N

N
N

HAL

open science

Scalable Iterative Graph Duplicate Detection

Melanie Herschel, Felix Naumann, Sascha Szott, Maik Taubert

» To cite this version:

Melanie Herschel, Felix Naumann, Sascha Szott, Maik Taubert. Scalable Iterative Graph Duplicate
Detection. IEEE Transactions on Knowledge and Data Engineering, 2012, 24 (11), pp.2094-2108.

hal-00757604

HAL Id: hal-00757604
https://inria.hal.science/hal-00757604

Submitted on 27 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00757604
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012 1

Scalable lterative Graph Duplicate Detection

Melanie Herschel, Felix Naumann, Sascha Szott, and Maik Taubert

Abstract—Duplicate detection determines different representations of real-world objects in a database. Recent research has
considered the use of relationships among object representations to improve duplicate detection. In the general case where
relationships form a graph, research has mainly focused on duplicate detection quality/effectiveness. Scalability has been neglected so
far, even though it is crucial for large real-world duplicate detection tasks. We scale-up duplicate detection in graph data (DDG) to large
amounts of data and pairwise comparisons, using the support of a relational database management system. To this end, we first
present a framework that generalizes the DDG process. We then present algorithms to scale DDG in space (amount of data processed
with bounded main memory) and in time. Finally, we extend our framework to allow batched and parallel DDG, thus further improving
efficiency. Experiments on data of up to two orders of magnitude larger than data considered so far in DDG show that our methods

achieve the goal of scaling DDG to large volumes of data.

Index Terms—Duplicate detection, data cleaning, data integration, record linkage, entity resolution, scalability, parallelization.

1 INTRODUCTION

UPLICATE detection algorithms (surveyed in [1]) deter-
mine which different entries in a database in fact
represent the same real-world object. They are for instance
used in data cleaning [2] and integration [3] and have been
studied extensively for data stored in a single relational table.
Recently, a new class of duplicate detection algorithms
emerged that considers the more complex structure of data
(more than one table, foreign keys). We refer to these
algorithms as duplicate detection in graph data, DDG for short.
These algorithms detect duplicates between object repre-
sentations, so called candidates, by utilizing relationships
between candidates to improve effectiveness. Within this
class, we focus on those algorithms that iteratively detect
duplicates when relationships form a graph [4], [5], [6]. In
this paper, reference to DDG algorithms implies the
restriction to these iterative algorithms. To the best of our
knowledge, none of the proposed algorithms within this
class has explicitly considered scalability yet. This paper
aims at filling this gap and extends on previous work [7].
Before outlining our contributions, we present an example
that illustrates DDG and highlights its benefits.

The tables in Fig. 1 describe movies, actors, and which
actor starred in which movie. It is obvious to humans that
all three movies represent a single movie and that there are
only three distinct actors, despite some typos.

e M. Herschel is with the Wilhelm-Schickard Institut fiir Informatik,
Universitat Tiibingen, Sand 13, 72076 Tiibingen, Germany.
E-mail: melanie.herschel@uni-tuebingen.de.

e F. Naumann is with the Hasso-Plattner-Institut fiir Softwaresystemtech-
nik, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany.
E-mail: naumann@hpi.uni-potsdam.de.

e S. Szott is with the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin,
Takustr. 7, 14195 Berlin, Germany. E-mail: szott@zib.de.

o M. Taubert is with Biotronik SE & Co. KG, Woermannkehre 1, 12359
Berlin, Germany. E-mail: maik.taubert@biotronik.de.

Manuscript received 30 Jan. 2010; revised 10 Sept. 2010; accepted 29 Mar.
2011; published online 27 Apr. 2011.

Recommended for acceptance by W.-S. Han.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-01-0058.
Digital Object Identifier no. 10.1109/TKDE.2011.99.

1041-4347/12/$31.00 © 2012 IEEE

Example 1. We consider movies, titles, and actors as
candidates, which we identify by an ID with prefix m, t,
and a, respectively, for future reference. We use the prime
notation (°) to indicate duplicates. Title candidates illus-
trate that candidates do not necessarily correspond to a
complete relation.

Initialization. DDG algorithms represent data as a
graph. Fig. 2 depicts a possible graph for our movie
scenario. The graph includes one candidate node per
candidate, whose descriptive information, given by the
attributes of the relational table, is represented as attribute
nodes associated with the corresponding candidate node.
Candidate nodes are connected by directed edges, called
dependency edges. Intuitively, these edges represent the
fact that finding duplicates of the target candidate
depends on finding duplicates of the source candidate.
The latter are called influencing candidates.

Next, DDG initializes a priority queue, PQ, of
candidate pairs. Each pair in PQ is compared based on
some similarity measure that considers both neighboring
attribute nodes and influencing candidate nodes. If the
similarity is above a given threshold, the pair is classified
as a duplicate. Let the initial PQ be ((ml,ml’),(ml,
m1”), (ml,m1"), (t1,t2), (t1,t3), (t2,t3), (al,a2),...).

Iterative phase. We now start comparing pairs in PQ).
The first pair retrieved from PQ is (ml,m1’), which is
classified as nonduplicate, because the movies’ sets of
influencing neighbors (the respective actor neighbors)
appear to be nonduplicates. The same occurs when
subsequently iterating through movie pairs and title pairs.
When comparing (al,al’), we finally find a duplicate,
because the actor names are similar, and there are no
influencing neighbors. Having found this duplicate
potentially increases the similarity of (m1, ml’), because
the movies now share common actors. Hence, (m1,m1’) is
added back to P(Q for further inspection. The same occurs
in the subsequent iterations where duplicate actors are
detected. Now, when we compare movies again they can
be classified as duplicates, because they share a significant
amount of influencing actor neighbors. In the end, we
identify all duplicates correctly.

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

[ACTOR | [STARSIN |
AID Name AID MID
I MOVIE | af Brad Pitt af mf
MID | Title a2 Eric Bana a2 m1
m1 Troy at’ Brad Pit at’ m1’
m1’ Troja a2’ Erik Bana a2’ m1’
m1” llliad Project a3 Brian Cox a3 m1’
atl” Prad Pitt at” m1”
a3’ Brian Cox a3’ m1”

Fig. 1. Sample movie database.

Recomparisons, e.g., of the movie candidates, increase
effectiveness and should thus be performed. However, had
we started by comparing actors, we would have avoided
classifying movies a second time and still have obtained the
same result. Clearly, comparison order affects efficiency.

Contributions. Whereas effectiveness and priority queue
order maintenance for efficiency have been considered in
the past, scalability of DDG has not been addressed so far.
This paper aims at filling this gap. More precisely, our
contributions are: 1) A general framework that suits several
iterative DDG algorithms; 2) algorithms to scale up the
general DDG process described by our framework so that
DDG algorithms can be applied to large amounts of data;
and 3) further efficiency improvements through paralleliza-
tion and batched processing.

Structure. We cover related work in Section 2. We then
present our framework for iterative DDG in Section 3.
Section 4 presents how we scale-up DDG. Our extension to
parallel and batched execution of DDG, called PDDG, is
discussed in Section 5. We cover our evaluation in Section 6
before the conclusion in Section 7.

2 REeLATED WORK

We discuss related work on the two main topics pertinent to
this work: DDG and parallelization.

Duplicate detection in graph data. We distinguish
between three approaches used for DDG: 1) machine
learning, where models and similarity measures are learned
[8], [9], 2) the use of clustering techniques [10], [11], [12], [13],
and 3) iterative algorithms that classify one pair of
candidates at every iteration [4], [5], [6]. We further discern
whether an algorithm mainly focuses on effectiveness,
efficiency, or scalability. Research on effectiveness is
concerned with improving precision and recall, which is a
goal common to all DDG algorithms. Research on efficiency
aims at improving the runtime [5], [10], [12], [13], [14]. To
apply methods to very large data sets, it is essential to scale
not only in time but also to scale in space, for which
RDBMSs are commonly used for duplicate detection in
general [15], [16], [17], but which has not been explored for
graph duplicate detection. Let us now take a closer look at
algorithms of the class we consider, i.e., iterative DDG.

Dong et al. [4] perform duplicate detection in a scenario
where relationships between persons, publications, etc.,
form a graph. At each iteration, the first pair in the priority
queue is retrieved, compared, and classified as nondupli-
cate or duplicate. In the latter case, relationships are used to
propagate the decision to neighbors, which potentially
become more similar due to the found duplicate. To reflect
this propagation in the priority queue, pairs that potentially
are more similar are either put at the head of the priority
queue or in the tail, depending on the type of relationship.

Tro (O candidate node @lﬂja_, Illiad Project K :)

i [attribute node i i

N

[Brad Pitt][Eric Bana | [Brad Pit |[Erik Bana][Brian Cox | [Prad Pitt][Brian Cox |

Fig. 2. Sample reference graph.

Also, the constraint that two candidates are nonduplicates
is explicitly considered by this approach. We do not
consider such negative evidence in this paper but our
framework can be extended to incorporate it. Efficiency and
scalability are not considered by their approach.

In studying the impact of comparison order on DDG
efficiency [5] we show that a poor choice of comparison
order can compromise efficiency due to a large number of
recomparisons in data graphs with high connectivity and
present a heuristic to determine an efficient comparison
order.

The RC-ER algorithm [6] reevaluates similarities of
candidate pairs at each iterative step, and selects the most
similar pair at each iteration. Duplicates are merged
together before the next iteration, so effectively clusters of
candidates are compared. This merge necessitates updates
in the reference graph and the priority queue. The authors
describe the use of a binary-heap in main memory to
efficiently maintain the order of the priority queue.
However, scalability is not discussed.

Parallelization. By parallelization, we understand the
distribution of an algorithm such that it can be computed
simultaneously on one or multiple computing units [18]. To
the best of our knowledge, no work has yet considered
parallelization of general DDG.

In [19] an approach for parallelizing duplicate detection
on a single relational table is presented. That work does not
address issues of graph data. The parallel version of
Swoosh [14] processes two related candidate types in
parallel and propagates duplicates among the two pro-
cesses. However, as opposed to what all other DDG
algorithms ensure, the propagation is not exclusively
targeted toward candidate pairs whose similarity poten-
tially increases, so pairs whose similarity is guaranteed to
not change may be recompared as well. We therefore do not
view this approach as parallelization of general DDG.

