M. B. Blaschko and C. H. Lampert, Object Localization with Global and Local Context Kernels, Procedings of the British Machine Vision Conference 2009, 2009.
DOI : 10.5244/C.23.63

C. Desai, D. Ramanan, and C. Fowlkes, Discriminative models for multi-class object layout, 2009.

M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, Exploiting hierarchical context on a large database of object categories, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540221

J. C. Gemert, C. G. Snoek, C. J. Veenman, A. W. Smeulders, and J. M. Geusebroek, Comparing compact codebooks for visual categorization, Computer Vision and Image Understanding, vol.114, issue.4, 2010.
DOI : 10.1016/j.cviu.2009.08.004

C. Li, D. Parikh, and T. Chen, Extracting adaptive contextual cues from unlabeled regions, In: ICCV, 2011.

K. Grauman and T. Darrell, Approximate correspondences in high dimensions, NIPS, 2007.

G. Heitz and D. Koller, Learning Spatial Context: Using Stuff to Find Things, In: ECCV, 2008.
DOI : 10.1007/978-3-540-88682-2_4

C. Liu, J. Yuen, and A. Torralba, Nonparametric scene parsing: Label transfer via dense scene alignment, In: CVPR, 2009.

C. Galleguillos, A. Rabinovich, and S. Belongie, Object categorization using cooccurrence , location and appearance, In: CVPR, 2008.

A. Oliva and A. Torralba, Modeling the shape of the scene: A holistic representation of the spatial envelope, p.42, 2001.

D. Hoiem, A. Efros, and M. Hebert, Putting objects in perspective, IJCV, 2008.

C. Galleguillos and S. Belongie, Context based object categorization: A critical survey, Computer Vision and Image Understanding, vol.114, issue.6, 2010.
DOI : 10.1016/j.cviu.2010.02.004

P. Felzenszwalb, D. Mcallester, and D. Ramanan, Grishick: Object detection with discriminatively trained part based models, PAMI, vol.32, 2010.

R. Kondor and T. Jebara, A kernel between sets of vectors, In: ICML, 2003.

M. Cuturi and J. Vert, Semigroup kernels on finite sets, In: NIPS, 2005.

S. Lyu, Mercer kernels for object recognition with local features, In: CVPR, 2005.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, Stat. Learning in Comp. Vision, 2004.

F. Moosmann, E. Nowak, and F. Jurie, Randomized Clustering Forests for Image Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.9, 2008.
DOI : 10.1109/TPAMI.2007.70822

URL : https://hal.archives-ouvertes.fr/inria-00548666

L. Yang, R. Jin, R. Sukthankar, and F. Jurie, Unifying discriminative visual codebook generation with classifier training for object category recognition, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587504

URL : https://hal.archives-ouvertes.fr/inria-00548653

P. Dollar, B. Babenko, S. Belongie, P. Perona, and Z. Tu, Multiple Component Learning for Object Detection, In: ECCV, 2008.
DOI : 10.1007/978-3-540-88688-4_16

L. Mason, J. Baxter, P. Bartlett, and M. Frean, Boosting algorithms as gradient descent in function space, In: NIPS, 1999.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. on Scientific Comp, vol.16, 1995.

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, p.55, 1997.
DOI : 10.1006/jcss.1997.1504

J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, 2002.
DOI : 10.1016/S0167-9473(01)00065-2