exists h in H such that h is nested in
f , and h is juxtaposed with g or g is nested in h. Since Nested(f, F ) = {g}, this implies in all cases that
{h} ∪ F is a secondary structure that is a strict extension of F , and thus F is not locally optimal.

Property 2. Let H be a set of helices closed under strong nestedness, and let G be a locally optimal secondary
structure on H. There exists a unique canonical structure F , such that F and G describe the same base pairs
structure.

Proof. Let G = {g1, . . . , gj} and F = {f1, . . . , fk}. Assume {g1, . . . , gj} is not a canonical structure: There
exist two indices i and e in [1..j] such that gi is strongly nested in ge. Since H is closed under strong
nestedness, by definition, the helix gi ∪ ge is also present in H. So we can replace gi and ge with gi ∪ ge
in {g1, . . . , gj} , and so forth until all strongly nested helices have been merged. This guarantees the
existence of {f1, . . . , fk}. The unicity comes from Lemma 4. Indeed, given any base pair secondary
structure that can be described by a helix structure F , there is a unique way to assemble base pairs into
helices such that for no helix f , Nested(f, F ) contains exactly one helix: Helices should be as long as
possible.

Proof of Theorem 4 – Section 3.2.3

Theorem 8. Let F be a canonical secondary structure on H. F yis locally optimal if, and only if, it fulfills the two
following properties:

(i) Toplevel(F ) is maximal for juxtaposition,
(ii) for each helix f of F , Nested(f, F ) is maximal for juxtaposition on H]f..f [, Nested(f, F ) is not a single

helix, and f fulfills the condition (?) in F .

Lemma 5. Let F be a locally optimal secondary structure on H. We have the following properties.

(i) Toplevel(F ) is maximal for juxtaposition on H,
(ii) for each helix f in F , Nested(f, F ) is maximal for juxtaposition on H]f, f [.
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(b)

Supplementary Figure 1: Locally optimal secondary structures and MIS (Maximal Independent Sets). It is possible to
encode any set of base pairs into an undirected graph G : The vertex set is BP and there is an edge between two nodes
if, and only if, the corresponding base pairs are conflicting. The locally optimal secondary structures are exactly the
maximum independent sets of G. (a) The upper bound of the number of MIS is known to be 3`/3 = 1.44 . . .` (Moon
& Moser, 1965). This upper bound is obtained when the graph is a disjoint union of triangle graphs and this union
corresponds to a set of base pairs. In this Figure, the 12 base pairs are conflicting 3 by 3. There are exactly 312/3 = 81
locally optimal secondary structures: Any set of the form {ai, bj , ck, de}, with 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, 1 ≤ k ≤ 3,
1 ≤ e ≤ 3. This example can be extended to any number ` of base pairs that is divisible by three. (b) The two
problems, locally optimal secondary structures and MIS, are not equivalent. The graph in (b) is composed of seven
vertices, and it is easy to verify that no set of seven base pairs can be encoded by this graph.

Proof. The proof of Lemma 5 is basically the same as the one of Lemma 1.

Lemma 6. Let H be a set of helices that is closed under strong nestedness, and let {f1, . . . , fk} be a canonical
structure on H. {f1, . . . , fk} is a locally optimal secondary structure on H if, and only if, it satisfies the following
property: If g is a helix of H that is not present in {f1, . . . , fk}, then there exists i in [1..k] such that g is conflicting
with fi, or g is embedded in fi.

Proof. – If {f1, . . . , fk} is locally optimal: Let g be a helix of H that is not in {f1, . . . , fk} and that is not
embedded in any fi, 1 ≤ i ≤ k. Since {f1, . . . , fk} is a canonical structure, this means that there exists a
base pair of g that does not appear in f1 ∪ . . . ∪ fk. So {f1, . . . , fk, g} is a strict extension of {f1, . . . , fk}.
Since {f1, . . . , fk} is locally optimal, this implies that {f1, . . . , fk, g} is not a secondary structure: g is
conflicting with some helix of {f1, . . . , fk}.

– If {f1, . . . , fk} is not locally optimal: We show that there exists a helix g not present in {f1, . . . , fk}
such that g is not conflicting with any fi and g is not embedded in any fi. Since {f1, . . . , fk} is not lo-
cally optimal, by definition, there exists a secondary structure {g1, . . . , gj} in which {f1, . . . , fk} is strictly
included. Since H is closed under strong nestedness, we can assume by Property 2 that {g1, . . . , gj} is
a canonical structure on H. There exists at least one helix g of {g1, . . . , gj} such that g contains a base
pair that is not present in f1 ∪ · · · ∪ fk. Now let consider a fi such that fi and g are neither nested nor
juxtaposed. As {g1, . . . , gj} is canonical, fi is embedded in g. So g is not embedded in fi.
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