N
N

N

HAL

open science

An Interactive Guidance Process Supporting Consistent
Updates of RDFS Graphs

Alice Hermann, Sébastien Ferré, Mireille Ducassé

» To cite this version:

Alice Hermann, Sébastien Ferré, Mireille Ducassé. An Interactive Guidance Process Supporting Con-
sistent Updates of RDFS Graphs. EKAW - 18th International Conference on Knowledge Engineering

and Knowledge Management - 2012, 2012, Galway City, Ireland. pp.185-199. hal-00757083

HAL Id: hal-00757083
https://inria.hal.science/hal-00757083

Submitted on 26 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00757083
https://hal.archives-ouvertes.fr

An Interactive Guidance Process Supporting
Consistent Updates of RDFS Graphs

Alice Hermann®, Sébastien Ferré?, and Mireille Ducassé!
! TRISA, INSA Rennes, Campus de Beaulieu, 35042 Rennes cedex, France
2 TRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France

Abstract. With existing tools, when creating a new object in the Se-
mantic Web, users benefit neither from existing objects and their prop-
erties, nor from the already known properties of the new object. We
propose UTILIS, an interactive process to help users add new objects.
While creating a new object, relaxation rules are applied to its current
description to find similar objects, whose properties serve as suggestions
to expand the description. A user study conducted on a group of master
students shows that students, even the ones disconcerted by the uncon-
ventional interface, used UTILIS suggestions. In most cases, they could
find the searched element in the first three sets of properties of simi-
lar objects. Moreover, with UTILIS users did not create any duplicate
whereas with the other tool used in the study more than half of them
did.

1 Introduction

Updating existing Semantic Web (SW) data is crucial to take into account infor-
mation regularly discovered. This is, however, tedious and in practice data from
the SW are rarely updated by users. In the Web 2.0, users, nevertheless, signifi-
cantly contribute to the production of data, thus, motivation is not a problem.
Models exist to bridge the gap between the SW and the Web 2.0, for example by
linking tags created by users with SW vocabulary [I3JT1]. There are, however,
still difficulties to integrate the Web 2.0 data in SW, for example to automat-
ically align users tags and resources of the SW. Moreover, SW data are richer
than user tags. SW indeed allows a more complex representation of data, as well
as more elaborate queries. It is therefore important that users can directly create
data in a SW format.

This paper presents UTILIS (Updating Through Interaction in Logical Infor-
mation Systems), a method that uses existing objects and the current partial
description of a new object, to help the user create that new object. UTILIS
searches for objects similar to the object being created, namely objects having
properties and values in common with it. These objects and their properties are
used as suggestions to extend the description of the new object. In the following,
examples and experiments are related to the extension of an annotation base of
comics panels. An excerpt of the base is shown in Figure [[l Panel A is taken

A. ten Teije et al. (Eds.): EKAW 2012, LNAI 7603, pp. 185-[[99] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

186 A. Hermann, S. Ferré, and M. Ducassé

Panel A Panel B

> collection : Ma vie a deux > collection : The Adventures of Tintin
> character : Missbean, Missbean's cat > character : Tintin, Snowy

> bubble : (a speech bubble, > bubble : (a speech bubble,

said by Missbean, spoken to Missbean's cat) said by Tintin, spoken to Snowy)
panel C Panel D

> collection : Ma vie a deux

> character : MissBean, Babybean

> bubble : (a speech bubble,

said by MissBean, spoken to Babybean)
> bubble : (a speech bubble,

said by Babybean, spoken to Missbean)

> collection : Peanuts

> character : Snoopy, Sally Brown

> bubble : (a speech bubble,

said by Sally Brown, spoken to Snoopy)

> bubble : (a thought bubble, said by Snoopy)

Fig. 1. Excerpt of the comics annotation base

from collection Ma vie a deuzx, with Missbean and her cat as characters, it has a
speech bubble said by Missbean to her cat.

The main contribution of this paper is an interaction process that helps
users constitently create new objects by suggesting properties and values finely
adapted to the very object being created. The already known properties of a new
object are used to suggest others. Let us assume that a user annotates a new
panel and specifies its collection, it may help to suggest characters, it is likely
that this panel and those of the same collection have characters in common. The
process uses a set of relaxation rules, inspired by the work of Hurtado et al.
[9], and an efficient algorithm for computing suggestions. An advantage of our
approach is that the definition of an ontology is not necessary to calculate the
suggestions, although UTILIS may use an ontology to improve its suggestions
when one is available.