Due to interdependent classifications, the MapReduce
framework [20] is not directly applicable to the general
parallelization of DDG. Therefore, we devise a specialized
framework, named PDDG, that builds upon the nonparallel
DDG framework discussed next.

3 THeE DDG FRAMEWORK

The methods we propose to scale-up DDG are intended to be
as general as possible to fit many algorithms. Therefore, we
first generalize existing methods into a unified framework.

3.1 Definitions for Unified DDG

We reuse and extend several definitions we have defined
for duplicate detection in tree data [21], starting with
candidates.

Definition 1 (Candidates). Let Cr = {cy, ¢a, ..., ¢} be the set
of candidates of a given object type T'. To denote the type of a

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

particular candidate c, we use T.. The set of all candidates, no
matter their type, is denoted as C.

During the iterative phase of DDG, candidate pairs are
classified based on a similarity measure.

Definition 2 (Duplicate classification). Given a similarity
measure sim and a threshold 0, we classify ¢ and ¢ as
duplicates if sim(c,c’) > 0, and as nonduplicates otherwise.

Intuitively, sim considers both object descriptions and
influencing candidate pairs in its computation.

Definition 3 (Object description). Let Ay be a set of attribute
names for candidates of type T. Then, OD,(c) defines the
attribute values of an attribute named o € Ar that are part of
¢’s object description OD. The complete OD of a candidate
¢ € Cp is given by OD(c) = {(a,v)|a € Ap Av € OD,(c)}.
When the attribute name o is clear from the context, we write
(v) instead of («,v) for brevity.

Example 2. A candidate of type actor is described by only
its name, hence OD(al) = ODyame(al) = {(BradPitt)}.

Definition 4 (Influencing & dependent candidates). The set
of influencing candidates I(c) of a candidate c is a set of
candidates different from c¢ whose similarity (or duplicate
status) to other candidates affects the similarity of c to other
candidates (see Definition 5 for the definition of the other
candidates). Analogously, dependent candidates of c are
candidates different from ¢ whose similarity is influenced by c,
ie., D(c) ={d|ce I(d)}.

Placing candidates into I(c) and D(c) is for instance
based on foreign key constraints or domain knowledge
provided by a domain expert. It reflects the graph structure
of the data.

Example 3. Fig. 2 shows I(ml) = {al, a2, t1} and
D(ml) = {t1}. Similarly, I(m1”) = {al”, a3, t3} and
D(m1") = {t3}.

Influencing and dependent candidate pairs of two
candidates are obtained by forming the cross product
between their respective influencing and dependent candi-
dates of same type.

Definition 5 (Influencing & dependent candidate pairs).
The influencing candidate pairs of some candidate pair
(¢, d) aredefined as I(c,c') = {(i,1') € I(c) x I()|T; =Ty}.
Analogously, the dependent candidate pairs of (c,c') are
De.d) = {(i.i') € D(c) x D()|T; = Ty }.

Example 4. Fig. 2 shows I(ml,ml”) = {(al,al”), (al,a3’),
(a2,al”), (a2,a3), (t1,t3)}, and D(ml, m1”) = {(t1,t3)}.

3.2 Components of Unified DDG

We observe that algorithms for iterative DDG have in
common that 1) they consider data as a graph, 2) they
perform some preprocessing before candidates are com-
pared to obtain initial similarities and avoid recurrent
computations, and 3) they compare pairs of candidates
iteratively in an order that possibly changes at every
iteration where a duplicate is found, requiring the main-
tenance of a priority queue. Merging or enriching detected

all candidate pairs
have been classified

@—|Initialization :D—»O

else

Classification

Retrieval Update
| |

Iterative Phase

Fig. 3. General DDG workflow.

duplicates is also a common technique to increase effec-
tiveness and requires updating the graph. Based on these
observations, we devise the general DDG framework
illustrated in Fig. 3.

Unified graph model. Dong et al. [4] use a dependency
graph whose nodes are pairs of candidates p, = (c1,¢2) or
pairs of attribute values p, = (v1,v2), and an edge between
pe and p, exists if vy is an attribute value of ¢; and v is an
attribute value of c,. Further edges between candidate pair
nodes p,, and p,, exist if p., is an influencing or dependent
pair of p.,. Opposed to that, Bhattacharya and Getoor [22]
define a reference graph, where nodes do not represent pairs,
but candidates, and edges relate influencing or dependent
candidates. Other DDG algorithms use graphs that basically
fall into one of these two categories: nodes either represent
single candidates [5], [10], or pairs [8]. Attribute values are
usually treated separately. In the context of duplicate
detection, the dependency graph can be derived from the
reference graph. In general, a dependency graph is more
expressive, but its full expressiveness is not used in DDG.
Hence, our unified graph model for DDG is a reference
graph. Fig. 2 is a reference graph for our movie example.

Definition 6 (Reference graph). A reference graph G =
Ve, Va,€) consists of a set of candidate nodes V¢, a set of
attribute nodesV 4, and a set of dependency edges £. A candidate
node V, € V¢ exists for every candidate ¢ € C. Every element of
an OD is represented by an attribute node V, € V4. A
dependency edge (V.,Vw) € € is directed from V. to Vo if
d € D(c).

Unified DDG initialization. To detect duplicates, DDG
algorithms set up a priority queue PQ) where the priority of a
candidate pair is computed according to an algorithm-
specific method (see Section 2 for different strategies).
Theoretically, all pairs of candidates in G of equal type are
added to PQ. However, blocking [23] or filtering [15] are
commonly used to significantly reduce the number of pairs
entering PQ, thus avoiding the issue of an otherwise
quadratic blowup. Also, the set of pairs in PQ) may change
during the iterative phase, which is especially useful when
duplicates get merged.

Also as part of initialization, DDG algorithms have a
jump-start phase, where, e.g., attribute similarities are
precomputed for later use during candidate classification
[6] or duplicates that can be identified with a less complex
measure are detected and not further compared during
DDG [4]. Essentially, the jump-start phase performs pre-
computations used later on.

Unified iterative phase. After initialization, we classify
candidate pairs as duplicates or nonduplicates in the

iterative phase. Existing algorithms maintain P in main
memory. At every iteration step, the first pair in PQ is
retrieved, then classified using a similarity measure, and
finally the classification causes some update in PQ or the
graph (adding pairs to PQ, enrichment in [4], duplicate
merging and similarity recomputation in [22]) before the
next iteration starts.

In general, P(Q) has to be reordered whenever a duplicate
is detected to reduce the number of recomparisons, for
which [4], [5], [22] devise different strategies. Reordering is
an expensive task for large priority queues. However, by
maintaining the order in PQ), recomparisons are potentially
avoided, as we illustrated in Example 1. This in turn may
positively affect runtime. For instance, on graphs with high
connectivity we observed runtime savings of up to
40 percent [24].

4 ScALING-UP DDG

We scale-up DDG to large amounts of data using the
support of an RDBMS, because it provides fast implementa-
tions of crucial operations, such as sorting large amounts of
data. In addition, this choice allows easy deployment of our
methods to real-world scenarios where data are stored in
relational databases, as we did in [25]. Finally, using an
RDBMS follows the spirit of prior work on duplicate
detection scalability [15], [16], [17].

4.1 Scaling-up Initialization

First, let us briefly summarize how we scale initialization (see
[26] for details). Essentially, we create the following tables in
a database to store the reference graph structure and
precomputed values to speed up similarity computation.

EDGES(S,T,Weight, Type),

PQT(C1,C2, Status, Type, Rank),
ODWeight_T;_aj(v, Weight),

ODSim T;_oj(v1, v2, Stm),

DEP(S1,52,T1,T2, Status_S, Status T, Weight_S,
Weight T).

Assuming that candidates are already stored in a
database we reflect the reference graph by storing edges
as source and target candidate ids, and the type of an edge
(required by some algorithms, e.g., [4]) in EDGES. Pairs in
PQ are added to the PQT relation together with their
duplicate status (e.g., duplicate, nonduplicate), their candi-
date type, and their rank within PQ. Tables ODWeight and
ODSim store for each OD attribute «; of each candidate type
T; weights of individual values and pairwise value
similarities, respectively. Finally, DEP materializes the
relationship of influencing candidate pairs (a source pair
and a target pair) together with the pairs” status and weight.
This avoids expensive and long running join computations
on edge tuples during the iterative phase. In our imple-
mentation, we do not use filtering and we insert all possible
pairs into PQT. We use IDF as weight function and
precompute edit-distance-based similarity.

Loading the data into the tables described above may be
a time consuming task when performing it for the first time.
In practice, however, we observe that this process runs
within hours for millions of candidates and performing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

C1 C2 Status Type Rank| C1 C2 Status Type Rank|

al a2 0 A 0] Plalaz 4 A 0 C1 _C2 Status Type Rank
alal’ 0 A 0 alal’ 1 A 0 " A o P
ata2 0 A O ata2 0 A 0 A 0
...... . A 0 e e .. A0 T 2
ttt2 0 T 2 tt 2 0 T 2 T 2

t1 883 0 T 2 3 0 T 2 T 2

2 t3 0 T 2 2 83 0 T 2 M 5
mimi” 0 M 6 mimi” 0 M 6 M 6
mimi” 0 M 7 mimi” 0 M 5 M 7
mi'mi” 0 M 7 mi'm1” 0 M 7

(a) Initially retrieved pairs (b)After comparing (al,a1’) (c) After retrieval in new order

Fig. 4. PQT states using RECUS/DUP on movie example.

precomputations significantly improves the runtime of the
iterative phase, despite the overhead caused by looking up
these values in the database. Also, the precomputed tables
may be updated incrementally so subsequent DDG runs
require less time for initialization.

We now discuss how we scale up the iterative part of
DDG. We first focus on scaling-up retrieval and update, and
postpone the discussion of classification, for which we
present solutions orthogonal to the choice of the retrieval
and update algorithm.

4.2 Scaling-up Retrieval and Update
A straightforward approach to scale-up DDG is to map
the DDG process (Fig. 3) from main memory to a
database. We refer to this baseline algorithm as RECUS/
DUP, as the Retrieval-Classify-Update-Sort process is
guided by duplicate classifications. Although straightfor-
ward, we discuss RECUS/DUP as the basis for our
improved algorithm.

