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Abstract: We present a novel technique and a tool for static type-checking of XQuery programs.
The tool looks for errors in the program by jointly analyzing the source code of the program,
input and output schemas that respectively describe the sets of documents admissible as input
and as output of the program. The crux and the novelty of our results reside in the joint use of
backward type inference and a two-way logic to represent inferred tree type portions. This allowed
us to design and implement a type-checker for XQuery which is more precise and supports a larger
XQuery fragment compared to the approaches previously proposed in the literature; in particular
compared to the only few actually implemented static type-checkers such as the one in Galax [6].
The whole system uses compilers and a satisfiability solver for deciding containment for two-way
regular tree expressions. Our tool takes an XQuery program and two schemas Sin and Sout as
input. If the program is found incorrect, then it automatically generates a counter-example valid
w.r.t. Sin and such that the program produces an invalid output w.r.t Sout. This counter-example
can be used by the programmer to fix the program.
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XQTC : un contrôleur de type statique pour XQuery
utilisant l’inférence de type arrière

Résumé : Nous présentons une technique nouvelle et un outil pour le contrôle de type statique
des programmes XQuery. L’outil recherche les erreurs dans le programme en analysant à la fois
le code source du programme et les schémas d’entrée et de sortie qui décrivent respectivement
les ensembles de documents admissibles en entrée et en sortie. L’originalité de nos résultats
réside dans l’utilisation conjointe de l’inférence de type arrière et d’une logique avec programmes
inverses pour représenter des fragments de types d’arbre. Cela nous a permis de concevoir et
de réaliser un contrôleur de type pour XQuery qui est plus précis et supporte un fragment de
XQuery plus large que les approches proposées précédemment dans la littérature, en particulier
si on se réfère aux quelques contrôleurs de type statiques effectivement réalisés, tel que celui
de Galax [6]. L’ensemble du système utilise des compilateurs et un solveur pour décider de
l’inclusion des expressions d’arbres régulières bi-directionnelles. Notre outil prend en entrée un
programme XQuery et deux schémas Sin et Sout. Si le programme est reconnu incorrect, l’outil
engendre automatiquement un contre-exemple valide vis-à-vis de Sin et tel que le programme
produise un résultat invalide vis-à-vis de Sout. Ce contre-exemple peut alors être utilisé par le
programmeur pour corriger son programme.

Mots-clés : Développement web, analyse statique, XQuery, débogage
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1 Introduction

One of the most essential tasks in web engineering consists in extracting and then transform-
ing data for generating output (for display or for further processing). Since the inception of
XML, dedicated programming languages such as XSLT and XQuery were designed specifically
to deal with such transformations. Several research papers have studied the properties of these
languages in order to better understand the difficulty they introduce and to master their inher-
ent complexity. In particular, the problem of finding errors statically is of primary importance.
Errors can be easily introduced because transformations involve complex information extraction
via powerful query languages such as XPath combined with imperative style statements (the
so-called FLWOR expressions) containing instructions such as conditionals, loops, etc. combined
with data producing instructions. Furthermore, data given as input or expected as output may
additionally be constrained by some type (schema). This makes errors even harder to detect
since types are specified independently and provided externally to the program. This led W3C,
the standard body in charge of defining the XQuery language [3], to include a type system in
the specification [5]. This type system allows type information to be effectively propagated to
corresponding instructions in the program with the aim of detecting errors at compile time. The
ultimate benefit of such analysis is to avoid unexpected runtime errors by proving statically that
the program is correct for all input documents. This has performance implications since pro-
grams proved correct do not need to validate their output dynamically. The process of detecting
errors at compile-time, known as static type checking, typically involves two main operations:
type inference and type containment test. The containment test consists in checking that the
program produces an XML output which is consistent with the expected output type when ap-
plied to a document which is valid with respect to the input type. This is done by comparing
the inferred type with the expected type. Effective algorithms for testing containment between
types have been developed in the literature [11]. They are typically based on tree automata
containment, and they proved effective in practice. Type inference is often tricky for expressive
languages and constitutes the central problem in type checking transformations.

Forward Type Inference and its Limitations

The vast majority of works in the literature perform forward type inference. Forward type
inference consists in calculating the type describing the actual program output, based on the
analysis of the program and the input type. This analysis consists in applying typing rules
repeatedly to each program statement and combining the results so that the analysis of the
entire program yields a single and global inferred output type. This approach is intuitive since
the program produces its output in a top-down fashion, and grammars also describe constraints
in a top-down forward-only fashion with respect to the parent-child relationship. However, this
approach has some fundamental and intrinsic limitations. Notably, one revealing limitation is the
lack of support for backward XPath axes. This is a fundamental limitation because the typical
forward inference process navigates in the input tree grammar, using child or descendant axes
in order to infer an output type. This navigation in a type is possible (and relatively easy) since
tree grammars descriptions are forward-only. However, navigating backward in a tree grammar
is very difficult to achieve and to model because there is no guarantee that the target nodes
correspond to non-terminals of the (forward-only) grammar. This is why forward type inference
is intrinsically tied to forward XPath axes.