A user study conducted with students shows that they have used the sug-
gestions of UTILIS. They found them relevant. In most cases, they could find
the searched item in the first three sets of suggestions. In addition, they have
appreciated the suggestion mechanism, indeed 14 students out of the 18 wish
to have it in a SW data editor. Even if some users were disconcerted, the base
resulting from the use of UTILIS was more consistent and contained less errors
than when using Protégé.

Section [2] gives definitions related to the SW languages. It introduces logical
information systems which are used to interact with users. Section [specifies
our approach, UTILIS. Section [presents the creation of a panel description .
Section [0l presents the user study. Section [0l compares our approach to related
work.

2 Preliminaries

RDF, RDFS and SPARQL. RDF and RDFS are Semantics Web languages that
enable tools to be interoperable. The basic elements of these languages are re-
sources and triples. A resource can be either a URI (absolute name of a resource),

An Interactive Guidance Process Supporting Consistent Updates 187

English Which are the panels with at least one bubble said by Missbean?
SPARQL query SELECT 7x WHERE {7x a :panel . 7x :bubble 7y . ?y :saidBy
<MissBean>)}

Fig. 2. A question and its translation in SPARQL

a literal or an anonymous resource. A triple consists of 3 resources. A triple (s,
p, o) can be read as a sentence where s is the subject, p is the verb, called
predicate, and o is the object.

RDF allows data to be represented. For example, in the annotation base,
triple (< PanelK>, : character, < Missbean>) can be read as “Panel K has char-
acter Missbean”. RDF has a predefined vocabulary to represent membership
in a resource class (rdf: type), the hierarchy between classes (rdfs: subClassOf)
and between the properties (rdfs: subPropertyOf). For example, triple (:Bubblel,
rdf: type, :SpeechBubble) tells that “Bubblel has type SpeechBubble” or sim-
ply “ Bubblel is a speech bubble”. Resource :SpeechBubble is a class. Triple
(: SpeechBubble, rdfs: subClassOf, :Bubble) tells that “the SpeechBubble class is a
subclass of Bubble”, or “Each speech bubble is a bubble.” In addition, RDFS is a
language of knowledge representation with inference power [§]. By inference, the
latter two triples can be used to deduce the previous triple (< Bubblel>, rdf: type,
:Bubble). In the following, for readability reasons, descriptions of the objects are
written in Turtle notation [I]. For example, the following triples describing a new
panel ((<PanelK>, rdf: type, Panel) (<PanelK>, : character, <Missbean>)) are
written in Turtle as (<PanelK> a panel; : character <Missbean>).

SPARQL is a query language for RDF based on graph pattern matching [14].
A question and its translation into SPARQL are shown in Figure

Logical Information Systems (LIS). LIS [6] are a paradigm of information re-
trieval and exploration, combining querying and navigation. They are close to
the paradigm of faceted search [I5]. Their query language has an expressive-
ness similar to that of SPARQL, and a syntax similar to Turtle [5]. A prototype,
Seweli, has been implemented. The user navigates from query to query. Naviga-
tion links are automatically computed from the dataset, and suggested to users,
in a way that ensures that guided navigation is safe (no dead-end), and complete
(every query that is not a dead-end can be reached). UTILIS is implemented in
Sewelis.

3 UTILIS : An Interactive Guidance

This section describes UTILIS, our interactive guidance method to help users
create objects in an RDFS graph. UTILIS searches for objects similar to the
description of a new object, i.e., objects having common properties and values.
Figure [3 illustrates the interactive process to refine the description of a new

'http://www.irisa.fr/LIS/softwares/sewelis

http://www.irisa.fr/LIS/softwares/sewelis

188 A. Hermann, S. Ferré, and M. Ducassé

. refinement of the description at focus
Description with user selection
of new object e Suggestions
+ focus
transformation of computation of results A
description in query and their properties
relaxation of the quer i
Initial query query > Generalized
queries

Fig. 3. Interactive refinement of the description of a new object

Description ~ <PanelK> a :panel; :collection <Ma vie & deux>; :character []

Initial query SELECT 7z WHERE {7x a :panel . ?x :collection ?y . ?x :character
?z . FILTER (?y = <Ma vie & deux>)}

Fig. 4. A description and its transformation into the initial query

object. The initial query is obtained from the current description of a new object
and from a focus which is an element of the description that the user wants
to complete. This description is transformed into a query (Section Bl). That
query is used as a starting point to obtain generalized queries using relaxation
rules (SectionB:2). The initial and generalized queries allow similar objects to be
retrieved. Those objects and their properties are used as suggestions to complete
the new description (section B.3)). After refinement, the new description will be
used to define a new query and so on. An efficient algorithm to compute the
suggestions from the RDFS graph and the current description of the new object
has been implemented with dynamic programming techniques (section [3.4)).

