. Cgal, Computational Geometry Algorithms Library

F. Aurenhammer, Voronoi diagrams---a survey of a fundamental geometric data structure, ACM Computing Surveys, vol.23, issue.3, pp.345-405, 1991.
DOI : 10.1145/116873.116880

F. Aurenhammer and R. Klein, Voronoi diagrams, Handbook of Computational Geometry, pp.201-290, 1983.

M. Berger, Geometry (vols. 1-2), 1987.

M. Bern and D. Eppstein, Optimal Möbius transformations for information visualization and meshing, 7th Worksh. Algorithms and Data Structures, 2001.

M. Bogdanov, O. Devillers, and M. Teillaud, Hyperbolic Delaunay triangulations and Voronoi diagrams made practical, Abstracts XIV Spanish Meeting on Computational Geometry, pp.113-116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850586

J. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud, OUTPUT SENSITIVE CONSTRUCTION OF THE DELAUNAY TRIANGULATION OF POINTS LYING IN TWO PLANES, International Journal of Computational Geometry & Applications, vol.06, issue.01, pp.1-14, 1996.
DOI : 10.1142/S0218195996000022

URL : https://hal.archives-ouvertes.fr/hal-00795075

J. Boissonnat and M. Yvinec, Algorithmic Geometry Translated by Hervé Brönnimann, 1998.

A. Bowyer, Computing Dirichlet tessellations, The Computer Journal, vol.24, issue.2, pp.162-166, 1981.
DOI : 10.1093/comjnl/24.2.162

M. Caroli and M. Teillaud, Computing 3D Periodic Triangulations, European Symposium on Algorithms, pp.37-48, 2009.
DOI : 10.1007/978-3-642-04128-0_6

URL : https://hal.archives-ouvertes.fr/inria-00356871

M. Caroli and M. Teillaud, Delaunay triangulations of point sets in closed euclidean d-manifolds, Proceedings of the 27th annual ACM symposium on Computational geometry, SoCG '11, pp.274-282, 2011.
DOI : 10.1145/1998196.1998236

URL : https://hal.archives-ouvertes.fr/hal-01101094

M. Mark-de-berg, M. Van-kreveld, O. Overmars, and . Schwarzkopf, Computational Geometry: Algorithms and Applications, 1997.

O. Devillers, THE DELAUNAY HIERARCHY, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.163-180, 2002.
DOI : 10.1142/S0129054102001035

URL : https://hal.archives-ouvertes.fr/inria-00166711

O. Devillers, S. Meiser, and M. Teillaud, The space of spheres, a geometric tool to unify duality results on Voronoi diagrams, Proc. 4th Canad. Conf. Comput. Geom, pp.263-268, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01180157

O. Devillers and S. Pion, Efficient exact geometric predicates for Delaunay triangulations, Proc. 5th Workshop Algorithm Eng. Exper, pp.37-44, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00344517

O. Devillers, S. Pion, and M. Teillaud, WALKING IN A TRIANGULATION, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.181-199, 2002.
DOI : 10.1142/S0129054102001047

URL : https://hal.archives-ouvertes.fr/inria-00344519

O. Devillers and M. Teillaud, Perturbations for Delaunay and weighted Delaunay 3D triangulations, Computational Geometry, vol.44, issue.3, pp.160-168, 2011.
DOI : 10.1016/j.comgeo.2010.09.010

URL : https://hal.archives-ouvertes.fr/inria-00560388

H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete & Computational Geometry, vol.24, issue.1, pp.25-44, 1986.
DOI : 10.1007/BF02187681

D. Eppstein, Hyperbolic geometry, Möbius transformations, and geometric optimization, 2003.

D. Eppstein and M. T. Goodrich, Succinct Greedy Graph Drawing in the Hyperbolic Plane, Proc. 16th Int. Symp. Graph Drawing, pp.14-25, 2008.
DOI : 10.1007/978-3-642-00219-9_3

G. Faye, P. Chossat, and O. Faugeras, Some theoretical results for a class of neural mass equations, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00846150

E. Fogel and M. Teillaud, Generic programming and the CGAL library, Effective Computational Geometry for Curves and Surfaces, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01053388

M. Hemmer, S. Hert, L. Kettner, S. Pion, and S. Schirra, Number types, CGAL User and Reference Manual. CGAL Editorial Board, 4.1 edition, 2012.

M. K. Hurdal and K. Stephenson, Cortical cartography using the discrete conformal approach of circle packings, NeuroImage, vol.23, pp.119-128, 2004.
DOI : 10.1016/j.neuroimage.2004.07.018

M. Jin, J. Kim, F. Luo, and X. Gu, Discrete Surface Ricci Flow, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.5, pp.1030-1043, 2008.
DOI : 10.1109/TVCG.2008.57

T. Munzner, Exploring large graphs in 3D hyperbolic space, IEEE Computer Graphics and Applications, vol.18, issue.4, pp.18-23, 1998.
DOI : 10.1109/38.689657

F. Nielsen and R. Nock, Hyperbolic Voronoi Diagrams Made Easy, 2010 International Conference on Computational Science and Its Applications, pp.74-80
DOI : 10.1109/ICCSA.2010.37

K. Onishi and N. Takayama, Construction of Voronoi diagrams on the upper half-plane

S. Pion and M. Teillaud, 3D triangulations, CGAL User and Reference Manual. CGAL Editorial Board, p.3, 2012.

G. Ron, M. Jin, and X. Guo, Hyperbolic centroidal Voronoi tessellation, Proc. ACM Symposium on Solid and Physical Modeling, pp.117-126, 2010.

T. Tanuma, H. Imai, and S. Moriyama, Revisiting Hyperbolic Voronoi Diagrams from Theoretical, Applied and Generalized Viewpoints, 2010 International Symposium on Voronoi Diagrams in Science and Engineering, pp.23-32, 2010.
DOI : 10.1109/ISVD.2010.13

W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bulletin of the American Mathematical Society, vol.6, issue.3, pp.357-381, 1982.
DOI : 10.1090/S0273-0979-1982-15003-0

P. William and . Thurston, The Geometry and Topology of Three-Manifolds, 2002.

D. F. Watson and P. H. Wilson, Computing the n-dimensional Delaunay tesselation with applications to Voronoi polytopes Curved Spaces Yap and T. Dubé. The exact computation paradigm, Computing in Euclidean Geometry, pp.167-172, 1981.

W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao, Resilient Routing for Sensor Networks Using Hyperbolic Embedding of Universal Covering Space, 2010 Proceedings IEEE INFOCOM, pp.1694-1702, 2010.
DOI : 10.1109/INFCOM.2010.5461988