Lack of support of backward XPath axes. Backward XPath axes such as parent or
ancestor are commonly used in XQuery programs found in practice. Even more remarkably,
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4 Genevès, Layaïda & Vanoirbeek

frequent patterns such as child::a[position()=1] (used to pick the first element in a sequence)
happen to be syntactic sugars for expressions involving backward axes. For example, the above
pattern is a shorthand for:
child::a[not(preceding-sibling::a)].

More generally, this lack of support is unfortunate since one of the main arguments in favor
of using languages such as XQuery (or XSLT1) concerns their ability to rely on the full power of
XPath, which constitutes the essential core around which those languages are built.

Concretely, current type systems abstract over backward axes by inferring the type “any” (no
constraint at all) as soon as a backward axis such as parent or preceding-sibling is found in
the program. This gross approximation leads to unsound type-checkers in the context of forward
type inference. This is because the inferred type is much less constrained than it would need
to be. Therefore, the final containment check between the inferred type and the expected type
will more likely fail. An important consequence is that type-checkers based on this approach will
report many false errors for correct programs. Reporting false negatives is problematic because
of the useless time spent in debugging a correct program.

Backward Type Inference and its Advantages

In this paper we propose another, fundamentally different approach based on backward type
inference. Backward type inference consists in inferring the input type modeling the set of
admissible input documents so that the program generates a valid output. For this purpose,
the analysis uses the program and an expected type as output. Once the inferred input type is
obtained, a containment check is performed to test whether this inferred type is included in the
input type for documents actually given as input to the program. We claim that this approach
offers several decisive advantages that we briefly review below.

Inferring exact constraints for the for loop. One of the main advantages concerns the
typing of a problematic XQuery statement: the “for $v in e1 return e2” loop. In the context
of forward type inference, typing precisely the for loop amounts to inferring information on how
many times the return part e2 will be executed. The W3C type system, designed to have a
polynomial complexity, infers an approximate type.

For example, consider for $v in $db desc::n return $v where the input type and the
expected output type are both b, c, b∗. The W3C type inference yields (b | c)∗. As highlighted
by Colazzo and Sartiani [4], this is a gross approximation which is obviously not contained in
b, c, b∗. The type-checker will thus raise an error while the program is perfectly correct. Colazzo
and Sartiani go further and propose another type-system, designed to be more precise (for an
exponential complexity). Basically, they perform a case analysis on e1 expression in order to
infer some more precise information on how many times the return clause e2 will be executed.
In the same manner, we could recursively perform more sub-decomposition in order to generate
even more precise information (at the cost of an even greater complexity). At some point, one
has to choose a trade-off between complexity and precision (necessarily approximate).

Backward type inference brings a radically different perspective to solve this problem. It
allows to completely overcome this difficulty by reading the output type and basically copying
selected portions of the output type to the inferred input type. A major advantage of looking at
the for loop the other way around is that it permits to completely avoid approximation. Using
backward type inference, we can type the for loop in an exact manner without any additional
cost. For the above example, b, c, b∗ is directly (and linearly) inferred as input.

1XSLT can be compiled into XQuery [7].

Inria



XQTC: A Static Type-Checker for XQuery 5

Supporting backward navigation. Another decisive advantage of our approach is that we
can infer all structural constraints induced by backward and recursive navigation, and transfer
them precisely in the inferred input type. This is a crucial part of our contribution, further
explained in Sections 3.3 and 3.2.

Sound type-checkers even with approximation. In both forward and backward type in-
ferences, obviously at some point, one has to choose a trade-off between precision and complexity.
However, this choice has a fundamentally different price in each technique. Backward type in-
ference offers a decisive advantage here: an approximation in the inference process will always
preserve containment and therefore soundness, unlike in the forward type inference approach.
Approximations in the forward type inference introduce false negatives (as in the example above).
The less precise is the inferred output type, the greater is the number of false negatives reported.
In contrast, approximation in the backward type inference case lead to less errors detected but all
of those reported will be real ones. Therefore, we believe that performance/precision trade-offs
are much more relevant in the backward type inference.

Contribution

The contribution of our paper is threefold:

• we propose the joint use of backward type inference and a two-way logic as the best tech-
nique for the static type-checking of XQuery;

• we present the first algorithm and tool that implement this approach;

• we obtain more precision in type-checking than in previous approaches and we support a
larger fragment of XQuery (notably we are the first to provide the support of backward
XPath axes);

The crux of our results relies on the use of a two-way logic to represent inferred tree type portions
during the process of backward type inference. This logic provides a succinct notation for regular
tree types containing constraints expressed in both upward and downward directions.

2 Programming with XQuery
Consider the following XQuery sample program:

1. <Products>
2. { for $cd in doc(’catalog.xml’)/descendant::CD
3. return <CompactDisc>
4. {$cd/ancestor::Product/ProductNo}
5. {$cd/child::*}
6. </CompactDisc> }
7. </Products>

This program operates on an instance of a catalog of products whose type is defined by the XML
schema given in Figure 1. This type corresponds to a set of products containing Book and CD
elements. The program aims at generating an XML data flow, corresponding to a catalog of
products containing only CompactDisc information. The program output is expected to be valid
against the target XML schema given in Figure 2. At first sight, the program seems correct.
First it traverses all CD in the input document ranged over $cd (line 2). For each of them, it
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6 Genevès, Layaïda & Vanoirbeek

extracts its ProductNo information using a backward navigation to the Product element (line 4).
However, a careful analysis shows that this simple example contains two errors: i) it generates
an unexpected element (Sleeve) and ii) the order of elements do not conform to the targeted
schema. The goal of the present paper is to detect this kind of errors automatically.