3.1 Transformation of the Description into the Initial Query

The description consists of the set of elements that have been entered by the user
on the new object. Figure M shows a description and the initial query obtained
after transformation. The description means that panelK is a panel from the Ma
vie a deux Collection, it has characters which have not yet been specified. The
focus is represented by the underlined part. The description is transformed into
a query in three steps. Firstly, the identity of the new object is replaced by a
variable. For example, <PanelK> is replaced by ?z. Secondly, the description is
transformed into a SPARQL graph pattern in order to have only one modifiable
component per triple. Each triple is composed of a single individual. The other
elements of the triple are variables or predefined property rdf:type. For example,
(:collection <Ma vie & deuz>) is transformed into (%z :collection ?y FILTER
(?y = <Ma vie a deuz>)). Finally, the description is transformed into a query
by setting the variable at the focus as the variable to look for, and the body of
the query matches the graph pattern of step 2. This initial query provides all
the individuals that have the already known properties and values of the new
object.

An Interactive Guidance Process Supporting Consistent Updates 189

Rule Initial triple Relaxed Condition
or constraint triple

SuperProperty 7z p1 7y 7z p2 Ty p1 subp p2

SuperClass ?r ac T aco c1 subc co
Resource T =ro nil

Property 7z p1 Ty nil #p # p1.(p1 subp p)
Class ?7x type 1 nil Fc # c1.(c1 subc ¢)

Fig. 5. Relaxation rules. Variables have a leading question mark, r; are resources, p;
are properties, and c are classes; a relaxed triple set to nil means that the initial triple
is actually removed. type, subc, subp are abbreviations for rdf : type, rdfs:subClass0f
and rdfs:subProperty0f

3.2 Query Relaxation

After adding some property-value pairs, the description of a new object, how-
ever, becomes unique in the database, because the database objects do not all
have the same property-value pairs. The initial query, obtained from the de-
scription of the new object, then leads to no results. In order to continue to
offer suggestions to the user, UTILIS seeks objects similar to the new object
by generalizing the query. To generalize the initial query, we have defined re-
laxation rules, inspired by the query approximation rules of Hurtado et al. [9].
Figure [shows the set of relaxation rules, that apply to triples. The first column
shows the rule name, the second column shows the triple before relaxation, the
third column shows the relaxed triple and the fourth column shows potential
conditions for the application of the rule. Except the rules SuperProperty and
SuperClass, the rules do not depend on an ontology. Rule SuperProperty applies
to a triple with a variable as subject, another one as object and a resource p; as
predicate, under the condition that p; is a subproperty of another property po.
After applying that rule, the subject and object remain the same but property
p1 is replaced by property ps. For example, (?x, :spokenTo, ?7y) can be re-
laxed in (7%, :inConversationWith, ?y) by the application of that rule if there
exists triple (:spokenTo, rdfs:subProperty0f, :inConversationWith). Re-
laxed triple nil corresponds to the suppression of the initial triple. The distance
between the original query and a generalized query is the number of rules applied
to switch from one to the other.

At distance 0, are the results of the initial query, namely the ones obtained
directly from the description without generalization. For example, let us suppose
that the initial query is (SELECT ?x WHERE {?z a :panel . 7z :collection
?y . 7x :character 7z. 7z :character 7a . FILTER (7y = <Ma vie a
deux> && 7z = <MissBean> && 7a = <Fatbean>)}). A generalized query
can be generated without the constraint (?7z = <Missbean>) by applying
rule Resource on this constraint. That generalized query is at distance one.
At the same distance, rule Resource can also be used on another constraint,

2 What are the panels of Ma vie d deuz with characters Missbean and Fatbean ?

190 A. Hermann, S. Ferré, and M. Ducassé

for example on constraint (?a = <Fatbean>). The union of all the results of
generalized queries produced by a single relaxation step are the proposed results
at distance one. Rules can be combined. The order of rule applications has no
impact on the generalized queries. This confluence property allows an efficient
algorithm using dynamic programming to be implemented (Section [3.4)).

3.3 Refinement of the New Object Description

Similar objects are the results of queries, generalized or not. Those objects and
their properties are used as suggestions to complete the new description. The
suggestions are resources, classes or properties. If the focus is on a resource,
the suggestions are classes and properties. A powerful feature of UTILIS is that
users can add features to a description at any time and also at any “point” of
the description. For example, a user can decide to add an information to the
description of any panel already annotated, attaching that information to any
existing individual. The place to be extended has to be identified. This is the
aim of the focus. In order to avoid that users have to explicitely specify the
focus at every step, the default strategy is as follows. When adding a property
to the description of the object, the focus is moved to the variable representing
the value of the property because it is assumed that the user will most probably
want to select or enter a value there after. When the value of the property has
been given, the focus returns to the description of the object. When adding a
class to the description of the object, the focus remains on the description of the
object.

