J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

C. H. Lampert, Kernel Methods in Computer Vision, Foundations and Trends?? in Computer Graphics and Vision, vol.4, issue.3, pp.193-285, 2009.
DOI : 10.1561/0600000027

J. Vert, H. Saigo, and T. Akutsu, Local Alignment Kernels for Biological Sequences, 2004.

F. Bach, Consistency of the group lasso and multiple kernel learning, Journal of Machine Learning Research, vol.9, pp.1179-1225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00164735

J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, Toward Category-Level Object Recognition, Lecture Notes in Computer Science, vol.4170, 2007.
DOI : 10.1007/11957959

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study, International Journal of Computer Vision, vol.36, issue.1, pp.213-238, 2007.
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/inria-00548574

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

S. N. Srihari, X. Yang, and G. R. Ball, Offline Chinese handwriting recognition: A survey, Frontiers of Computer Science in China, 2007.

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.4, pp.509-522, 2002.
DOI : 10.1109/34.993558

J. Ramon and T. Gärtner, Expressivity versus efficiency of graph kernels, First International Workshop on Mining Graphs, Trees and Sequences, 2003.

S. V. Vishwanathan, N. N. Schraudolph, R. I. Kondor, and K. M. Borgwardt, Graph kernels, Journal of Machine Learning Research, vol.11, pp.1201-1242, 2010.

H. Kashima, K. Tsuda, and A. Inokuchi, Kernels for graphs, Kernel Methods in Comp, 2004.

Z. Harchaoui and F. Bach, Image Classification with Segmentation Graph Kernels, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383049

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. R. Bach, Graph kernels between point clouds, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.25-32, 2008.
DOI : 10.1145/1390156.1390160

URL : https://hal.archives-ouvertes.fr/hal-00200109

C. Wang and K. Abe, Region correspondence by inexact attributed planar graph matching, Proceedings of IEEE International Conference on Computer Vision, 1995.
DOI : 10.1109/ICCV.1995.466906

A. Robles-kelly and E. Hancock, Graph edit distance from spectral seriation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.3, pp.365-378, 2005.
DOI : 10.1109/TPAMI.2005.56

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Gomila and F. Meyer, Graph-based object tracking, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), pp.41-44, 2003.
DOI : 10.1109/ICIP.2003.1246611

B. Huet, A. D. Cross, and E. R. Hancock, Graph matching for shape retrieval, Adv. NIPS, 1999.

D. Gusfield, Algorithms on Strings, Trees, and Sequences, 1997.
DOI : 10.1017/CBO9780511574931

O. Chapelle and P. Haffner, Support vector machines for histogram-based image classification, IEEE Transactions on Neural Networks, vol.10, issue.5, pp.1055-1064, 1999.
DOI : 10.1109/72.788646

T. Jebara, Images as bags of pixels, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238352

M. Cuturi, K. Fukumizu, and J. Vert, Semigroup kernels on measures, J. Mac. Learn. Research, vol.6, pp.1169-1198, 2005.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

M. Neuhaus and H. Bunke, Edit distance-based kernel functions for structural pattern classification, Pattern Recognition, vol.39, issue.10, pp.1852-1863, 2006.
DOI : 10.1016/j.patcog.2006.04.012

H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell, Optimal assignment kernels for attributed molecular graphs, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102380

J. Vert, The optimal assignment kernel is not positive definite, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00218278

F. Suard, V. Guigue, A. Rakotomamonjy, and A. Benshrair, Pedestrian detection using stereo-vision and graph kernels, IEEE Proceedings. Intelligent Vehicles Symposium, 2005., 2005.
DOI : 10.1109/IVS.2005.1505113

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. Vishwanathan, A. J. Smola et al., Protein function prediction via graph kernels, Bioinformatics, vol.21, issue.Suppl 1, 2005.
DOI : 10.1093/bioinformatics/bti1007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. V. Vishwanathan, K. M. Borgwardt, and N. Schraudolph, Fast computation of graph kernels, Adv. NIPS, 2007.

J. Vert, T. Matsui, S. Satoh, and Y. Uchiyama, High-level feature extraction using SVM with walk-based graph kernel, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
DOI : 10.1109/ICASSP.2009.4959785

M. Fisher, M. Savva, and P. Hanrahan, Characterizing structural relationships in scenes using graph kernels, ACM SIGGRAPH 2011 papers, ser. SIGGRAPH '11, 2011.

P. Mahé and J. Vert, Graph kernels based on tree patterns for molecules, Machine Learning, vol.21, issue.Suppl.??1, pp.3-35, 2009.
DOI : 10.1007/s10994-008-5086-2

F. Meyer, Hierarchies of partitions and morphological segmentation, " in Scale-Space and Morphology in Computer Vision, 2001.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE PAMI, vol.22, issue.8, pp.888-905, 2000.

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

J. Malik, S. Belongie, T. K. Leung, and J. Shi, Contour and Texture Analysis for Image Segmentation, Int. J
DOI : 10.1007/978-1-4615-4413-5_9

X. Ren and J. Malik, Learning a classification model for segmentation, Proceedings Ninth IEEE International Conference on Computer Vision, p.10, 2003.
DOI : 10.1109/ICCV.2003.1238308

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson et al., TurboPixels: Fast Superpixels Using Geometric Flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.12, pp.2290-2297, 2009.
DOI : 10.1109/TPAMI.2009.96

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Gärtner, P. A. Flach, and S. Wrobel, On Graph Kernels: Hardness Results and Efficient Alternatives, COLT, 2003.
DOI : 10.1007/978-3-540-45167-9_11

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Hein and O. Bousquet, Hilbertian metrics and positive-definite kernels on probability measures, AIS- TATS, 2004.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral grouping using the nystrom method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.2, pp.214-225, 2004.
DOI : 10.1109/TPAMI.2004.1262185

R. I. Kondor and T. Jebara, A kernel between sets of vectors, Proc. ICML, 2003.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, 2009.

T. Caetano, T. Caelli, D. Schuurmans, and D. Barone, Graphical Models and Point Pattern Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.10, pp.1646-1663, 2006.
DOI : 10.1109/TPAMI.2006.207

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

F. R. Bach, R. Thibaux, and M. I. Jordan, Computing regularization paths for learning multiple kernels, Adv. NIPS, 2004.

O. Chapelle and A. Zien, Semi-supervised classification by low density separation, Proc. AISTATS, 2004.

K. Grauman and T. Darrell, The pyramid match kernel: Efficient learning with sets of features, J. Mach. Learn. Res, vol.8, pp.725-760, 2007.