Let us use a heuristic approach that sorts pairs (c,¢) in
PQT in ascending order of a rank computed as

() + ()] =2 NG (e,)],

where N7 (c, ') is the set of currently known duplicate pairs
among I(c) and I(¢) (see Definition 7). Intuitively, the
larger the number of influencing candidates that are not
duplicates of each other, the more classifications may
trigger a recomparison of pair (c,c). To avoid these, the
comparison of (¢,) should be performed late in the
process. This ranking corresponds to one heuristic explored
in [5]. Although not the best in practice, its simplicity is
suited for illustration. Other heuristics include adding pairs
to the head or tail of the priority queue [4] in which case the
new rank should be chosen as the minimum or maximum
possible rank; or the priority queue is sorted according to
the actual distance (similarity) measure [6], [22], in which
case the rank is equal to the (inverse) similarity.

RECUS/DUP. Candidate pairs are retrieved from the
database as long as PQT contains pairs with an unknown
duplicate status (identified by 0). To retrieve pairs, we issue
the SQL query SELECT * FROM PQT WHERE STATUS = 0
ORDER BY RANK and iterate over returned tuples. The initial
result retrieved by RECUS/DUP is depicted in Fig. 4a.
Pointer p is used to iterate over returned tuples. As long as
no duplicate is detected during classification, we simply
advance p after updating the status of the current pair to —1,
which identifies a nonduplicate.

When a duplicate is detected, we need to not only update
the pair’s status to 1 to mark it as a duplicate, but we have to
also update the rank of dependent neighbor pairs. Fig. 4b
shows the processing status right after duplicate (al,al’) has

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

been found. We observe that this classification requires a
recomputation of the rank of the dependent pair (m1, ml’),
which changes from 7 to 5. Hence, the order of the initially
retrieved pairs no longer corresponds to the order dictated
by the rank. Therefore, we terminate the iteration over the
retrieved pairs, perform all necessary updates and issue the
SQL query described above over the updated PQT. Neces-
sary updates may include updating the rank of all dependent
pairs, which are efficiently retrieved using the DEP relation
and updating their status to 0 if necessary; duplicate merging
or enrichment, implemented through updates in EDGES and
OD attributes; or any other operation expressible by an
appropriate function that updates graph tables and pre-
computed tables as required by the operation. Fig. 4c shows
the pairs retrieved by the second call of the SQL query.
Pointer p is reset to point to the first pair. The subsequent
processing is analogous to the procedure described above.
Obviously, RECUS/DUP compares all pairs in the correct
order w.r.t. the ranking heuristic.

RECUS/DUP makes the least possible use of main
memory by keeping a single pair and possibly a dependent
pair in main memory at every iteration, plus some
information to compute similarity. However, as experi-
ments show (Section 6), sorting PQT is very time consum-
ing. The algorithm described next, RECUS/BUFF, reduces
the sorting effort by using main memory more extensively,
but with an upper bound, while still guaranteeing that pairs
are processed in the correct order.

RECUS/BUFF uses an in-memory buffer B of fixed size to
avoid sorting PQT each time a duplicate is found. The
intuition is that although ranks of several pairs may change
after a duplicate is detected, sorting PQT immediately after
finding the duplicate is not always necessary. For instance, in
our example of Fig. 4, although the rank of (m1, m1’) has
changed from 7 to 5, all uncompared actor and title pairs are
still in front of (M1, m1’) so the order of pairs in the head of
the sequence of retrieved pairs remains the same. Hence,
sorting the priority queue does not immediately affect the
comparison order and can be avoided. To this end, we use
buffer B to temporarily store pairs with their new rank and
status. B maintains the pairs in ascending order of their rank
(the same order as used for PQT). By adequately adapting
the retrieval and update phase from RECUS/DUP this
technique avoids sorting the much larger PQT table, while
comparing the pairs in the same order as RECUS/DUP.

Fig. 5 illustrates how RECUS/BUFF behaves. Initially, we
issue the same query as for RECUS/DUP and B is empty
(see Fig. 5a). In addition to a pointer p over pairs from the
database, we have a pointer pp to iterate over pairs in B.

RECUS/BUFF performs like RECUS/DUP as long as it
does not detect a duplicate. When a duplicate is detected, its
status is updated to 1 and dependent pairs are retrieved and
their new rank is computed. Opposed to RECUS/DUP,
RECUS/BUFF does not update PQT to reflect the new ranks
of dependent pairs. Instead, these pairs are added to B in
the order of their new rank as long as the buffer does not
overflow. The status of these pairs is set to 0. Fig. 5b shows
the content of B after duplicate (a1, a1’) has been found.
Note that p has moved forward to the next pair.

5
CT C2 Status Type Rank Cl C2 Status Type Rank
YRV A0 p ail a2’ -1 A 0
al al' 0 A 0 ail a1y 1 A 0 .
al a2 0 A 0 at a2 0 A 0
A
o 13 0 T 5 t2 t3” 0 T 2
mm® 0 M 6 mimi® 0 M 6
m om0 M7 m1’ m1” 0 M 7
m'mi” 0 M 7 m'm” 0 M 7

[C1 C2 Status Type Rank‘g)
mim 0 M 5 | PP

(b) After detecting duplicate (a1, a1’)

[CT C2 Status Type Rank] 0
B

(a) Initial state

CT C2 Staws Type Rank C1 C2 Status Type Rank

. . A 0
. . A 0

Ht o T 2
TR RS
2B 0 T 2 R A
mimi” 0 M 6 [CP mi m1’y’ 0 M 6
mimi’ o M7 m1’ m1 0 M 7
mi'm’” 0 M 7 mi'mi” 0 M 7

C1 C2 Status Type Rank Cl €2 Status Type Rank
mim o0 M 3| pz |mtmbo 1 Moo

mi’mi1” 0 M 3 nt111nt121 8 ,\TA g
mimi” 0 M 4

mimi” 0 M 4

— PB

(c) Before comparing movie candidates (d) After detecting duplicate (m1, m1’)

Fig. 5. Different states of pair sequence retrieved from PQT (top) and
buffer B (bottom) using RECUS/BUFF.

Now, during retrieval of the next pair, two cases may
arise: the next pair to be retrieved either comes from the
sequence of pairs retrieved from PQT (if the lowest rank in
this sequence is lower than the lowest rank in B), or from
buffer B otherwise.

In the first case, the pair to be classified is the pair p
points to. As a consequence, we classify the corresponding
pair, make necessary updates to the pair’s tuple and to B,
and move p forward. In our example, this case occurs for all
comparisons among actors and titles. Fig. 5c illustrates the
processing status after these comparisons.

In the second case, the pair at the current position of pp is
classified, B is updated, and pp moves to the next pair. Note
that the updates caused by the classification result of a pair
in B are also performed in B. The reason for this is that in
general, p is not pointing to the pair being compared, so an
update in the database would require moving p to the pair
to be updated, updating it, and moving the pointer back to
its previous position. We avoid this expensive operation by
updating the status and the rank of the classified pair
within B. The pair stays in B until p has moved to that pair
in PQT or until the buffer is flushed. In the former case, we
ensure that we do not classify the pair again and we only
update its status in PQT. Fig. 5d shows the updated version
of B after (m1, m1’) has been classified as a duplicate and its
dependent pair (t1,t2) has been added to B. Note that the
rank of (ml,ml’) is now —oo to guarantee that new pairs
added to B have higher rank and that pp points to the
correct next pair.

The above examples illustrate the iterative phase when
the only necessary updates are updates to the status and the
rank of pairs. Upon classifying a pair as duplicate, some
algorithms merge (only one candidate is left that combines

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

both duplicates) or enrich (both candidates remain, but their
ODs and relationships are extended) duplicate pairs. Such
operations require updates in relations EDGES and DEP, and
to OD attributes. These updates are not local to the priority
queue but are performed on the graph itself. However, these
potentially affect the set of pairs that should be in PQ or the
comparison order. Such changes are handled by the buffer,
again to avoid sorting PQT at every update.

In case of a buffer overflow, a strategy that frees buffer
space has to be devised. To minimize the occurrences of a
buffer overflow, and hence of sorting PQT, we clear the
entire buffer when an overflow occurs. That is, we update
all pairs in PQT that were buffered, remove them from B,
and sort PQT in the next retrieval phase.

As for RECUS/DUP, the theoretical worst case requires
sorting PQT at every iteration. However, whereas RECUS/
DUP reaches the worst case when every pair is classified as a
duplicate, RECUS/BUFF requires the buffer to overflow at
every iteration; an unlikely event when wisely choosing the
size of buffer B. In setting the buffer size one should keep in
mind that 1) it must fit in main memory, 2) it should be
significantly smaller than PQT to make sorting it more
efficient than sorting PQT, and 3) it should be large enough to
store a large number of dependent pairs to avoid sorting PQT.

4.3 Scaling-up Classification

Classifying a candidate pair requires a similarity computa-
tion. We first present a similarity measure template. We
then discuss how to efficiently compute similarity using
hybrid similarity computation and early classification,
methods that can be used whenever a similarity measure
conforms to our template.

4.3.1 Similarity Measure Template

The similarity measure template we propose fits many
similarity measures used for duplicate detection among
several types of entities. For instance, [4], [6], [15], [21], [22]
use one or more similarity measures that conform to the
template. In the latter case, similarity measures are for
instance combined by addition or multiplication. Some
similarity measures are not covered by this template, e.g.,
[27] or rule-based classifiers [25]. But we observe that this
template fits all the current measures used for iterative DDG
we are aware of. Overall, we believe that our template is
very useful to application developers as it guides them in
designing measures that consider relationships. Also,
conforming to this template enables the use of the efficient
and scalable classification techniques discussed here.

Definition 7 (Duplicate influencing candidate pairs).
Given candidates (c,c'), the set of duplicate influencing
candidate pairs is N (c,c):={(i,7') € I(c,d)]i, 7" are
duplicates}.

Definition 8 (Nonduplicate influencing candidates). De-
noting an empty entry by L, the set of nonduplicate
influencing candidates is

N7

(e,) = {(i, L)|i € I(c) Ai has no dups in I(c')}

U{(L,i")|i" € I(¢) A7 has no dups in I(c)}

Both definitions assume that we know whether ¢ and ¢’
are duplicates or not. This knowledge is acquired during
the iterative phase and causes the similarity to increase.