To present suggestions to the user and allow him to complete the description
of the new object, the interaction mechanisms of Sewelis, initially dedicated to
navigation, have been reused to support creation. By default, only the sugges-
tions at the smallest distance are proposed, the list can be enlarged to bigger
distances upon user’s request, until all objects compatible with the searched el-
ement are proposed. At any time, users can manually enter what they want to
add. That is necessary for the new values. Auto-completion mechanisms help find
existing values. Once a suggestion is selected by the user, the new description is
used to define the initial query that will be generalized to make new suggestions
to the user.

3.4 Relaxation Algorithm

A naive algorithm to compute the results at distance d of query ¢ could consist in
generating all generalized queries at distance d, and computing the union of their
results. The generalized queries at distance d would be obtained by applying
d relaxations on the n triples of the query, which amount to (3) generalized
queries. Due to the nature of queries whose graph patterns are trees because
they are derived from Turtle expressions, the results of each generalized query
can be computed in O(n) set operations (intersections and relation crossings).
The cost of the naive algorithm is too expensive, especially as the generalized

queries are only intermediate steps in our approach.

An Interactive Guidance Process Supporting Consistent Updates 191

In UTILIS, we use a more efficient algorithm implemented in dynamic pro-
gramming. Tabled function E(d, D) directly computes results at distance d of
the generalizations of query SELECT ?c WHERE {?x D}, where D is a Turtle
description without subject (list of predicate-object pairs). To make this query
correspond to the initial query, it is sufficient to define D as the rewriting of
the new object description from the focus. For example, for the initial descrip-
tion <PanelK> a :panel; :collection [], D is equal to is :collection of [a :panel].
Function F is defined by recursively calling itself with smaller distances and/or
sub-descriptions. The base cases are when d = 0 and when D is an atomic de-
scription (i.e, of the form a ¢, p r or p []). The algorithm is defined by a set
of equations, covering all combinations of a distance and of a description. For
example, the equation that defines E for the conjunctions of descriptions is

d
E(d, Dy; Dy) = | J(E(i, Dy) N E(d — i, Dy)).
i=0
This equation says that a result for a description of the form D;; D5 is both
a result at distance d; from D; and a result at distance dy from Ds, such
that dy + do = d. Distance d is distributed between the two sub-descriptions
(di =i and do = d — i) in every possible way for ¢ = 0..d. The equations for the
description of the form p [D1] and is p of [D;] are similar, using the traversal of a
relationship instead of an intersection. The results at distance d for classes (resp.
properties) are based on the superclasses (resp. superproperties) at distance d
in the hierarchy of classes (resp. properties).

The intermediate results of E(d, D) are stored in a table with a line for each
distance from 0 to d (O(d) lines), and a column for D and each sub-description
of D (O(n) columns). The complexity for computing a cell of this table is O(d) set
operations. Therefore, the complexity of our algorithm is O(nd?) set operations,
namely, polynomial instead of combinatorial for the naive algorithm.

4 Example

To illustrate UTTLIS, this section describes some details of the creation steps of
the description of a new panel in the annotation database. The database contains
the panels shown in Figure [[l and six other panels. Let us assume that a user
wants to add the panel of Figure [l named PanelK. It is part of the Ma vie
a deux collection. It has two characters, Missbean and Fatbean, and a speech
bubble said by Missbean to Fatbean.

Figure[flshows steps 2-7 of the creation. At each step, the top box contains the
current description of the object, the focus is underlined, the bottom box contains
suggestions with, in front of each of them, the minimum distance between the
initial query and the generalized query which led to this suggestion. For space
reasons, at each step we show only a limited number of suggestions. The element
in boldface corresponds to the choice of the user.

At step 2, the current description is < PanelK> a :panel. Suggestions adapt to
that description: they are the properties of at least one panel. The user chooses

192 A. Hermann, S. Ferré, and M. Ducassé

Fig. 6. Panel of Ma vie a deuz : Pour le meilleur et pour le pire !, by Missbean, City
Editions

:collection []. The upper part of Figure [§ shows the user interface for step 3,
annotations in black have been made by hand, the current description is on the
left side. On the right side, suggested resources for the focus are listed, here the
collections. Above that area, the number of suggestions is indicated and a More
button allows them to be expanded to larger distances containing results. At
step 3, the user chooses <Ma vie d deur> among all the collections. Let us go
back to Figure[d, at step 4 the description is <PanelK> a :panel; :collection <Ma
vie a deur>. The suggestions are the properties of at least one panel of Ma vie
a deuz. The property selected by the user is :character [] to specify characters
of the new panel. At step 5, the suggestions are all the characters of the Ma vie
a deux panels already annotated. The user selects <Missbean> and < Fatbean>.
At step 6, the initial query, corresponding to the description, has no results.
Indeed, those two characters do not appear together in any panel of the base
yet. By relaxation, UTILIS makes suggestions to the user at distances 1 and 7.
The lower part of Figure [shows the user interface of step 7, suggested classes
and properties are in the middle part. From there on, the user can continue the
description of the panel and when he decides that it is complete, he adds it to
the base with the Assert button.

