A. Pandya, M. Berneburg, J. Ortonne, and M. Picardo, Guidelines for clinical trials in melasma, British Journal of Dermatology, vol.77, issue.s1, 2006.
DOI : 10.1016/j.jaad.2006.01.049

A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the theory of statistics, 1974.

A. G. Pandya, L. S. Hynan, R. Bhore, F. C. Riley, I. L. Guevara et al., Reliability assessment and validation of the Melasma Area and Severity Index (MASI) and a new modified MASI scoring method, Journal of the American Academy of Dermatology, vol.64, issue.1, pp.78-83, 2011.
DOI : 10.1016/j.jaad.2009.10.051

R. Balkrishnan, A. J. Mcmichael, F. T. Camacho, F. Saltzberg, T. S. Housman et al., Development and validation of a health-related quality of life instrument for women with melasma, British Journal of Dermatology, vol.149, p.572577, 2003.

R. M. Manaloto and T. Alster, Erbium:YAG Laser Resurfacing for Refractory Melasma, Dermatologic Surgery, vol.25, issue.2, p.121123, 1999.
DOI : 10.1046/j.1524-4725.1999.08103.x

M. E. Hurley, I. L. Guevara, R. M. Gonzales, and A. G. Pandya, Ecacy of glycolic acid peels in the treatment of melasma, Archives of Dermatology, vol.138, p.15781582, 2002.

C. Kimbrough-green, C. Griths, T. Finkel, S. Hamilton, C. Bulengo-ransby et al., Topical retinoic acid (tretinoin) for melasma in black patients. a vehiclecontrolled clinical trial, Arch Dermatol, vol.130, p.72733, 1994.

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, Non-Invasive Measurements of Skin Pigmentation In Situ, Pigment Cell Research, vol.4959, issue.6, p.618626, 2004.
DOI : 10.1016/S1076-0512(97)00097-6

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, In vivo measurement of skin erythema and pigmentation: new means of implementation of diuse reectance spectroscopy with a commercial instrument, British Journal of Dermatology, vol.159, p.683690, 2008.

S. Prigent, X. Descombes, D. Zugaj, P. Martel, and J. Zerubia, Multi-spectral image analysis for skin pigmentation classication, Proc. IEEE International Conference on Image Processing (ICIP), 2010.

S. Prigent, X. Descombes, D. Zugaj, L. Petit, A. Dugaret et al., Classication of skin hyper-pigmentation lesions with multi-spectral images, 2012.

A. Myronenko and X. Song, Intensity-Based Image Registration by Minimizing Residual Complexity, IEEE Transactions on Medical Imaging, vol.29, issue.11, p.18821891, 2010.
DOI : 10.1109/TMI.2010.2053043

A. A. Green, M. Berman, P. Switzer, and M. D. Craig, A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Transactions on Geoscience and Remote Sensing, vol.26, issue.1, 1988.
DOI : 10.1109/36.3001

J. E. Ball, L. M. Bruce, and N. H. Younan, Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition. Geoscience and Remote Sensing Letters, 2007.

J. F. Cardoso, High-Order Contrasts for Independent Component Analysis, Neural Computation, vol.140, issue.1, p.157192, 1999.
DOI : 10.1109/78.599941

A. Hyvarinen, Fast and robust xed-point algorithms for independent component analysis, IEEE Trans. on Neural Networks, vol.10, p.626634, 1999.

P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.18, issue.2, p.111126, 1994.
DOI : 10.1002/env.3170050203

I. S. Dhillon and S. Sra, Generalized nonnegative matrix approximations with bregman divergences, NIPS, 2005.

D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, p.788, 1999.

M. Winter, Fast autonomous spectral end-member determination in hyperspectral data, Conf. on Applied Geologic Remote Sensing, p.337344, 1999.