Example 5. Assuming duplicate actor and title candidates
have been detected, N (ml,ml")= {(al,al”)}, and
7 —
Nip(m]-’ ml”) - {(327 J—)a (t17 J—)v (J—a a?’/)v (J—v t3)}

We further introduce a weight function w;,(S), which
captures the relevance of a set S of candidate pairs. This
function has properties that allow incremental computation
and that guarantee that the similarity function monoto-
nously increases. In practice, count or variations of the
inverse document frequency are used as weight function.

We make analogous definitions to compute N, Nj;, and
woa(S) for ODs. Opposed to duplicates in N7 that are
detected using the similarity measure used for classification
(i.e., sim), duplicate ODs in N}, are detected with a
secondary similarity distance, e.g., edit-distance. As it does
not vary during the iterative phase, it can be precomputed.

Example 6. Movies have no OD attributes, so N;(ml,
ml”) = NZZ(mL m1”) = (. Considering title candidates t1
and t2, we have N3(t1,t2) =0 and N7,(t1,t'2) =

O

{(Troy, L), (L, Troja)}.

Definition 9 (Similarity measure template). The template,
where all operands are optional, is defined as:

Woa(NZ5) + wip(NZ)
Woa(NZ) + wip(NZZ) + woa(N7) + wip(NJ,)

sim(c,c) =

When all operands in the denominator are not used, sim
returns the result of the nominator, thus covering similarity
measures that consider only shared information (N7 or Ny7).
We omitted the parameters ¢ and ¢ for brevity.

0+1
0+1+0+4

Example 7. sim(ml,ml”) =
count() as weight function.

=0.2, when using

A more practical similarity measure that combines two
measures that comply to our template is used by RC-ER
[22]. The proposed measure applies to pairs of candidate
clusters instead of candidate pairs, but assuming these
clusters are merged to a single candidate, our template still
applies to this scenario. The similarity measure is defined as

Sim(g CI) =(1- k) X 81t (C, C/) + k% Simymph(C: C/)7

where k is a constant, ¢ and ¢’ are the compared sets of
candidates (now merged), sim,; computes the similarity of
ODs, and simgeqp, computes the similarity of influencing
candidate sets. For sim,y, Bhattacharya and Getoor [22]
propose to use the SoftTFIDF score [28] as similarity
measure. This similarity measure can be viewed as
implementing w,q(N3(¢,¢(')) and the denominator is not
defined. In considering relationships among candidates,
Bhattacharya and Getoor [22] compute the neighborhood
similarity, defined as }Z%DH}' where (.N is the multiset
union of the influencing candidate sets of all candidates
within (. The neighborhood similarity complies to our
template where w;, = 1.

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

4.3.2 Hybrid Similarity Computation

We now describe a technique, called hybrid similarity
computation, to compute a similarity that conforms to our
template. Note that we focus the discussion on ODs and
make some remarks concerning influencing candidate pairs.

In the hybrid version of OD weight computation, we use
two SQL queries @1 and Q. @) determines the set of similar
OD attribute pairs with their weight.)2 determines the set
of all OD attributes defined as OD(c) U OD(¢).

To determine the difference of ODs, we then check
whether an attribute value returned by @, is in the set of
similar attribute values. This check is performed outside the
database in an external program, as well as weight
aggregation. Algorithm 1 describes the steps the external
program performs.

Algorithm 1: Hybrid OD similarity computation
D: set of duplicate descriptions, initially empty;
N set of non-duplicate descriptions, initially empty;
foreach ruple (vi,ve,w) returned by Q)1 do
| D:=DU{((v1,v2),w)};
foreach ruple (v, w) returned by Q> do
L if {(v1,v2)|((v1,v2),%) EDA(vi =vVve=v)} =0

then
| N:=NU{((v,1),w)};

Compute aggregate weights woq(D) and woq(N);

Example 8. When comparing the ODs of (al,al’), (s
returns similar value pairs, which are added to D.
Hence, D = {((Brad Pitt, Brad Pit),1.0)}. Q. returns
{(Brad Pitt,1.0), (Brad Pit,1.0)}. Because both OD va-
lues are part of a similar pair in D, N = ().

For influencing pairs, the hybrid strategy is slightly
different: based on relation DEP generated during initiali-
zation, we issue a SQL query Qs to return I(c,¢) in
ascending order of the influencing pairs’ status (duplicates
come first). The external program then splits the result of Q3
into a duplicate set D and a nonduplicate set N. The order
chosen guarantees that all duplicates are added to D before
the first nonduplicate appears, so that we can compute N as
we do for ODs.

Example 9. When comparing (m1,ml’), Q3 returns tuples
(al,al’,1.0,1), (a2,a2',1.0,1), (al,a3,1.0,0), (a2,al’,
1.0,0), {(a2,a3,1.0,0), (¢1,%2,1.0,0) in that order, where
the tuple schema is (c, ¢/, weight, status). The external
program iterates through these tuples and adds them to
D as long as their status is 1. This results in
D ={((al,al’),1),((a2,a2’),1)}. The remaining tuples
are split up in two candidates and, after checking which
candidates are not already in D, we obtain N =

{((a3, 1), 1), ((#1, 1), 1), ((#2, 1), 1)}

The results of queries @1, @2, and Qs need to be
processed in main memory. But compared to the in-
memory buffer, we consider this main-memory consump-
tion as negligible, because in the worst case |D|+ |N| =
[I(c)| + [I(¢)]. In practice, these sets are small (14 candi-
dates being the maximum observed in experiments re-
ported in DDG algorithms summarized in Section 2). The
main advantage of hybrid similarity computation over

similarity computation using a single monolithic SQL query
is that it overcomes database system limitations such as the
lack of user-defined SQL aggregate functions support and
allows us to interfere with the computation process, for
instance by applying early classification.

4.3.3 Early Classification

Essentially, early classification interrupts similarity com-
putation as soon as we know if the outcome results in a
duplicate or nonduplicate classification. So it helps to
increase classification efficiency when a significant portion
of pairs are nonduplicates. Early classification distin-
guishes itself from existing filters (defined as upper
bounds to the similarity measure [15], [29]) in that no
extra filter function is defined to prune nonduplicates prior
to similarity computation. Instead, the similarity function is
computed incrementally and intermediate results are used
to classify nonduplicates.

If a candidate pair’s similarity sim(c, ¢’) > 6, candidates c
and ¢ are duplicates, and nonduplicate otherwise. Weight
functions commonly return results greater or equal to zero
and, when used for relationships, produce values greater or
equal to 1 on nonempty input sets. Based on this
assumption, the following inequations, which we use in
our implementation, correctly classify nonduplicates, even
before sim (Definition 9) is calculated completely. Should
there not be a guarantee that the denominator is greater or
equal to one, only the second pruning function applies

woa(N>) + w,p(N;) <0 —sim<0

Wod(Npy) + wip(N7)

wip(N7,) + woa(NZZ) + wip(N)

<6 — sim <8.

The larger the number of influencing pairs or OD
attribute values of candidates are, the more processing is
potentially saved using early classification, because the
number of iterations through nonduplicates among influen-
cing pairs and ODs (i.e., in the results of Q3 and @, when it
was executed) that are potentially saved increases.

5 PDDG: PARALLEL AND BATCHED DDG

The methods presented so far iterate over pairs of
candidates, one pair at a time. In this section, we introduce
a framework that allows processing multiple pairs at the
same time, using parallelization and batched processing.
This extended framework, called parallel DDG, or PDDG for
short, enables the comparison of sets of candidate pairs
(batches) and the distribution of multiple DDG processes
over multiple processing units (parallelization).

We first introduce some additional definitions. As we
show, the update phase is the only one that significantly
changes from DDG to PDDG, and we describe these
modifications after introducing the framework.

5.1 PDDG Framework

We employ a client-server approach; we name the server job
manager and clients are called workers. The job manager
assembles work-packages and distributes them to the
workers.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

cap.n all candidate pairs cap.n

n ¥
® O have been classified D 0
else

Inspection Confirmation

Iterative Phase

Fig. 6. General workflow of PDDG.

Definition 10 (Work-package). A work-package w of size s is a
set of candidate pairs: w = {(c11, ¢12), - - -, (Cs1,C52) }-

How the job manager distributes work-packages is
algorithm-specific. For graphs with high connectivity,
which potentially results in many recomparisons, it is
advisable to cluster pairs that depend on one another into
one work-package to reduce communication overhead or to
avoid distributing these in parallel. In our implementation,
we do not consider such optimizations as the benefit of
parallelization significantly outweighs the benefit of saving
some recomparisons. Instead, we initially sort pairs based
on their rank, iterate over these and create a new work-
package every |w| pairs.

Workers process the work-packages and report their
classification results to the job manager, which processes
the results and distributes new work-packages to idle
workers. The client-server approach limits the complexity
of our system and reduces communication effort. The only
instance that performs synchronization is the job manager.
Workers perform independently from each other, even
though the computations are potentially interdependent
due to the fact that work-packages, similar to candidate
pairs, can influence or depend on other work-packages.

Definition 11 (Dependent & influencing work-packages).
The set of dependent work-packages of a work-package w is the
set of work-packages that contain at least one dependent pair
pp € D(p) of a pair p € w. We define the set of influencing
work-packages analogously.

Fig. 6 illustrates the PDDG framework. Similarly to DDG,
an inijtialization phase prepares the database and performs
some precomputations. Afterwards, n workers are instan-
tiated and the parallel execution starts. Each worker
performs the actions defined in the iterative phase for the
work-package assigned to it. Once all workers finish their
jobs and all candidate pairs have been classified, the PDDG
algorithm terminates. The steps of the iterative phase of
PDDG are very similar to the steps of the nonparallel DDG,
except for the update phase, which requires two additional
steps, namely result inspection and update confirmation.
Therefore, we focus the subsequent discussion on these
two steps. Another subtle difference is that the different
steps handle work-packages, not pairs.

5.2 Handling Updates in PDDG

Before we discuss the details of the additional update steps,
let us first describe the problem that makes these necessary.

5.2.1 Update Synchronization

In DDG, candidate pairs with classification status nondupli-
cate (—1) are reset to unknown (0) if an influencing candidate

aw) press?t)) + duplicate.
- non-duplicate
+ | - |+ | - -
arriving ‘ p l + ¢ ¢ ¢ ¢ ¢ E f:jt:c]?u
|- [clc[rR]cTc

Fig. 7. Sample decision matrix for update instructions.

pair has been classified as duplicate. Pairs marked with
classification status unknown are placed (back) into the
priority queue, to ensure that the pair is compared again as
its similarity may have increased.