5 Usability Study

In order to assess the suggestions made by UTILIS during the creation of new
objects, an experiment was carried out. Users have tested and evaluated the
usability of UTILIS and Protégé [I2.

The interface and guidance of Protégé are representative of the current edi-
tors. Indeed, two thirds of the Semantic Web users use it as editor [3]. Protégé
requires the domain and range of properties to be defined in order to provide
any suggestions. When a user chooses the class of an individual, a form with the
properties having this class as domain is created. For the values, the suggestions
are individuals of the range of each property.

3http://protege.stanford.edu

http://protege.stanford.edu

An Interactive Guidance Process Supporting Consistent Updates

Step 2
<PanelK> a :panel

0 — :bubble []

Step 3
<PanelK> a :panel;
:collection []

Step 4
<PanelK> a :panel;
:collection <M>

0 — :character [] 0 <Ma vie a deux> 0 :bubble []

0 — :collection] 0 <Peanuts> 0 :character]
1 - :said by [] 0 <The adventures of 3 :said by []

1 — :spoken to [] Tintin> 3 :spoken to []

193

0 <Uncle Scrooge>
Step 6

<PanelK> a :panel;
:collection <M>;
:character <MB>, <FB>

Step 5

<PanelK> a :panel;
:collection <M>;
:character []

Step 7

<PanelK> a :panel;
:collection <M>;
:character <MB>, <FB>;

0 <Missbean> 1 - :bubble [] :bubble []
0 <Babybean> 7 — :said by [] 1 a :speechBubble
0 <Fatbean> 1 :said by []

1 :spoken to []
3 a :thoughtBubble []

0 <Missbean’s cat>
1 <Donald Duck>

Fig. 7. Creation steps for new panel PanelK : It is related to the Ma vie a deux
collection. It has characters Missbean and Fatbean. It has a speech bubble said by
Missbean spoken to her husband : Fatbean.

5.1 Methodology

The subjects consisted of 18 master students in computer science. They had
prior knowledge of relational databases, but knew neither Sewelis, nor Protégé,
nor the Semantic Web. For each editor, they had to perform the same tasks. The
experiment procedure for each subject was the following: 1) read an introductory
note on the overall experiment ; 2) learn how to use an editor with a tutorial
of 30 minutes with an example of annotation creation ; 3) develop and create
annotation with the editor for 30 minutes ; 4) complete a questionnaire about
the editor ; 5) proceed by repeating steps (2) to (4) with the other editor, and
6) complete a comparison questionnaire.

The subjects were asked to update an existing database, describing comics
panels. The base was identical at each start of a test session. It consisted of 362
individuals, divided into 16 classes and connected by 20 properties, including 89
panels. Under Sewelis and Protégé, the class and property hierarchies were the
same. The subjects were to update the database with two sets of panels. They
were divided into four groups, each group conducted two sessions of 1:30. Each
group tested one of the two editors on one of the two panel sets (setl or set2) then
it tested the other editor with the other panel set. Each set consisted of 11 panels
including the panel used for the tutorial and 10 panels to be annotated, with at
least 2 panels from the same collection. The panels were presented on paper in
the same order for all subjects. They already existed in the database, but had
no description. Subjects were instructed to enter a maximum of information on
each panel, taking the description of the existing panels as model. They were

194 A. Hermann, S. Ferré, and M. Ducassé

T Less SuggeStions at focus for
up| st ted feat for 4 objects
£ Im (Focus Up, Suggested features for 4 obje More | values
anel p_ WEEIEY Search I
a pane p?
ey a
4 - = ecti 1 + Ma vie a deux
i . Create
collection : - . = collection ;i 1 + Peanuts
. . [£ 1 + The Adventures of Tintin
Current description of new object I4 + rdf:itype @ 7
r‘l 1 + Uncle Scrooge
Step 3 et 4 - rdfs:label : ?

| Back | Forward | | Refresh | Root | Home | Bookmarks -l Numberofsuggestlons

Penelkm

To enl arge the suggestions |

o paT
collection : Ma vie a deux
character : Missbean i
| o
: [l create =
bubble : [z || 5 ¢+ in conversation with : ?Jproperties
Step 7 + rdf:itype @ 7