Figure 1: Input Type for “catalog.xml”.

Figure 2: Expected Output Type.

2.1 XQuery Programs

The XQuery fragment we consider in this paper is given by the abstract syntax shown in Figure 3,
where axis ∈ {child, desc, parent, anc, psibl, nsibl}. This fragment is equipped with the
main control statements (for loops, conditionals, let binders) as well as backward, forward and
recursive navigation performed by XPath expressions.

We distinguish variables ($v) bound by for loops from variables ($v) bound by let expres-
sions. The former are bound to non-empty trees, whereas the latter are bound to arbitrary (and
possibly empty) forests.

Inria



XQTC: A Static Type-Checker for XQuery 7

e ::=
<σ>{e}</σ>

| ε
| e, e
| for $v in e return e
| let $v := e return e
| if cond then e else e
| $v axis::n
| $var
| root()

cond ::=
cond ∨ cond | cond ∧ cond | ¬cond

| empty($var) | $var = $var
$var ::=

$v
| $v

Figure 3: Core XQuery Fragment.

2.2 XQuery Types

As a model for XQuery types, we consider the class of regular tree languages that capture most
of the DTDs, XML Schemas, and Relax NG schemas found in practice, with the additional
benefit that this class is closed under set-theoretic operations. Furthermore, operations such as
containment are decidable.

The usual grammar for XQuery types which is typically considered in the literature is given
in Figure 4. This grammar actually defines context-free grammars (for which containment is
known to be undecidable). Some additional constraints must be applied on this grammar for
it to define regular tree grammars (the typical additional restriction is that every occurrence of
a recursive variable must either be guarded or must occur in tail). Furthermore, this grammar
contains syntactic sugar (i.e. constructions that can be expressed in terms of others, such as
t? = t | ()).

In the present paper, we consider regular tree types from another slightly different (yet
equivalent) perspective. We consider the abstract syntax over binary trees, shown in Figure 5.
Considering regular tree types through this abstract syntax offers three advantages: first, this
grammar already incorporates intrinsically the aforementioned restriction so that it exactly de-
fines regular tree grammars (there is no need for further restriction). Second, this grammar uses
fewer constructions which reduces case analyses and in particular the number of inference rules
presented in Section 3.3. Third, it makes explicit, through a let binder, recursion which may
occur in types. Finally, those advantages come at no cost since unranked trees can be modeled
as binary trees without loss of generality, owing to a bijective mapping between unranked and
binary trees [9].

In the rest of the paper, we rely on the widely known “first-child” and “next-sibling” metaphor
[9] for navigating unranked trees, and as a mean to represent them in a binary fashion. For
example, the type of all forests is represented as follows: let xany = element ∗ {xany, xany} |
() in xany
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8 Genevès, Layaïda & Vanoirbeek

u ::= unit type
element n {t} element

n ::= name test
σ label

| ∗ wildcard
t ::= type

u unit type
| () empty sequence
| t, t sequence
| t | t choice
| t? optional
| t+ one or more
| t∗ zero or more
| x type reference

Figure 4: XQuery Types (with syntactic sugar).

n ::= name test
σ label

| ∗ wildcard
t ::= type

element n {x, x} element with type references
| () empty sequence
| t | t choice
| let x = t in t recursive type

Figure 5: Types (desugarized and binarized).

3 Backward Type Inference

3.1 Main Principles
Formally, our type-checker takes as input:

• a given program e written in the XQuery fragment described in Figure 3;

• a type Sin for documents actually given as input to e;

• a type Sout for documents expected as output of e.

Sin and Sout are first compiled into their core representations tin and tout written using the
grammar given in Figure 5. The type-checker then applies the inference process to e and tout as
described in Section 3.3. This process yields an inferred input type tinf. This type represents the
set of all documents admissible as input to e, or in other terms, the set of all documents t such
that e(t) is a valid document with respect to tout. We finally check whether:

tin ⊆ tinf (1)

Technically, (1) is checked using the satisfiability-solver introduced in [9]. If (1) holds then no
error is reported. If (1) does not hold then we generate a counter-example tree illustrating why
the program is found incorrect. The counter-example is a sample input document for which e
will output a document which is invalid with respect to tout.

Inria
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3.2 Logical Representation of Inferred Types
The type which is inferred by our process is represented using logical formulas written with the
logic of [9]. One crucial advantage of this representation is that it allows expressing properties
over both ancestors and descendants of a given node. This is necessary to support XPath steps
other than child and descendant found in XQuery programs but traditionally ignored in the
literature [4]. Other advantages of this representation include the fact that it is expressive
enough to support all XQuery types, it is succinct (types are represented as formulas of linear
size compared to their regular expression syntax), and the satisfiability problem for a logical
formula of size n can be efficiently decided with an optimal 2O(n) worst-case time complexity
bound with the solver of [9].