When introducing parallelization, we have to consider the
following: Let p; and p, be two pairs that have to be classified
and p; € D(p2) holds. Let both pairs be computed in parallel,
e.g., p1 by processor P, and p; by P,. Now, assume p;’s
computation ends first. Having been classified as duplicate,
the dependent pair p, is reset to unknown. After that (or even in
parallel) p;’s computation completes and its state is set to
nonduplicate, thus overriding the reset information. In this
case, the execution order P;|P; yields a final state of
nonduplicate for p;, whereas the order P»|P; would yield
an unknown state for p;, requiring the recomparison of p.
Note that the latter result is the correct one.

This example shows that we have to take special care in
implementing the update phase in PDDG so that we can
guarantee the equivalence of parallel execution. In general,
a parallel computation of two pairs p; and p, with p; €
D(p2) can be performed correctly if 1) their interdepen-
dency is recognized and 2) their read and write operations
can be synchronized in a manner that they occur as if p;
and p, are processed sequentially with respect to their
interdependencies.

5.2.2 Implementing Update in PDDG

The job manager is the only entity in our framework that
knows about all other entities (the workers); both recogniz-
ing interdependencies and deciding how to synchronize
updates is thus implemented by the job manager.

To recognize interdependencies, the job manager main-
tains a registry that contains information about all candidate
pairs that need to be updated and their classification results.
The job manager is further capable of recognizing inter-
dependencies between candidate pairs in the registry. This
information allows decisions on how to proceed with a
classification result reported by a worker.

More precisely, a worker first sends the classification
results of all pairs in its work-package to the job manager.
Using the registry, the job manager then checks each
classification result for potential conflicts. Based on the
result of this analysis, the job manager finally decides how
to proceed with a classification result. Possible decisions
are: 1) Commit (the result shall be committed to the
database), 2) Reject (the result is obsolete and should be
discarded and not written to the database.), and 3) Pending
(the result should be committed but the commitment needs
to be delayed). The reason for delaying a commit may be
conflicting write operations on a shared memory, e.g., a
nonsynchronized file access or a nonsynchronized queue.

Each time a candidate pair is committed, it is saved in the
registry until a worker sends an update acknowledgment

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

during the update confirmation phase. This acknowledg-
ment forces the job manager to remove it from the registry.

To decide whether to commit, reject, or delay an update,
the job manager relies on an update decision matrix. In
general, the update matrix is specific for a given underlying
algorithm. Fig. 7 shows a decision matrix that applies to
algorithms that do not simultaneously distribute the same
pair multiple times and that trigger the recomparison of
pairs by setting their status to unknown. This decision
matrix may for instance be used to parallelize RECUS/BUFF
or [4], [5]. For this type of algorithm, the only type of
conflict that potentially occurs is the one described in
Section 5.2.1. That is, the job manager has to ensure that
when a pair p has been classified as a nonduplicate after an
influencing pair has been classified as duplicate in parallel,
the result for p is obsolete and should be rejected so that the
status of p remains unknown and p gets compared again.

The matrix of Fig. 7 is organized as follows: A pair p has
been classified and an update instruction based on the
information of the registry has to be devised. The classifica-
tion result of p is depicted as + (duplicate) or — (nondupli-
cate) in the two rows. Possible relationships between pairs in
the registry and p are shown in the column heads: d(p) means
there is at least one pair in the registry that depends on p; i(p)
means there is at least one pair in the registry that influences
p; and) means none of the above applies. Depending on the
order of arriving pairs at the registry, different decisions are
made. If more than one combination is possible, e.g., p has
dependent as well as influencing pairs in the registry, the
most conservative decision is chosen (the ascending order of
conservative decisions is commit, pending, reject).

We show that the above decision matrix is correct for the
type of algorithm it is meant for, i.e., algorithms where a
pair is considered by at most one worker in parallel, and
where recomparisons are triggered by (re)setting the status
of pairs to unknown. First, it is easy to see that when p has
no dependent or influencing pairs in the registry, the
corresponding classification result can simply be com-
mitted. Therefore, column 5 is correct. Let us now consider
the case where the registry already contains pairs that
depend on the classification result of p. For those dependent
pairs, the status of nonduplicate dependent pairs has to be
reset to unknown but the result for p can simply be
committed as correctly described by the decision matrix
(columns 1 and 2). In our implementation, the job manager
adds pairs that have to be recomputed to an in-memory
queue extension without affecting their persistent status,
thus implicitly setting their status to unknown. Let us now
consider the cases where the registry contains at least one
influencing pair of p, i.e., columns 3 and 4. If p is classified
as duplicate, this result can simply be committed as the
albeit outdated information used for classification was
sufficient to determine the duplicate p (row 1 in both i(p)
columns). In case the influencing pairs in the registry are
nonduplicates, the classification of p is not based on
outdated information and hence, the result can also be
committed (row 2, column 4). Finally, if an influencing
candidate pair present in the registry is a duplicate, we have
to assume that the classification of p did not consider this
information, which may yield a wrong classification as

nonduplicate. In this case, we reject the nonduplicate status
of p, implying that its status remains unknown.

The decision matrix does not illustrate the pending state.
One example where this state is reasonable occurs when a
pair p may be distributed to more than one worker
simultaneously. This would require two additional columns
in the decision matrix. As long as the more recent
classification result is the same as the previous one (i.e., p
is already in the registry), the new result can be rejected as
nothing changes compared to the previous result. Similarly,
if the older result classifies p as a duplicate but the more
recent one does not, we keep the duplicate and reject
the nonduplicate status of the arriving pair. Finally, assume
the registry contains p as a nonduplicate, a result to be
committed, and a new incoming pair designates p as a
duplicate. In this case, the job manager has to ensure that
the nonduplicate status is processed before the duplicate
status, otherwise, the duplicate status may be overwritten.
To this end, a pending status is assigned to the duplicate.

During the update phase, the worker follows the job
manager’s instructions and either persists a classification
result (commit) or just discards it (reject). All candidate pairs
with classification status nonduplicate that are dependent on
successfully persisted duplicate pairs are requested for re-
computation, as their similarity has potentially increased.

The final phase is update confirmation. After all updates
have been processed, the worker sends a confirmation
message concerning the persisted and discarded pairs to the
job manager. Finally, some cleanup tasks are performed and
the next iteration is prepared if there is work left to process.
Otherwise, the worker finishes computation and suspends.

5.3 Batched DDG Using the PDDG Framework

Apart from the parallelization of DDG, PDDG introduces
batch processing: the smallest unit of processing is no
longer a candidate pair, but a work-package. Batch
processing can reduce runtime for both sequential and
parallel DDG execution.

In the sequential execution of DDG, the runtime reduction
comes from batch updates to the database. Indeed, instead of
sending an update request for each individual pair, we send
only one update request for a batch of pairs, i.e., all pairsina
work-package. It is commonly known that batch updates can
be performed more efficiently by a DBMS than a sequence of
several, albeit smaller update transactions.

In the presence of parallelization, apart from the fact that
batch updates can be used, enlarging the size of work-
packages leads to less waiting conditions. If there was only
one pair per work-package, workers had to request the job
manager for each pair. Therefore, it is not uncommon that
multiple workers request new work at the same time.
Clearly, the job manager then becomes a bottleneck and
requests are enqueued.

Using batch processing, multiple pairs within a work-
package can make it dependent onitself, i.e., if both p;, p» € w
and p; € D(p2). In this case, if p, is classified before p;, the
computation of p; does not recognize the classification result
of po. This is because the classification result of p, has not been
made persistent: it is first saved in a worker-internal buffer
and later updated to the database. We studied different
strategies that may be used to address this problem, however,

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

we do not elaborate on these due to space constraints. In
general, the best strategy depends on the data that are being
processed; runtime is influenced by the duplicate ratio, the
data connectivity, and the similarity measure. An interesting
aspect is the influence of comparison order because recom-
parisons significantly reduce efficiency when the reference
graph has high connectivity [5]. Batch processing may mix up
the order in which candidate pairs are compared, because
rerequests of pairs are done after all pairs within the work-
package have been classified. Thus, in presence of reference
graphs with high connectivity, batch processing is useful
only to reduce runtime if time savings due to fewer updates
outweigh the time that is needed to perform additional
recomparisons. In our implementation, we opted for an
optimistic strategy that simply ignores interdependencies
and runs the risk of causing a recomparison of dependent
pairs. This strategy is suited for graphs with moderate
connectivity and duplicate ratios.

6 EVALUATION

We first discuss how DDG (without parallel and batched
processing) scales depending on various parameters, using
the discussed algorithms. We then present experiments that
show the effect of parallel and batched processing on
runtime. We use both artificial and real-world data.

6.1 Data Sets

Artificial movie data (ArtMov). From a list of 35,000 movie
names and 800,000 actors from imdb.com, we generate
data sets for which we control

1. the number of candidate movies A and the number

of candidate actors A to be generated,

2. the connectivity ¢, i.e., the average number of actors

that influence a movie and vice versa,

3. the duplicate ratio dr € [0,1], defined as the percen-

tage of duplicate pairs that enter the priority queue,

4. the probability of errors in ODs consisting of a movie

name and an actor name for the respective candidate
types, and

5. the probability of errors in influencing candidates.

Errors in ODs include typographical errors (adding
or removing single characters) and contradictory
values (removing half the characters in a string,
which yields our string similarity measures incap-
able of recognizing them to be similar).
Errors in influencing candidates include the removal of
edges. Further details are available in [26].

We generate the same number of actor and movie
candidates: A = M. With these, we generate P(Q) of size | PQ)|
that contains the same number of actor and movie pairs. PQ
has duplicate ratio dr, hence, we generate dr-|PQ)
duplicates and the remaining |PQ|(1 — dr) pairs in PQ are
nonduplicates. The generation of these two sets is based on
an original set of k duplicate-free candidate actors and
k duplicate-free candidate movies. To generate duplicate
pairs, we simply copy originals and introduce errors in the
copy. We copy an original at most once. To generate a
sufficient number of duplicates, we need at least kp = W
original candidates of one type. Nonduplicate pairs are

generated based on ko original actor and k¢ original movie
candidates, so we require ko s.t. |PQ‘(217dT) = kox(];“*l).
The number of original duplicate-free movie (and actor)
candidates is then given by k= max([kp], [ko]). In total,
the number of candidates of each type equals the number of
originals k plus the number of duplicates of a given type,
which is equal to k¢ = W. Therefore, the number of
candidates and the size of PQ, which we both show in our

experiments, correlate based on

e ke [P0) 7L

Error probabilities are set to 20 percent. When not
mentioned otherwise, connectivity ¢ = 5 and buffer size is
1,000.