Fig. 8. UTILIS screen shots of steps 3 and 7 of PanelK creation

Table 1. Average number of annotated panels and pourcentage of average number of
errors, under Protégé and UTILIS, according to the tools and set orders

Panels under Panels under Errors under Errors under

Protégé UTILIS Protégé UTILIS
groups UTILIS-first 9.6 9 3.5% 4.9%
groups Protégé-first 8.8 8.6 5.4% 6.7%
groups set1-first 8.7 8.6 4.1% 5.2%
groups set2-first 9 8.5 4.9% 6.6%

instructed to reuse existing information as much as possible. Nevertheless, they
could create new individuals when needed.

During the experiments, a log file of user actions was created, in particular
it recorded the number of descriptions created in Sewelis and Protégé, and for
Sewelis, the mode of selection of description items and the number of enlarge-
ments of suggestions.

5.2 Results

This section presents the results of the experiment. In particular, the nature of
the errors made by users respectively under UTILIS and Protégé is commented.
The objective and subjective reactions of users with respect to the suggestions
are discussed.

No difference between the groups. As illustrated in Table [there are no signif-
icant differences in the number of created descriptions (9 in average) between
users of the four groups. There are also no significant differences in the aver-
age number of errors related to the total number of added triples. The order in
which tools were used and the order of the sets had, thus, no influence. As a
consequence, in the following the results are globally reported.

An Interactive Guidance Process Supporting Consistent Updates 195

Table 2. Percentages of elements of description selected in suggestions, found by com-
pletion and created, together with the range of suggestion enlargements and the per-
centage of elements selected in the first three sets of suggestions

Lo &2 L.

g% 2 2 4 R %

£E2 % £ 2 2 3 sE

s 2§ 0% 2 £%

fFEC O & = B OZf
Selection in suggestions (%) 91 91 90 89 82 58 21
Auto-completion (%) 9 9 8 1 15 25 21
Creation (%) 0 0 2 0 3 17 58
Selection in first 3 sets (%) 91 91 92 89 84 68 44
Range of enlargements 0-4 0-1 02 01 03 04 06

Suggestions were relevant. UTILIS suggestions have been used by users during
the creation of new panels. Table 2] shows the proportion of description elements
chosen by selecting a suggestion, by auto-completion and by creation. It also
shows the range of suggestion enlargements and the percentage of suggestions
selected in the first three sets of suggestions. The three modes of selection have
been used. One can see, for example, that adding characters was made in 90%
of the cases by selecting a suggestion, in 8% by auto-completion and in 2% by
creation. The elements related to the collection, to the characters and to bubble
interlocutors were, if they existed, selected more than 80% of the cases in the
first 3 sets of suggestions. For locations and other elements, the suggestions
were less useful. These descriptive elements are more subjective than the above
mentioned ones and they often have been created by users. The questionnaires
completed after the experiments give a consistent view. Indeed, 16 subjects found
suggestions relevant for characters, 15 for the collection, 12 for interlocutors, but
only 6 for the locations and 3 for other elements.

Suggestions were appreciated. Subjects were asked which of the elements of each
editor they would like to see in an ideal editor. Ten subjects wished to have the
properties in a form as in Protégé. From UTILIS, 14 subjects wished to retain
the suggestions adapted to the object being created, and 11 subjects wanted the
auto-completion search mode. Nine (resp. 7) subjects wished to have UTILIS
suggestions for some of (resp. all) properties.

Consistency was better ensured under UTILIS. Table [B] shows the number of
errors per error type introduced in the base by the users, respectively under
Protégé and UTILIS. The number of users who made the errors is given between
parentheses. The most important result is that 27 duplicates were introduced
in the base under Protégé, while none was created under UTILIS. A duplicate
is a new individual, created whereas an existing one would have been relevant.
Furthermore, under Protégé 50% more wrong values were introduced than under

196 A. Hermann, S. Ferré, and M. Ducassé

Table 3. Number of errors (number of users who made them) per error type in the
base, under Protégé and UTILIS

n 7)) ,.c

Q

3 . Sy T2 £ ¢

L m £ E =8 o g oy =

= S Q 5 O] =] =] A} —

2 S w®g 2% ©E ©2&% a3z E

= 5-176 5 8 =0 = oo 5-18 - 0 =

A =g £3 JE BL BA =2& &
Protégé 27 (11) 46 (10) 33 (11) 39(10) 0(0) 0 (0) 0 (0) 145 (18)
UTILIS 0(0) 30(9) 33(3) 30(9) 15 (1) 48 (3) 22 (9) 178 (16)