The syntax of the logic in which the inferred type is expressed is defined as follows:

ϕ,ψ ::= formula
> true

| ⊥ false
| p | ¬p atomic prop. (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µX.ϕ (least) fixpoint

where a ∈ {1, 2, 1, 2} are programs. Atomic propositions p correspond to labels for tree nodes.
Intuitively, the logic allows one to formulate regular properties on trees: the programs “1” and

“2” are respectively used to access the first child node and the next sibling node in an unranked
tree. For instance, the formula a ∧ 〈1〉 (b ∧ 〈2〉 c) is satisfied at the root of the tree denoted by
the term a(b, c). The logic also features converse programs 1 and 2 that respectively navigate in
the opposite direction compared to 1 and 2.

The logic allows expressing recursion through the fixpoint binder. The recursive formula
〈1〉 (µX.a ∨ 〈1〉X ∨ 〈2〉X) states the existence of some node labelled with “a” at an arbitrary
depth in the subtree. The meaning of the recursive formula µX.b ∨

〈
2
〉
X is that either the

current node is labeled b or some previous sibling of the current node is labeled b.
The interpretation of a logical formula is the set of finite trees such that the formula is

satisfied at some tree node. From this perspective, a logical formula can be seen as an alternative
representation of a finite tree automaton, or, equivalently a type (XML Schema). The semantics
of this logic is intuitively explained through examples in [8] and formally defined in [9].

3.3 The Inference Process
The inference process is formalized by inference rules that cover all possible cases of instructions
and expected output types. Specifically, we write an inference rule of the form:

rule-name
H1 H2 ... Hi

t←− e, tout

This rule means that, for the XQuery instruction e and for the expected output type tout, the
input type t is inferred, provided hypotheses H1, H2, ... Hi are satisfied. t represents a constraint
that the input of e must satisfy in order for e to produce an output which satisfies the constraints
given by tout. The above rule is named ”rule-name”.

The inference process is triggered by the application of the rule that applies to the root of the
parse tree of the program. The XQuery program is decomposed in terms of subexpressions. The

RR n° 8149



10 Genevès, Layaïda & Vanoirbeek

rule that applies at top level recursively calls rules for its sub-expressions. This decomposition
of the program expression guides the traversal of the output type. Rule applications produce
portions of the inferred type that are assembled in order to compose the final inferred type.
Technically, portions are assembled when popping the stack of recursive calls of sub-rules. At
the end of the inference process, we obtain a formula ψ. This formula is surrounded by some
additional logical operators, as follows:

¬
〈
1
〉
> ∧ ¬

〈
2
〉
∧ µZ.ψ ∨ 〈1〉Z ∨ 〈2〉Z

so that it refers to the root of the input tree.

3.4 Auxiliary Definitions
We now introduce some auxiliary definitions used in the inference rules. For two node tests n
and n ′ we define the predicate: match(n,n ′) def

= (n = ∗ ∨ n ′ = ∗ ∨ n = n ′). For a given nodetest
n the function toF(n) computes a corresponding logical formula as follows: toF(σ) def

= σ and
toF(∗) def

= >. We also define ntoF(n,n ′) def
= toF(n) ∧ toF(n ′).

We need some notations in order to deal with types. First, we introduce xε as referring to
the empty type: let xε = () in xε. The function θ(x) denotes the type bound to the variable
x. For a given variable x, the function f(x) return the logical translation of θ(x), as follows:

f(x) = f ′(θ(x))

f ′(element n {x, x}) = toF(n) ∧ next(1, x1) ∧ next(2, x2)

f ′(()) = ⊥
f ′(t1 | t2) = f ′(t1) ∨ f ′(t2)

f ′(let x = t1 in t2) = f ′rec(t2)

In the last definition, the function f ′rec(t2) does the same as f ′(t2) except that it replaces all
occurrences of x at top level in t2 with µX.f ′rec(t1) where X is a fresh variable, and the other
(deeper) occurrences of x in t2 with X.

We define a function particularly useful for describing the frontier of a type:

next(k, x) = next(k, θ(x))

next(k, t) =


¬ 〈k〉> if t = ()
¬ 〈k〉> ∨ 〈k〉 f ′(t) if t 6= () ∧ nullable(t)
〈k〉 f ′(t) if ¬nullable(t)

We introduce notations for performing substitutions in instructions, and also in types. The
notation e1

[
$v/e2

]
denotes the instruction e1 in which all occurrences of $v are replaced by e2.

The notation t
[−→
x/x′

]
denotes the type expression t in which all (sibling) occurrences of x are

replaced by x′, as follows:

(element n {x1, x2})
[−→x/x′] =

{
element n {x1, x′} if x2 = x
element n {x1, x2} otherwise

()
[−→x/x′] = ()

(t1 | t2)
[−→x/x′] = t1

[−→x/x′] | t2 [−→x/x′]
(let x1 = t1 in t2)

[−→x/x′] = let x1 = t1
[−→x/x′] in t2

[−→x/x′]

Inria



XQTC: A Static Type-Checker for XQuery 11

We define the widely used predicate nullable(t) that indicates whether the empty tree may
belong to the language associated with some type t:

nullable(element n {x, x}) = false
nullable(()) = true

nullable(t1 | t2) = nullable(t1) ∨ nullable(t2)

nullable(let x = t1 in t2) = nullable(t2)