Real-world CD data (RealCD). The real-world data set is
CD data from freedb.org. We consider CDs, artists, and
track titles as candidates. CD ODs consist of title, year, genre,
and category attributes, and they depend on artist and track
candidates. Artist and track candidates, respectively, have
the artist’s name and the track title as OD. Track candidates
depend on artist candidates. A data set consisting of
approximately 10,000 CDs with manually labeled duplicates
is available at our repeatability website (http://www.hpi.
uni-potsdam.de/naumann/projekte /repeatability /). In our
experiments, we process one million candidates.

Evaluation focus. We deliberately focus on experiments
evaluating the scalability of the iterative phase of DDG. That
is, runtime of the initialization phase is not reported in our
experiments. Benefits of DDG on effectiveness have already
been studied extensively (see Section 2). For ArtMov data
generated the same way as described in this paper, we
observed an improvement on the F-measure when using
DDG of up to 29 percent [24] (depending on the con-
nectivity). Using DDG, the F-measure on our hand-labeled
sample of 10,000 CDs improves by 41 percent compared to
an algorithm that considers ODs only (i.e., title, year, genre,
and category) using the same OD similarity measure (unit
weights and similar values having a normalized string edit
distance smaller than 0.3). Arguably, this may not be the
optimal configuration for the variant not using relation-
ships, but we opted for the same OD configuration as for
DDG to enable direct comparison.

6.2 Experimental Evaluation of DDG

We begin with an evaluation of the algorithms proposed for
DDG in Section 4. For this series of experiments, we used
DB2 V8.2 as DBMS, running on a Linux server and remotely
accessed by a Java program running on a Pentium 4 PC
(3.2 GHz) with 2 GB of RAM. That is, all runtimes reported
also include network latency. To obtain a competitive
database configuration, we employed the DB2 configura-
tion advisor using our specific workload. We repeated
experiments five times to obtain average execution times.

6.2.1 Retrieval and Update Scalability

We first compare the scalability of RECUS/BUFF to the

scalability of the baseline algorithm RECUS/DUP.
Experiment 1. We start with an evaluation of how both

algorithms behave with varying dr on various data set sizes.

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

number of candidates (1000 number of candidates (01000)
4 8 12 16 20 10 20 30 40 50

23000 —F——F— 23000 —P—F——

£2500f~ RECUS/BUFF — [22500~ RECUS/BUFF *—

= 5000|- RECUSDUP -~ S5000 RECUS/DUP~ -~
7 <

21500 v 21500

= 7 5

< 10001= e %1000

g .)

& S0 - & 500

2 0 ' R

10 20 30 40 50
pairs in PQT(1000)

(a) dr=04

10 20 30 40 50
pairs in PQT(1000)

(b) dr = 1.0

Fig. 8. Retrieval and update time, varying |PQ| and dr.

Methodology. We generate ArtMov data with table PQT
(that stores PQ) ranging from 10,000 to 50,000 candidate
pairs in increments of 5,000, and vary the duplicate ratio dr
between 0.2 and 1.0 in increments of 0.2. As representative
results, we show runtimes of RECUS/DUP and RECUS/
BUFF (in seconds) for dr values of 0.4 and 1.0 in Fig. 8. The
number of candidates (A + M) is shown at the top z-axis,
the bottom z-axis shows the size of PQT (in thousands).

Discussion. Fig. 8 clearly shows that RECUS/BUFF
outperforms RECUS/DUP regardless of dr: Obviously,
sorting PQT is more time consuming than maintaining the
order of the smaller in-memory buffer B. We further
observe that the higher dr, the more time retrieval and
update needed for both algorithms, because in both
algorithms sorting PQT occurs more frequently: RECUS/
DUP sorts PQT every time a duplicate has been found, and
RECUS/BUFF sorts the PQT every time B overflows,
happening more frequently, because influencing neighbor
pairs enter B more frequently. The final observation is that
with increasing priority queue size/number of candidates,
RECUS/BUFF scales almost linearly for practical duplicate
ratios (below 0.8). Therefore, we expect RECUS/BUFF to be
efficient even on very large data sets as Experiment 6
confirms.

Experiment 2. From Experiment 1, we conclude that
RECUS/BUFF performs better than RECUS/DUP, because it
sorts PQT less frequently, and instead maintains a main-
memory buffer B of fixed size b. Clearly, b plays a central
role in the efficiency gain. Another factor that affects the
filling of B is the connectivity c. The higher it is, the more
neighbors enter B when a duplicate is found, and an
overflow occurs more frequently. So, we expect RECUS/
BUFF to be slower with increasing ¢ and smaller b.

Methodology. We study how a changing buffer size
affects ArtMov data with 10,000 pairs in PQT and dr = 0.4.
We vary b from 1 to 10,000. We further vary connectivity c
from 1 to 5 for all considered buffer sizes. Results are shown
in Fig. 9, which depicts the sum of retrieval and update time
for all buffer sizes (left), update time for small buffer sizes
(top), and retrieval time for small buffer sizes (bottom).

Discussion. We observe that for all but very small b, both
retrieval and update time stabilize. Furthermore, for
studied connectivities, the runtime increases linearly with
c. The increase in runtime is mainly due to the increased
update complexity: for larger ¢, when a duplicate is found, a
larger number of dependent pairs needs to be determined
and added to B. As a general rule of thumb, a buffer size of
1,000 suffices to significantly improve efficiency.

11

_ 140F
250 Z 120~
gl |
Z 200 c=5 — | I
Y -3 —— = -
g c=3 S 40 .- ceme -
B= c=1--- g 20l
g 150 ol L1 1 |
3 0 10 20 30 40 50
=) buffer size
X 100
<
ks
5
2

wn
[=]
r(

retrieval time (s)

(=]

| | | |
2000 4000 6000 8000 10000
buffer size

010 20 30 40 30
buffer size

Fig. 9. Retrieval and update time for varying b and c.

6.2.2 Classification Scalability

We evaluate the scalability of classification, considering a
baseline SQL-based approach, we call SQL/Complete (SQL/
C for short) that computes the similarity using a monolithic
SQL query [26] and hybrid similarity computation with and
without early classification, called HYB/Complete (HYB/C,
see Section 4.3.2) and HYB/Optimized (HYB/O, see Sec-
tion 4.3.3), respectively. We use RECUS/BUFF as DDG
algorithm.

Experiment 3. We compare runtimes of SQL/C, HYB/C,
and HYB/O on ArtMov data of varying size and dr.

Methodology. We generate ArtMov data with PQT sizes
ranging from 5,000 to 40,000 in increments of 5,000, and for
each size, we generate data with dr varying from 0.2 to 1.0
in increments of 0.2. We run each classification method on
each data set, and measure its runtime. Results are shown in
Fig. 10 for duplicate ratios dr = 0.2, and dr = 0.8.

Discussion. SQL/C and HYB/C have comparable
execution times, because they both have to compute the
same result, albeit using different strategies. All classifica-
tion methods scale linearly on the range of considered
priority queue sizes, and hence with the number of
candidates when no blocking technique is additionally
used. Early classification allows to save classification time:
at dr = 0.2, 32 percent of classification time (compared to
HYB/C) is saved, which gracefully degrades to 26 percent
at dr = 0.8, when 40,000 pairs are compared. For dr = 1, we
still observe 5 percent savings, which are due to pairs that
are classified as nonduplicates, although they are in fact
duplicates. The reduction in the benefit of early classifica-
tion with increasing dr is due to the fact that the more
duplicates exist in PQT, the fewer similarity computations
may be aborted for nonduplicates.

number of candidates (1000) number of candidates (1000)
2 4 6 8 2 4 6 8

@200 1 @200 1

Py SQLIC —— e SQL/C ——

E10 gyB/c - - E150F pyB/c— -
| HYB/O--- | HYB/O---

O

—
=
=]
—
=
S

comparison
D
S
comparison
N
S

(=]

0

I I T T |

0 5 101520 25 30 35 40
pairs in PQT

(b) SQL Complete, dr = 0.8

I I I T |

5 10 1520 25 30 35 40
pairs in PQT

(a) SQL Complete, dr = 0.2

Fig. 10. Classification time comparison.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

=}
S 057752025 30 35 40 45 50
connectivity ¢

Fig. 11. Classification time & connectivity.

Experiment 4. We now study how connectivity c affects
classification efficiency. Because ¢ defines how many
influencing neighbors a candidate has, which have to be
determined using join operations and processed, we expect
similarity computation to be slower for larger ¢ when using
SQL/C or HYB/C. On the other hand, HYB/O potentially
saves more processing the larger c.

Methodology. We vary ¢ from 10 to 50 in increments of
10 for an ArtMov priority queue of size 10,000 and dr = 0.4.
Fig. 11 reports comparison times for SQL/C and HYB/O,
SQL/C and HYB/C being comparable.

Discussion. When using SQL/C, comparison time
increases with increasing ¢, an effect also observed by other
DDG algorithms. On the other hand, runtime is around 7 ms
per candidate for all ¢ when using HYB/O. This experiment
shows that HYB/O counters the negative effect of increas-
ing c on efficiency. We currently do not have an explanation
for the shape of the SQL/C curve, where comparison time is
roughly constant between ¢ =20 and ¢ = 40. We suspect
that “intriguing behavior of modern [query] optimizers”
[30] is partly responsible for that behavior. Nevertheless,
the general trend is clear.

The analysis of the techniques proposed in this paper
using artificial data of moderate size leads to the conclusion
that RECUS/BUFF and HYB/O scale-up best.

