G. Allaire, Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation, 2007.

A. Bhaskar, Elastic waves in Timoshenko beams: the 'lost and found' of an eigenmode, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.38, issue.2017, pp.239-255, 2009.
DOI : 10.1098/rspa.2001.0855

J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations, Journal of Computational and Applied Mathematics, vol.245, 2012.
DOI : 10.1016/j.cam.2012.12.023

URL : https://hal.archives-ouvertes.fr/hal-01051803

J. Chabassier, A. Chaigne, and P. Joly, Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.45-48, pp.2779-2795, 2010.
DOI : 10.1016/j.cma.2010.04.013

URL : https://hal.archives-ouvertes.fr/inria-00534473

J. Chabassier and P. Joly, Time domain simulation of a piano. Part 1: model description, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, 2012.
DOI : 10.1051/m2an/2013136

URL : https://hal.archives-ouvertes.fr/hal-01085477

H. Conklin, Design and tone in the mechanoacoustic piano. Part III. Piano strings and scale design, The Journal of the Acoustical Society of America, vol.100, issue.3, pp.1286-1298, 1996.
DOI : 10.1121/1.416017

G. Cowper, The Shear Coefficient in Timoshenko???s Beam Theory, Journal of Applied Mechanics, vol.33, issue.2, pp.335-340, 1966.
DOI : 10.1115/1.3625046

R. Dautray, . Lions, . Bardos, . Cessenat, . Lascaux et al., Mathematical analysis and numerical methods for science and technology, 2000.

H. Fletcher and E. Blackham, Quality of Piano Tones, The Journal of the Acoustical Society of America, vol.34, issue.6, pp.749-761, 1962.
DOI : 10.1121/1.1918192

S. Timoshenko, LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine Series 6, vol.41, issue.245, pp.744-746, 1921.
DOI : 10.1080/14786442108636264

N. F. Van-rensburg and A. Van-der-merwe, Natural frequencies and modes of a Timoshenko beam, Wave Motion, vol.44, issue.1, pp.58-69, 2006.
DOI : 10.1016/j.wavemoti.2006.06.008

P. Joly, M. Ainsworth, P. Davis, D. Duncan, and P. , Variational Methods for Time-Dependent Wave Propagation Problems, Topics in Computational Wave Propagation , Direct and inverse Problems, pp.201-264, 2003.
DOI : 10.1007/978-3-642-55483-4_6

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-d wave equation. Part I: Construction, Numerische Mathematik, vol.95, issue.2, pp.197-221, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

A. Burel, S. Imperiale, and P. Joly, Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition, Numerical Analysis and Applications, vol.5, issue.2, pp.136-143, 2012.
DOI : 10.1134/S1995423912020061

URL : https://hal.archives-ouvertes.fr/hal-00717160

J. Gilbert and P. Joly, Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions, Partial Differential Equations, vol.16, pp.67-93, 2008.
DOI : 10.1007/978-1-4020-8758-5_4

URL : https://hal.archives-ouvertes.fr/hal-00976773

J. Chabassier, Modélisation et simulation numérique d'un piano par modèles physiques, 2012.