The function ctoF(cond) returns the logical translation of the condition cond , computed as
follows:

ctoF(cond1 ∨ cond2) = ctoF(cond1) ∨ ctoF(cond2)

ctoF(cond1 ∧ cond2) = ctoF(cond1) ∧ ctoF(cond2)

ctoF(¬cond) = ¬ctoF(cond)

ctoF(empty($var)) = ¬($var)

ctoF($v = $var) = >

while hasEq(cond) simply tests whether the condition cond contains an equality test:

hasEq(cond1 ∨ cond2) = hasEq(cond1) ∨ hasEq(cond2)

hasEq(cond1 ∧ cond2) = hasEq(cond1) ∨ hasEq(cond2)

hasEq(¬cond) = hasEq(cond)

hasEq(empty($var)) = false
hasEq($var = $var) = true

Finally we define the predicate nilable(e) which is true whenever instruction e might not
produce anything as output. This predicate is analogous in spirit to nullable(t) but for instruc-
tions.

nilable(<σ>{e}</σ>) = false
nilable(ε) = true

nilable(e1, e2) = nilable(e1) ∧ nilable(e2)

nilable(for $v in e1 return e2) = nilable(e1) ∨ nilable(e)

nilable(let $v := e1 return e2) = nilable(e ′)
nilable(if cond then e1 else e2) = nilable(e1) ∨ nilable(e2)

nilable($v axis::n) = true
nilable($var) = Γ($var)

nilable(root()) = false

where e def
= e2

[
$v/e1

]
and e ′ def

= e2

[
$v/e1

]
.

3.5 Inference Rules

For each case of instruction e, and each case of expected output type tout, we define a rule that
infers a logical formula ϕin that represents the set of acceptable input to e so that e generates
something valid with respect to tout. The purpose of the inferred ϕin is to represent all admissible
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12 Genevès, Layaïda & Vanoirbeek

inputs to e yet being the most constrained as possible. The more constrained ϕin is, the more
precise the type-checking algorithm will be.

One rule (or group of rules) is associated with each possible construct of the output type
which can be: choice, recursion, empty sequence or element type (as defined by the grammar
shown in Figure 5).

3.5.1 Choice and Recursion

The easiest constructs to deal with are choice types and recursive types, respectively treated by
the rules expr-union and expr-rec in Figure 6. expr-union can be interpreted as follows:
for e to generate something valid w.r.t. (t1 | t2), e can either generate something valid w.r.t t1
or something valid w.r.t t2. The constraint inferred for the input simply requires that at least
one of those two situations is satisfied, which is naturally formalized as a logical disjunction.
The rule expr-rec simply propagates the analysis to the returned part of the let construct,
provided that the type bound to the variable can be accessed using θ(x).

expr-union
tl ←− e, t1 tr ←− e, t2

tl ∨ tr ←− e, (t1 | t2)

expr-rec
t←− e, t2

t←− e, let x = t1 in t2

Figure 6: Rules for choice and recursive types.

3.5.2 Empty Sequence

The case of the empty sequence as output type is treated by rules shown in Figure 7. One rule
is given for each instruction as the inferred constraint depends on the nature of the instruction.
For example, elem-empty infers the formula ⊥ (or, in other terms, the empty type) because the
generation of an element cannot produce an empty sequence. On the opposite, empty-empty
infers the formula > (the type of any tree, or in other terms, no particular type constraint), since
the empty instruction never generates anything, which matches the empty sequence expected as
output. The rule child-empty handles the case where the construct “$v child::n” is supposed
to generate an empty sequence: it infers the constraint that $v must not have any child matching
n. Other rules follow the same spiritand are not detailed here for space limitations reasons.

3.5.3 Element Type

For the general case where an element type is expected as output, each instruction is dealt with
by a few specifically designed inference rules. The inferred constraint varies a lot depending on
the nature of the instruction and on the situation determined by the rule premises. Figures 8
and 9 presents rules for all the main control statements, including the for loop, the if statement,
and instructions in charge of output production. We comment on these rules below.

Generation of nodes. One of the simplest yet essential rule is elem-elem. This rule checks
whether the node generated by the instruction is compatible with the expected node label of the
output type. In addition, since the XQuery instruction produces a tree (and not a forest) the
output type for siblings of the produced node must be nullable. Otherwise, elem-elem’ infers
the formula ⊥ in order to indicate the problem. empty-elem always infers ⊥ since the empty
instruction (modeling no instruction at all) is simply not capable of generating the expected
output type that requires the existence of at least one element.
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elem-empty
⊥ ←− <σ>{e}</σ>, ()

empty-empty
> ←− ε, ()

seq-empty
t1 ←− e1, () t2 ←− e2, ()

t1 ∧ t2 ←− e1, e2, ()

for-empty
t1 ←− e1, θ(xany) t2 ←− e2, ()

¬t1 ∨ t2
[
$v/t1

]
←− for $v in e1 return e2, ()

let-empty
t1 ←− e1, θ(xany) t2 ←− e2, ()

t2
[
$v/t1

]
←− let $v := e1 return e2, ()

if-empty
t1 ←− e1, () t2 ←− e2, ()

t1 ∨ t2 ←− if cond then e1 else e2, ()

child-empty
ϕ = 〈1〉µX.toF(n) ∨ 〈2〉X

$v ∧ ¬ϕ←− $v child::n, ()

desc-empty
ϕ = 〈1〉µX.toF(n) ∨ 〈1〉X ∨ 〈2〉X

$v ∧ ¬ϕ←− $v desc::n, ()

parent-empty
ϕ = µX.