6.2.3 Real-World Behavior

Experiment 5. We now study real-world scalability of
RECUS/BUFF in combination with HYB/O on alarge data set.
Methodology. Using RealCD data with 1,000,000 candi-
dates, we apply a blocking technique to reduce the number of
candidate pairs entering PQT, a common technique also used
by Bhattacharya and Getoor [6], Kalashnikov and Mehrotra
[10]. More specifically, we use the Sorted Neighborhood
Method (SNM) to consider only candidate pairs [16] within a
window of size 3 (value chosen based on experience). As
sorting keys, we use the first four consonants of an artist’s
name for artist candidates, the first six characters of a track
title for track candidates, and the first four consonants of an
artist’s name plus the last two digits of a year as key for CD
candidates. Note that SNM affects only the set of pairs
entering the priority queue, but the data graph remains
unchanged. That s, a similarity comparison still considers all
influencing candidates during classification. During update,
we do not add new candidate pairs to PQT. After blocking,
2,000,000 candidate pairs enter PQT. Buffer size is 1,000, so
that we can compare runtimes with those obtained on
artificial data. We observe that retrieval takes 1,379 s,
classification takes 5,482 s, and update takes 17,572 s.
Discussion. Among the two million candidate pairs in
PQT, we found 600,000 duplicates among all candidate
types, so the observed duplicate ratio is 0.3. If we

extrapolate retrieval and update time obtained on ArtMov
data of size 50,000 with dr = 0.3, for which we obtained a
retrieval time of 36 and 432 s for update using a buffer size
of 1,000, we see that the results obtained on a million
candidates with similar parameters are in accord with the
linear behavior of retrieval and update observed in
Experiment 1. Indeed, the expected retrieval time is 1,440 s
and we observed 1,379 s. Similarly, the expected 17,280 s for
update and the 17,572 s measured are only 2 percent apart.
Classification time is also in accord with the linear behavior
of HYB/O observed in Experiment 3.

We see that update requires the most time. As we see in
our evaluation of PDDG this time can significantly be reduced
when using batched DDG, even without parallelization.

6.3 Experimental Evaluation of PDDG

We now experimental evaluate the effect of parallelism and
batched processing introduced by PDDG. We run PDDG
locally on an IBM X3500 system including two quad-core
CPUs (Intel Xeon 2.4 GHz), 16 GB RAM, and RAID/5 with
six hard drives (15,000 rpm) for parallel I/O. The server is
running an Ubuntu Linux 8.04 64 Bit server edition (SMP
kernel) and DB2 v9.5 64 Bit is used as DBMS. The database
is locally accessed by a Java 1.5 program. For parallel
computation Java Threads are used. Again, we generate
ArtMov data for our experiments. By default, we use a
duplicate ratio of 0.2 and an average data connectivity of 2.

When using PDDG, values for 1) the number n of parallel
processing workers and 2) the size s of a work-package
must be defined (within an experiment we assume all work-
packages to be of same size). We denote a PDDG
configuration as PDDG(n,s). A well-balanced configura-
tion for n and s is hard to guess, because the parametriza-
tion depends on the system it runs on. The following
experiment considers the parametrization of PDDG and the
effect of the size of the priority queue PQ.

Experiment 6. To determine a well-balanced configura-
tion for n and s, runtimes of several configurations of PDDG
are compared. In addition, we repeat all experiments with
different priority queuessizes. The goal of this experiment s to
study the relationship of n and s for varying sizes of PQ and
to establish a good configuration for further experiments.

Methodology. For different |PQ)| values ranging from
8,000 to 128,0000 candidate pairs, we generate artificial data.
For each test case we vary n (from 1 to 30) and s (from 1 to
100). Fig. 12 depicts the resulting runtimes encoded as
colored areas for the different PDDG(n, s) configurations.
We create five intervals for runtimes, which linearly scale
from the lower bound, which is given by the minimum
runtime, to the upper bound, which is given by the average
runtime. These intervals are mapped to different colors,
which form five zones and fade from green (close to the
minimum runtime) to red (average of all measured
runtimes). Results above the average runtime are not
separated and are illustrated as dark red.

Discussion. The diagrams in Fig. 12 have in common
that there is a characteristic dark green triangular shape.
This is the area where the best runtimes were achieved.

There are two reasons for the increasing runtimes above
the hypotenuse: There are 1) larger waiting conditions due
to the increasing number of workers that have to be

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

100

work package size s

Y
h [N

e =
e o o o e e) e s) e

1 3 5 7 9

N

11 13 15 17 19 21 23 25 27 29
workers n

(a) PQ size: 8,000
min./avg. runtime: 1.7/5.0 s

work package size s

N

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

workers n
(b) PQ size: 128,000
min./avg. runtime: 21.8/65.0 s

Fig. 12. Runtime of varying PDDG configurations.

enqueued by the job manager and 2) there is an increasing
effort for logging and synchronizing. As a result, we
approximate the best fitting configuration of PDDG on our
test system as PDDG(10, 30), which is used as the reference
scenario in the next experiments.

Increasing the size of P() does not have an effect on the
relationship between n and s besides the fact that the dark
green area slightly shrinks. The larger PQ is, the more often
unfavorable conditions for workers' appear during proces-
sing, which in turn cause more moderate runtimes and
lower efficient values (values that fall in the dark green
zone). This is because the variance of runtimes with small
priority queue sizes is much smaller than those of larger
priority queue sizes.

Experiment 7. In this experiment we investigate 1) the
overall effect of applying batch processing, 2) the overall

1. Inappropriate load balancing causes more waiting conditions (many
workers request work at the same time and are enqueued) or increasing
response times from the DBMS (many workers access the database at the
same time).

13

150
#—-DDG

125 | -B5—-PDDG(1,1)
—%—PDDG(1,30)
100 | “©—PDDG(10,1)
——PDDG(10,30)

runtime (s)
o

o
o

25

10 20 30 40 50 60 70 80 90 100

priority queue size (x1000)

Fig. 13. Comparison of DDG and PDDG runtimes.

effect of applying parallelization, and 3) the effect of a
combination of both in comparison to the best DDG
algorithm. In addition, we evaluate the differences in
runtimes of the DDG algorithm and the sequentially
parameterized PDDG algorithm, PDDG(1, 1), when varying
the priority queue size.

Methodology. For sizes of the priority queue ranging from
10,000 to 100,000 pairs we measure the runtime of the DDG
algorithm, the sequential PDDG algorithm (PDDG(1, 1)), the
sequential PDDG algorithm with extensive batch processing
(PDDG(1,30)), the parallel algorithm without any batch
processing (PDDG(10, 1)), and a combination of a paralle-
lized PDDG algorithm with batch processing (PDDG(10, 30)).
Fig. 13 depicts the results of this experiment.

Discussion. First we observe that PDDG(1, 1) has longer
runtimes than DDG. Even though PDDG(1, 1) is sequential,
it comes with all redundancy and synchronization mechan-
isms such as logging and locking. Note that we observe an
overall linear runtime, even in this new setting. Increasing
the work-package size to 30 leads to the PDDG(1,30)
configuration, which already clearly outperforms DDG.
With a priority queue size of 100,000 pairs DDG achieves a
runtime of 111 s whereas PDDG(1, 30) ran only 66 s, saving
41 percent. When setting the work-package size back to 1
and increasing the number of workers to 10 (PDDG(10, 1)),
we observe a runtime saving of 64 percent for PDDG in
comparison to DDG, and of 39 percent in comparison to
PDDG(1,30). Combining both techniques, the runtime
saving of PDDG(10,30) is 81 percent in comparison to
DDG. Summarizing the results, both improvements—batch
processing and parallelization—have an important effect on
the reduction of runtimes and a well-balanced combination
of both techniques (PDDG(n, s)) is even faster than the sum
of the runtime improvements of both noncombined config-
urations (PDDG(1, s) and PDDG(n, 1) where n,s > 1).

Experiment 8. Let us now evaluate whether PDDG is also
applicable for large data sets as they are found in real-world
applications and if the runtimes scale adequately with an
increasing priority queue size.

Methodology. We run PDDG(10,30) on generated test
cases with PQ sizes ranging from 2 to 10 million pairs

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

4000
—o— Retrieval
3500 —2— Classification
—x— Verification
3000 —8- Update
& 2500 —©—Commit
o Overall
£ 2000
€
2 1500
1000
500
0 - Er 4‘4—/—-‘%

2 4 6 8 10
priority queue size (millions)

Fig. 14. PDDG runtimes on large data sets.

(which corresponds 400,000 to 2 million candidates when
using our data generator) and measure overall runtime as
well as the phase-wise runtimes. Fig. 14 shows the results.

Discussion. We observe that the overall runtime of
PDDG does scale roughly linearly, which is in accordance
with observations on smaller data sets. Using PDDG(10, 30)
we computed 10 million pairs in less than an hour (3,463 s).
We further see that 86 percent of the overall runtime is
caused by the update and the classification phases, which is
due to time consuming database operations.

6.4 Comparative Evaluation

Fig. 15a summarizes how the different phases of DDG using
RECUS/BUFF scale in practice depending on the data set
size pq, the duplicate ratio dr, and the connectivity c. In
total, we observe a roughly linear behavior for realistic
parameter values throughout our experiments, even though
the theoretical complexity may be higher. In studying other
approaches for DDG, we observe that both RC-ER[22] and
RelDC [10] do not scale linearly in pg and ¢ and that
LinkClus [12] does not scale linearly in pg. Dedupalog [13]
reports a linear behavior in pg. Dong et al. [4] do not report
any results on efficiency or scalability. Over a small data set
of 1,800 candidates, R-Swoosh [14] exhibits a roughly linear
behavior w.r.t. the number of processed candidates.

Fig. 15b summarizes data set sizes in terms of the
number of candidates (often the only number reported) and
runtime results reported for iterative DDG algorithms, which
altogether use considerably smaller data sets than those
reported here. As the experimental settings for different
algorithms vary, the runtime results give only an indication
of how the runtimes of different algorithms compare. Also,
the different approaches use different blocking techniques
to reduce the number of pairwise comparisons while
maintaining effectiveness. The comparison here focuses on
showing how many candidates can be deduplicated and
how long this process takes. Note that runtime ranges in
Fig. 15b are from different algorithm configurations.