UTILIS. It should also be noted that the duplicates have been created by more
than half of the users (11 subjects) under Protégé. Moreover, 9 of the 18 users
did not introduce any duplicate or value errors at all in the base under UTILIS
against 2 only under Protégé. Consistency was thus better ensured with UTILIS.
Both the suggestion and auto-completion mechanisms of UTILIS help users to
find existing individuals without having to browse through entire lists as in
Protégé. As a matter of fact, 13 subjects reported being bothered to have to
traverse the entire lists of individuals in Protégé. Furthermore, suggestions and
auto-completion provide examples of formats and types of similar cases. It helps
users create new individuals that are consistent with existing individuals. Note
that the identification and reuse of resources is what distinguishes five stars
linked open data (LODE from four stars LOD, according to the star scheme of
LOD.

More handling errors under UTILIS but made by few users. Table[3 shows other
types of errors. Cancelled elements are elements which were not committed, or
were deleted and not added afterwards. Both the number of cancelled and forgot-
ten elements are similar under both tools. However, under UTILIS the number
of users who forgot elements is small (3 users) and significantly lower than un-
der Protégé. Forgotten elements under Protégé are individuals for which several
occurrences of the same property were needed, for example several characters in
a given panel. There are three types of error made only under UTILIS. Wrong
types is a format error, for example the creation of a literal instead of an individ-
ual. Examples of wrong properties are using a superproperty or using a property
in the wrong direction. A misplaced focus results in an extension attached to
a wrong place. These errors cannot occur under Protégé, the forms to be filled
are static. It should be noted that all the wrong types have been introduced
by a single user and the wrong properties by only 3 users. Regarding the mis-
placed focus, Section B3] presented the default strategy for focus positioning.
Users may want to fill in the descriptions in a different order than the default
strategy. One objective of this study was to observe how users would cope with
focus positioning. Half (9) of the users made focus errors but most (7) of them
made that mistake only once. The error occurred at any time, not necessarily

4http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

An Interactive Guidance Process Supporting Consistent Updates 197

while describing the first panels. Once the error made, seven users thus did not
repeat it. In the end, only two users were still abashed by the focus positioning.
Altogether, two users managed to make no error at all under UTILIS whereas
none did under Protégé. In conclusion, few users were still disconcerted by the
unconventional user interaction model of UTILIS at the end of the session. We
conjecture that those difficulties came from the extra flexibility of UTILIS. In
further work we will study how to help those users manage with the flexibility
of UTILIS.

6 Related Work

Editors for Semantic Web data can be dedicated tools (e.g., Protégé [12], OKM
(OKM Ontology Management) [4], Gino [2], QuiKey [7]) or integrated into Wiki
environments (e.g., SMW (Semantic Media Wiki) [17], KiWT [16], ACEWiki [10]).
Their interface can be based on forms (e.g., Protégé, OKM, SMW), on natural
language (e.g., Gino, ACEWIiki), or only allow for the creation of one triple (or
semantic link) at a time (e.g., KiWI, Quikey). We discuss in the following the
key differences with UTILIS.

UTILIS does not need any preliminary preparation, nor any schema. Protégé
requires the definition of domains and ranges to make any suggestion, because
forms are derived from that information. The Semantic Formd? of SMW have to
be defined manually. Editors based on natural language require the definition of
a lexicon, and its relation to an ontology. Like OKM and Quikey, UTILIS can
be applied from scratch on any RDFS graph.

UTILIS suggestions are based on individuals rather than on ontology azioms.
All above editors, except OKM and Quikey, only look at ontology axioms, i.e.
the schema, to compute suggestions, generally starting from the class of the new
object. This implies that, at step 5 of our scenario, Protégé lists all characters
in alphabetical order, whatever the existing objects in the base. With UTILIS,
characters that are already linked to a panel in the base would be suggested first;
and if the collection of the panel has already been specified, then characters of
that collection are suggested before other characters.

UTILIS suggestions depend on the full description of the new object. The flexible
forms of OKM only depend on, and require, the class of the new object, and
Quikey simply suggests (through auto-completion) all existing properties and
individuals. UTILIS can provide suggestions from the start, when nothing is
known about the new object, and refine them whenever an information is added
to its description. At step 2 of our scenario, knowing the class improves the
suggestion of properties. At step 5, knowing the collection of the panel improves
the suggestion of characters. This works for description elements at arbitrary
depth, e.g., for suggesting the locutor of a bubble of the panel.