〈
1
〉
toF(n) ∨

〈
2
〉
X

$v ∧ ¬ϕ←− $v parent::n, ()

anc-empty
ϕ = µX.

〈
1
〉
toF(n) ∨

〈
1
〉
X ∨

〈
2
〉
X

$v ∧ ¬ϕ←− $v anc::n, ()

psibl-empty
ϕ =

〈
2
〉
µX.toF(n) ∨

〈
2
〉
X

$v ∧ ¬ϕ←− $v psibl::n, ()

nsibl-empty
ϕ = 〈2〉µX.toF(n) ∨ 〈2〉X

$v ∧ ¬ϕ←− $v nsibl::n, ()

root-empty
⊥ ←− root(), ()

var-empty
⊥ ←− $v , ()

var-empty’
$v ←− $v, ()

Figure 7: Rules for the empty sequence as output.

Conditional statements. The case of the “if” statement is especially interesting as it clearly
illustrates to which extent the precision of the type-checker can be increased depending on the
expressive power of the underlying logic. The rule if-elem applies whenever the condition does
not contain any equality test. In this case, the logic is expressive enough to fully model the
conditional statement: the rule infers two possible cases: either the input logically follows the
restrictions expressed by the condition in which case the additional restrictions computed by
the analysis of the “then” branch apply; or the input does not logically follow the restrictions
computed from the analysis of the condition in which case the further restrictions computed by
the analysis of the “else” branch apply. This complete logical modeling of the “if” statement
cannot be achieved if the condition contains an equality test, because we do not know the
result of the test statically (as it depends on values obtained at runtime). Rule if-elem’ is
in charge of this case: an equality test is modeled with the logical formula > which abstracts
over this part of the condition by not requiring any restriction on the input. Because of this
unavoidable approximation, the global inferred formula is the conjunction of the approximation
of the condition with one of the two possibilities obtained by the further analyses of the “then”
and “else” branches.

Sequence of instructions. The case of a sequence of instructions e1, e2 is especially hard to
deal with as we have to determine which part of the output type is generated by e1 and which
part is generated by e2. This means that we have to perform a joint analysis of (e1, e2) and
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elem-elem
(n = ∗ ∨ n = σ) t←− e, θ(x1) nullable(θ(x2))

t←− <σ>{e}</σ>, element n {x1, x2}

elem-elem’
(n 6= ∗ ∧ n 6= σ) ∨ ¬nullable(θ(x2))

⊥ ←− <σ>{e}</σ>, element n {x1, x2}

empty-elem
⊥ ←− ε, element n {x1, x2}

seq-elem
succ (e1, element n {x1, x2}) = ∅
⊥ ←− (e1, e2), element n {x1, x2}

seq-elem’
S = succ (e1, element n {x1, x2}) S 6= ∅ ∀s ∈ S, xε 6∈ succ (e2, θ(s))

⊥ ←− (e1, e2), element n {x1, x2}

seq-elem”
S = succ (e1, element n {x1, x2}) S 6= ∅ F = {s ∈ S | xε ∈ succ (e2, θ(s))}
ϕ =

∨
s∈F

ts1 ∧ ts2 ts1 ←− e1, (element n {x1, x2})
[−→s/xε] ts2 ←− e2, θ(s)

ϕ←− (e1, e2), element n {x1, x2}

for-elem
ϕ = $v ′ ∧ 〈1〉 f ′(element n {x1, x2})

ϕ←− for $v in $v ′ child:: ∗ return $v , element n {x1, x2}

for-elem’
ϕ = $v ′ ∧ 〈2〉 f ′(element n {x1, x2})

ϕ←− for $v in $v ′ nsibl:: ∗ return $v , element n {x1, x2}

for-elem”
xε ∈ succ (for $v in e1 return e2, element n {x1, x2}) S = succ (e2, element n {x1, x2})

t1 ←− e1, θ(xany) tfirst2 ←− e2, element n {x1, x2} t2 = tfirst2 ∧
∨
s∈S

buildc(s, e2, ∅)

¬t1 ∨ t2
[
$v/t1

]
←− for $v in e1 return e2, element n {x1, x2}

for-elem”’
xε 6∈ succ (for $v in e1 return e2, element n {x1, x2})

⊥ ←− for $v in e1 return e2, element n {x1, x2}

let-elem
t1 ←− e1, θ(xany) t2 ←− e2, element n {x1, x2}

t2
[
$v/t1

]
←− let $v := e1 return e2, element n {x1, x2}

Figure 8: Rules for the main control instructions in the presence of the element type as output.
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if-elem
¬hasEq(cond)

c = ctoF(cond) t1 ←− e1, element n {x1, x2} t2 ←− e2, element n {x1, x2}

(c ∧ t1) ∨ (¬c ∧ t2)←− if cond then e1 else e2, element n {x1, x2}

if-elem’
hasEq(cond) c = ctoF(cond) t1 ←− e1, element n {x1, x2} t2 ←− e2, element n {x1, x2}

c ∧ (t1 ∨ t2)←− if cond then e1 else e2, element n {x1, x2}

root-elem
ϕ = toF(n) ∧ ¬

〈
1
〉
> ∧ ¬

〈
2
〉
> ∧ next(1, x1) nullable(θ(x2))