N. Dobigeon, S. Moussaoui, M. Coulon, J. Y. Tourneret, and A. O. Hero, Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery, IEEE Transactions on Signal Processing, vol.57, issue.11, p.43554368, 2009.
DOI : 10.1109/TSP.2009.2025797

URL : https://hal.archives-ouvertes.fr/hal-00548758

C. Chang, C. C. Wu, and C. T. Tsai, Random n-nder (n-ndr) endmember extraction algorithms for hyperspectral imagery, IEEE Trans. on Image Processing, vol.20, 2011.

J. W. Boardman, F. A. Kruse, and R. O. Green, Mapping target signatures via partial unmixing of aviris data, Summaries of JPL Airborne Earth Science Workshop, 1995.

A. Plaza and C. I. Chang, A fast iterative algorithm for implementation of pixel purity index

J. M. Nascimento and J. M. Dias, Vertex component analysis: a fast algorithm to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, p.898910, 2005.
DOI : 10.1109/TGRS.2005.844293

D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, 2003.
DOI : 10.1002/0471723800

C. Lee and D. A. Landgrebe, Feature extraction based on decision boundaries, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.4, p.388400, 1993.
DOI : 10.1109/34.206958

C. Lee and D. A. Landgrebe, Decision boundary feature extraction for neural networks, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, p.7583, 1997.
DOI : 10.1109/ICSMC.1992.271652

M. Riedmann and E. J. Milton, Supervised band selection for optimal use of data from airborne hyperspectral sensors, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2003.
DOI : 10.1109/IGARSS.2003.1294245

S. Prigent, X. Descombes, D. Zugaj, L. Petit, A. S. Dugaret et al., Classication of skin hyper-pigmentation lesions with multi-spectral images, 2012.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, Change detection techniques, International Journal of Remote Sensing, vol.66, issue.12, 2004.
DOI : 10.1659/0276-4741(2001)021[0175:LCCATA]2.0.CO;2

R. J. Radke, S. Andra, O. Kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, vol.14, issue.3, pp.294-307, 2005.
DOI : 10.1109/TIP.2004.838698

K. Skifstad and R. Jain, Illumination independent change detection for real world image sequences, Comput. Vis. Graph. Image Process, vol.46, p.387399, 1989.

S. Liu, C. Fu, and S. Chang, Statistical change detection with moments under time-varying illumination, IEEE Trans. Image Process, vol.7, p.12581268, 1998.

L. Li and M. K. Leung, Integrating intensity and texture dierences for robust change detection, IEEE Trans. Image Process, vol.11, p.105112, 2002.

H. V. Poor, An Introduction to Signal Detection and Estimation, 1994.

T. Aach and A. Kaup, Statistical model-based change detection in moving video, Signal Processing, vol.31, issue.2, p.165180, 1993.
DOI : 10.1016/0165-1684(93)90063-G

E. Rignot and J. Van-zyl, Change detection techniques for ERS-1 SAR data, IEEE Transactions on Geoscience and Remote Sensing, vol.31, issue.4, p.896906, 1993.
DOI : 10.1109/36.239913

L. Bruzzone and D. F. Prieto, An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images, IEEE Transactions on Image Processing, vol.11, issue.4, p.452466, 2002.
DOI : 10.1109/TIP.2002.999678

J. Inglada and G. Mercier, A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.5, p.14321445, 2007.
DOI : 10.1109/TGRS.2007.893568

URL : https://hal.archives-ouvertes.fr/hal-00582539

Y. Yakimovsky, Boundary and object detection in real world images, J. ACM, vol.23, p.599618, 1976.

K. J. Friston, J. Ashburner, S. J. Kiebel, T. E. Nichols, and W. D. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images, 2007.

R. J. Alder, The Geometry of Random Fields, 1981.

J. B. Poline, K. J. Worsley, A. C. Evans, and K. J. Friston, Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging, Inria RESEARCH CENTRE SOPHIA ANTIPOLIS ? MÉDITERRANÉE 2004 route des Lucioles -BP 93, p.8396, 1997.
DOI : 10.1006/nimg.1996.0248