® http://www.mediawiki.org/wiki/Extension:Semantic_Forms

http://www.mediawiki.org/wiki/Extension:Semantic_Forms

198 A. Hermann, S. Ferré, and M. Ducassé

UTILIS suggestions are available before any user input. All editors, except
Protégé and ACEWIiki, require the user to enter a few letters in order to get
suggestions of individuals (e.g., characters). This can be explained by the fact
that suggestions are not fine-tuned to the new object, and the alternative is then
to list all instances of some class, like in Protégé. UTILIS can suggest short lists
of individuals as soon as the description becomes specific. For long lists, UTILIS
also provides auto-completion, similarly to Quikey.

7 Conclusion

We propose a method, UTILIS, which guides users through the creation of ob-
jects in an RDFS graph. The guidance takes benefit of existing objects and of
the current description of a new object. At each step, the current description
is used to find similar objects, whose properties are then used as suggestions
to complete the description. Similar objects are the results of queries that are
generalized from the current description. These queries are obtained by relax-
ation rules. An efficient algorithm to compute suggestions has been designed and
implemented in Sewelis.

Compared to other RDFS editors, UTILIS suggestions are based on existing
objects, rather than only on the RDF schema. They are, therefore, well adapted
to each object being created. One advantage is that UTILIS does not need an
ontology to be defined, although it can use one to improve its suggestions when
one is available. An experiment has shown that subjects found the suggestions
useful and they actually used them. In most cases, they could find the desired
item in the first three sets of suggestions. Even if some users were disconcerted,
the base resulting from the use of UTILIS was more consistent and contained
less errors than when using Protégé. In addition 14 of the 18 subjects wanted to
keep UTILIS suggestion mechanism in an editor.

Acknowledgements. We thank Marie Levesque (aka Missbean) to have al-
lowed us to use the panel taken from Ma vie a deux : Pour le meilleur et pour
le pire ! and her publisher City Editions. We also thank the 18 students of the
INSA institute of technology who participated in the experiment.

References

1. Beckett, D., Berners-Lee, T., Prud’hommeaux, E.: Turtle - Terse RDF Triple Lan-
guage. W3C Recommendation (January 2010)

2. Bernstein, A., Kaufmann, E.: GINO - A Guided Input Natural Language Ontol-
ogy Editor. In: Crugz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 144-157.
Springer, Heidelberg (2006)

3. Cardoso, J.: The semantic web vision: Where are we? IEEE Intelligent Systems,
84-88 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

An Interactive Guidance Process Supporting Consistent Updates 199

Davies, S., Donaher, C., Hatfield, J.: Making the Semantic Web usable: interface
principles to empower the layperson. Journal of Digital Information 12(1) (2010)

Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and
Exploratory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqgvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031,
pp. 177-192. Springer, Heidelberg (2011)

Ferré, S., Ridoux, O.: An introduction to logical information systems. Information
Processing & Management 40(3), 383-419 (2004)

Haller, H.: QuiKey — An Efficient Semantic Command Line. In: Cimiano, P., Pinto,
H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 473-482. Springer, Heidelberg (2010)
Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRC Press (2009)

Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. J. Data
Semantics 10, 31-61 (2008)

Kuhn, T.: How controlled english can improve semantic wikis. In: Semantic Wiki
Workshop (SemWiki), vol. 464. CEUR-WS.org (2009)

Limpens, F., Gandon, F., Buffa, M.: Sémantique des folksonomies: structuration
collaborative et assistée. In: Ingénierie des Connaissances (IC), pp. 37-48. Presses
Universitaires de Grenoble (2009)

Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. IEEE Intelligent Systems 16(2),
60-71 (2001)

Passant, A., Laublet, P.: Meaning of a tag: A collaborative approach to bridge
the gap between tagging and linked data. In: Workshop Linked Data on the Web
(LDOW). CEUR-WS (2008)

Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation (2008)

Sacco, G., Tzitzikas, Y. (eds.): Dynamic Taxonomies and Faceted Search: The-
ory, Practice, and Experience. The Information Retrieval Series, vol. 25. Springer,
Berlin (2009)

Schaffert, S., Eder, J., Griinwald, S., Kurz, T., Radulescu, M., Sint, R., Stroka,
S.: Kiwi - a platform for semantic social software. In: Semantic Wiki Workshop
(SemWiki). CEUR-WS.org (2009)

Volkel, M., Krotzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic
Wikipedia. In: International conference on World Wide Web (WWW), pp. 585-594.
ACM Press (2006)

	An Interactive Guidance Process Supporting Consistent Updates of RDFS Graphs
	Introduction
	Preliminaries
	UTILIS : An Interactive Guidance
	Transformation of the Description into the Initial Query
	Query Relaxation
	Refinement of the New Object Description
	Relaxation Algorithm

	Example
	Usability Study
	Methodology
	Results

	Related Work
	Conclusion
	References