ϕ←− root(), element n {x1, x2}

root-elem’
¬nullable(θ(x2))

⊥ ←− root(), element n {x1, x2}

var-elem
nullable(θ(x2)) ϕ = toF(n) ∧ next(1, x1)

ϕ←− $v , element n {x1, x2}

var-elem’
¬nullable(θ(x2))

⊥ ←− $v , element n {x1, x2}

var-elem”
ϕ = toF(n) ∧ next(1, x1) ∧ next(2, x2)

$v ∧ ϕ←− $v, element n {x1, x2}

Figure 9: Rules for conditionals, variables and the root instruction in the presence of the element
type as output.

the output type in order to determine at which location the output type can be split in two
parts respectively generated by e1 and e2. For this purpose, we introduce an auxiliary function
succ (e, t) defined in Figure 10 . For a given instruction e and output type t, the function
succ (e, t) computes all the possible remaining parts of the output type after removing all the
possible parts that can be generated by e. This is represented using a set of type variables.
Intuitively, if we consider the case of a sequence e1, e2, succ (e1, t) returns the set of variables to
be considered as possible entrypoints for e2. In other terms, succ (e1, t) represents the set of all
possible places where t can be split in two parts: the first being generated by e1 and the second
by e2.

The definition of succ (e, t) is presented in Figure 10 where t is used as a shorthand for
element n {x1, x2} and where axis ∈ {child, desc, parent, anc, psibl, nsibl}. By default,
succ (e, t) = ∅ for any pair (e, t) that has already been visited (so that the recursion stops).

By definition, if xε ∈ succ (e, t) then e can produce an output that matches the entire
output type t. If xε 6∈ succ (e, t) then the output type is expecting something else (a mandatory
remaining part) that cannot be generated by e. Finally, succ (e, t) = ∅ means that e generates
a pattern which is not acceptable for t.

Using this auxiliary function, we design the backward type inference rules seq-elem, seq-
elem’ and seq-elem” for the sequence of instructions. seq-elem eliminates the cases where
e1 generates a pattern which is not compatible with the output type. seq-elem’ eliminates
the cases where e1 does generate a pattern compatible with the output type, but e2 does not.
Finally, seq-elem” computes the set S of all admissible entrypoints for e2. The set F filters
out entrypoints for which e2 cannot fully generate the expected remaining part of the type. F
contains the admissible entrypoints for e2 so that e1, e2 successfully generates an output which
fully satisfies the entire expected output type. The inferred formula ϕ simply describes all

RR n° 8149



16 Genevès, Layaïda & Vanoirbeek

acceptable splits of the output type so that e1, e2 generates an output valid with respect to the
output type.

Iteration and variable-binding. To better understand the case of the for loop and backward
type inference performed by for-elem, recall that the semantics of the
“for $v in e1 return e2” statement consists in first evaluating instruction e1, and then in
iterating over each member of the sequence obtained by the result of the evaluation of e1.
Iteration is done by successively setting variable $v to each member of this sequence and executing
e2 each time accordingly. Obviously, e2 may contain one (or possibly several) occurrences of $v .
For this reason, backward inference for the for loop is intrinsically tied to backward inference for
variables in navigation steps, and the behavior of for-elem must be understood together with
the behavior of rules that deal with step-related variables, and in particular rules of Figure 11.
Whenever a variable occurrence is encountered inside e2, a rule (e.g. child-elem) associates the
expected output type to this variable by inferring a logical formula that represents the expected
output type and that contains the name $v of the variable which is meant as a placeholder. This
placeholder will be replaced at a later stage whenever the inference process will come back to the
for loop that binds this variable (recall that the inference process is a depth-first tree traversal
of the XQuery instruction parse tree). Rule for-elem” replaces all occurrences of $v in t2 with
the result t1 of the analysis of the instruction e1 bound to $v by the for loop. In this manner,
constraints on $v coming from the output type, propagated by the rules in charge of steps, will
properly apply later when the binding of $v is met.

Three rules handle the case of the for loop: for-elem, for-elem’, for-elem” . The rules
for-elem and for-elem’ handle peculiar cases where the inference simply consists in copying
a portion of the output type into the inferred input type. The rule for-elem” is in charge of
the more general remaining cases. Here, the principle is very similar to the one followed for
the sequence (rule seq-elem”). This is because a statement for $v in e1 return e2 can be
theoretically seen as an unbounded sequence of the form e2, e2, ..., e2. This is exactly what is
done by the rule for-elem” . For this purpose, we define an auxiliary predicate buildc(xε, e, E)
as follows:

buildc(xε, e, E)
def
= >

buildc(s, e, E)
def
= t ∧

{ ∨
x∈S,x 6∈E buildc(s, e, E ∪ {s}) if S 6= ∅
⊥ if S = ∅ for s 6= xε

where t←− e, θ(s) and S = succ (e, θ(s)).
The general idea is that a successful path between an entry point for e2 and xε must ex-

ist. Basically the expected output type must be “consumed” entirely after a certain number of
application of e2.