We observe that RECUS/BUFF takes comparably long, but
this comes as no surprise as database communication
overhead and network latency add to the runtime. However,
as we have seen in Experiment 7, using batch processing
without parallelization to reduce the runtime of the update

Classification
linear (Exp. 3, 5)
constant (Exp. 3)

connectivity ¢ linear (Exp. 2) constant (Exp. 4)
Overall (as observed) | linear in practice |linear in practice
(a) DDG scalability using RECUS/BUFF and HYB/O in practice

Parameter
PQT size pq
duplicate ratio dr

Retrieval and Update
linear (Exp. 1, 5)
linear (Exp. 1)

Approach # Candidates | Reported runtime (s)
Parallel R-Swoosh [14] 1,800 40 — 45
Dong05 [4] 40,516 not reported
RC-ER [6], [22] 88,070 543 — 690
DDG (RECUS/BUFF) 1,000,000 24,433
PDDG (10, 30) 2,000,000 3,463
(b) scalability of iterative DDG algorithms based on reported results

Fig. 15. Comparative evaluation.

phase through batched database updates reduces the
runtime by 41 percent. When parallelizing the process,
we observe a runtime reduction by 81 percent compared to
the runtime of DDG.

7 CONCLUSION

This paper is the first to consider scalability of duplicate
detection in graph data (DDG). We presented a general-
ization of iterative DDG algorithms consisting of an
initialization phase and an iterative phase. The latter in
turn consists of retrieval, classification, and update steps.
We then presented how to scale up these phases with the
help of an RDBMS.

For iterative retrieval and update we proposed RECUS/
BUFF to scale in space and in time. It uses an internal buffer
to avoid the expensive sorting performed by the straight-
forward baseline algorithm RECUS/DUP. To scale-up
classification of candidate pairs, we proposed hybrid
similarity computation to scale in space and to overcome
the limitations of a pure SQL variant. To scale-up classifica-
tion in time, we presented the early classification technique,
which interrupts similarity computation when it is certain
that a pair is not a duplicate. Experiments on large amounts
of data validate our DDG approaches and show that these
significantly outperform a straightforward mapping of DDG
from main memory to a database.

Part of the research on scalable DDG was successfully
transferred to an industry project [25]. In addition, we
extended DDG to include parallel and batched duplicate
detection, and presented the corresponding PDDG frame-
work. The most significant changes to the original DDG
framework occurred in the update phase. Experiments using
PDDG show that using both parallel and batched processing
significantly reduces the runtime compared to DDG.

ACKNOWLEDGMENTS

This research was supported in part by the German Research
Society (DFG grantno. NA 432). This work was partially done
at the Hasso Plattner Institute and at IBM Almaden.

REFERENCES

[1] AK. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios, “Duplicate
Record Detection: A Survey,” IEEE Trans. Knowledge Data Eng.,
vol. 19, no. 1, pp. 1-16, Jan. 2007.

HERSCHEL ET AL.: SCALABLE ITERATIVE GRAPH DUPLICATE DETECTION

[2] E. Rahm and H.H. Do, “Data Cleaning: Problems and Current
Approaches,” IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3-13, Dec.
2000.

[3] A. Doan, Y. Lu, Y. Lee, and]J. Han, “Object Matching for
Information Integration: A Profiler-Based Approach,” IEEE
Intelligent Systems, vol. 18, no. 5, pp. 54-59, Sept. 2003.

[4] X. Dong, A. Halevy, and J. Madhavan, “Reference Reconciliation
in Complex Information Spaces,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2005.

[5] M. Weis and F. Naumann, “Detecting Duplicates in Complex
XML Data,” Proc. 22nd Int’l Conf. Data Eng. (ICDE), 2006.

[6] I Bhattacharya and L. Getoor, “Collective Entity Resolution in
Relational Data,” ACM Trans. Knowledge Discovery from Data,
vol. 1, no. 1, pp. 1-36, Mar. 2007.

[71 M. Herschel and F. Naumann, “Scaling Up Duplicate Detection in
Graph Data,” Proc. 17th ACM Conf. Information and Knowledge
Management (CIKM) Conf., 2008.

[8] P. Singla and P. Domingos, “Object Identification with
Attribute-Mediated Dependences,” Proc. European Conf. Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD),
2005.

[9] W. Shen, P. DeRose, L. Vu, A. Doan, and R. Ramakrishnan,

“Source-Aware Entity Matching: A Compositional Approach,”

Proc. IEEE 23rd Int’l Conf. Data Eng. (ICDE), 2007.

D.V. Kalashnikov and S. Mehrotra, “Domain-Independent Data

Cleaning via Analysis of Entity-relationship Graph,” ACM Trans.

Database Systems, vol. 31, no. 2, pp. 716-767, 2006.

Z.Chen, D.V. Kalashnikov, and S. Mehrotra, “Exploiting Relation-

ships for Object Consolidation,” Proc. Second Int’l Workshop

Information Quality in Information Systems (IQIS), 2005.

X. Yin, J. Han, and P.S. Yu, “LinkClus: Efficient Clustering via

Heterogeneous Semantic Links,” Proc. 32nd Int’l Conf. Very Large

Data Bases (VLDB), 2006.

A. Arasu, C. Ré, and D. Suciu, “Large-Scale Deduplication with

Constraints Using Dedupalog,” Proc. IEEE 25th Int’l Conf. Data

Eng. (ICDE) Conf., 2009.

M. Tachibana and H. Garcia-Molina, “Joint Entity Resolution,”

technical report, ID 900, Stanford InfoLab, 2009.

R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating

Fuzzy Duplicates n Data Warehouses,” Proc. 28th Int’l Conf. Very

Large Data Bases (VLDB), 2002.

M.A. Hernandez and S.J. Stolfo, “The Merge/purge Problem for

Large Databases,” Proc. ACM SIGMOD Int’l Conf. Management of

Data, 1995.

S. Puhlmann, M. Weis, and F. Naumann, “XML Duplicate

Detection Using Sorted Neigborhoods,” Proc. 10th Int’l Conf.

Advances in Database Technology (EDBT), 2006.

M.J. Quinn and N. Deo, “Parallel Graph Algorithms,” ACM

Computing Survey, vol. 16, no. 3, pp. 319-348, 1984.

H. sik Kim and D. Lee, “Parallel Linkage,” Proc. ACM Int’l Conf.

Information and Knowledge Management (CIKM), 2007.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-

sing on Large Clusters,” Proc. Sixth Conf. Symp. Operating Systems

Design & Implementation (OSDI), 2004.

M. Weis and F. Naumann, “DogmatiX Tracks Down Dupli-

cates in XML,” Proc. ACM SIGMOD Int'l Conf. Management of

Data, 2005.

L. Bhattacharya and L. Getoor, “Iterative Record Linkage for

Cleaning and Integration,” Proc. Ninth ACM SIGMOD Workshop

Research Issues in Data Mining and Knowledge Discovery (DMKD),

2004.

AE. Monge and C.P. Elkan, “An Efficient Domain-independent

Algorithm for Detecting Approximately Duplicate Database

Records,” Proc. SIGMOD Workshop Data Mining and Knowledge

Discovery (DMKD), 1997.

M. Weis and F. Naumann, “Relationship-Based Duplicate Detec-

tion,” Technical Report HU-IB-206, Humboldt Univ. Berlin, 2006.

M. Weis, F. Naumann, U. Jehle,]J. Lufter, and H. Schuster,

“Industry-Scale Duplicate Detection,” Proc. Int’l Conf. Very Large

Data Bases (VLDB), 2008.

M. Weis and F. Naumann, “Space and Time Scalability of

Duplicate Detection in Graph Data,” technical report, Nr. 25,

Hasso-Plattner-Insitut Potsdam, 2008.

D. Milano, M. Scannapieco, and T. Catarci, “Structure Aware XML

Object Identification,” Proc. First Int’l Very Large Data Bases (VLDB)

Workshop Clean Databases (CleanDB), 2006.

(10]

(11]

[12]

(13]

(14]

(15]

[16]

[17]

(18]
[19]

(20]

(21]

[22]

(23]

[24]

(23]

[20]

(27]

15

[28] W.W. Cohen, P. Ravikumar, and S.E. Fienberg, “A Comparison of

String Distance Metrics for Name-Matching Tasks,” Proc. IJCAI

Workshop Information Integration on the Web (IIWeb), pp. 73-78, 2003.

B.-W. On, N. Koudas, D. Lee, and D. Srivastava, “Group Linkage,”

Proc. IEEE 23rd Int’l Conf. Data Eng. (ICDE), 2007.

[30] N.Reddy and J.R. Haritsa, “Analyzing Plan Diagrams of Database
Query Optimizers,” Proc.31st Int'l Conf. Very Large Data Bases
(VLDB), 2005.

[29]

Melanie Herschel received the graduate degree
in information technology from the University of
Cooperative Education Stuttgart in 2003, and
the PhD thesis on “XML duplicate detection” in
2007. She joined the information integration
group at the Humboldt-University of Berlin
(2003-2006) and continued her research on
duplicate detection at the Hasso Plattner In-
stitute in Potsdam (2006-2008). From 2008-
2009, she worked at the IBM Almaden Research
Center focusing on data provenance. From 2009 to 2011, she was a
postdoctoral researcher at the University of Tibingen, Germany Since
2011, she has been an assistant professor at the University of Paris 11,
France.

Felix Naumann studied mathematics, economy,
and computer sciences at the University of
Technology in Berlin. He received the diploma
(MA) in 1997 and the PhD thesis on “quality-
driven query answering” in 2000. After receiving
the diploma (MA), he joined the graduate school
“Distributed Information Systems” at Humboldt
University of Berlin. In 2001 and 2002, he
worked at the IBM Almaden Research Center
on topics around data integration. From 2003-
2006, he was assistant professor for information integration at the
Humboldt-University of Berlin. Since 2006, he has been the chair for
information systems at the Hasso Plattner Institute at the University of
Potsdam in Germany.

Sascha Szott received the diploma in computer

science from University Halle-Wittenberg with a

thesis on XML schema matching. In 2007, he

joined the Information Systems group at Hasso

Plattner Institute, Potsdam, where he worked as

t a research assistant, focusing his research on

data fusion and duplicate detection. Since 2009,

he has been a member of the Scientific

Information Systems group at Zuse Institute

Berlin. In this position, he is responsible for the

development of information systems, primarily for libraries and research
institutions.

Maik Taubert studied software systems engi-
neering at the Hasso Plattner Institute in
Potsdam and received the master's degree in
2008 after finishing the master's thesis on
parallelizing graph duplicate detection at the
chair for information systems. Since then, he
has been with Biotronik SE & Co. KG in Berlin
developing the Home Monitoring Service Center
for implantable devices.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