Finally, notice that the rule var-elem’ raises an error whenever some next siblings are
required in the output type, because they cannot be generated by $v which is bound to a single
tree, by definition of for variables. var-elem” is in charge of let variables that can be bound
to forests and which are simply substituted by rule let-elem.

Navigation in the input tree. Figure 11 presents rules that deal with all the instructions
that perform navigation in the input tree. Most of the rules use the hypothesis Hsibl that checks
the compatibility of the expected output type with the nodes returned by the step:

Hsibl
def
= sat(next(2, x2) ∧ ϕrestrictSiblings(toF(n)))
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where the predicate sat(ψ) checks whether a given formula ψ is satisfiable, using a direct call to
the solver of [9]. In the above definition, ϕrestrictSiblings(ψ) ensures that all next siblings satisfy
ψ, and is defined as follows:

ϕrestrictSiblings(ψ)
def
= ¬ 〈2〉> ∨ 〈2〉µX.ψ ∧ (¬ 〈2〉> ∨ 〈2〉X)

Notice that checking the hypothesis Hsibl is facultative but increases precision.

3.6 Termination of the Algorithm

Proposition 3.1 The inference process terminates for any instruction e and output type t.

Proof (sketch): The inference process terminates because each inference rule recursively calls
other rules on instructions whose sizes are strictly smaller compared to the size of the initial in-
struction. Therefore, the bounded size of the XQuery program parse tree guarantees termination
of the inference process. The only exception are rules expr-union and expr-rec, which recur-
sively call other rules on same-size instructions, but with output types whose sizes are strictly
decreased. This guarantees termination even in the presence of recursion in the output type
(due to the guarded recursion restriction). Specifically, in the presence of recursion in the output
type, a rule xxx-elem will eventually apply in order to reach the recursive occurrence of a type
variable. By examining all the xxx-elem rules (shown in Figures 8, 9 and 11) we can see that
each rule either performs a recursive call on an instruction whose size is decreased, or terminates
directly (without any recursive call). �

The next section notably details step by step how the implementation processes an example
involving recursion in the output type.

4 Practical Experiments

4.1 Implementation Architecture

The whole system is implemented in Java and is obtained by the implementation and then the
assembly of several components. First, we rely on a parser for XQuery expressions (we use
JJTree to generate a basic parser from the XQuery normative grammar specification), and, more
importantly an API for representing and manipulating Core XQuery expression parse trees. A
set of parsers for DTDs, XML Schemas and Relax NG schemas read schema files and produce
a unifying unranked regular tree grammar representation from a description in any of those
languages. We use the already available “MSV” parser, and we convert its internal representation
in terms of our CFT. At this stage, a converter translates the unranked regular tree grammar into
the corresponding binary tree grammar. Using an API for manipulating binary tree grammars,
we have implemented a compiler that translates the binary tree grammar in terms of a logical
formula. We also use an API to generate and manipulate logical formulas. Using these two
APIs we have implemented all the auxiliary predicates needed for the inference rules. Inference
rules are implemented using the visitor pattern. The input XQuery expression is traversed, and
corresponding rules are called on each subexpression, depending on the nature of the construct
of the output type. Rules are directly implemented (as a separate Java class) as described in the
present paper: each rule generates a portion of a logical formula, that possibly contains a variable
that will be substituted by another piece of formula at a later step when the variable binder is
met (when the rules for-xxx or let-xxx apply). The global logical formula is thus obtained by
the assembly of its sub-formulas when the stack of recursive calls is emptied. Finally, we rely on
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the satisfiability solver of [9] for checking the unsatisfiability of the negation of the implication
between formulas representing the input type and the inferred input type2.

The implementation of our tool is available from the following URL: http://tyrex.inria.fr/xqtc

4.2 Experimental Results and Discussion
We detail how a simple example is processed by the implementation in order to illustrate how
the technical machinery works. Consider the program e defined below:

e def
= let $v := root() return <r>{$v child::∗}</r>

This program generates a document with a r-labeled root whose children are the children of the
root of the input tree. Consider also an output tree type tout defined as follows:

tout
def
= let xε = () in

let x = element b {xε, x} | () in
element r {x, xε}

This type represents the set of documents with an r-labeled root which can have an arbitrary
number of b children leaves (or, intuitively, r[b∗] for unranked trees). Concretely, the grammar
“sample.dtd” describing this type is parsed and converted to a Context Free Type (CFT) matching
the syntax given in Figure 4, as shown by the following trace:

Resulting CFT is:
$b ->b(())
$1 ->($b | ($b, $1))
$r ->r(($1 | ()))
$a ->a($b)
Start symbol is $r

This grammar is then automatically converted into the binary tree type representation (matching
the syntax shown in Figure 5):

Resulting BTT is:
$Epsilon ->EPSILON
$2 ->b($Epsilon, $Epsilon) | b($Epsilon, $2)
$1 ->EPSILON | b($Epsilon, $Epsilon) | b($Epsilon, $2)
$r ->r($1, $Epsilon)
Start Symbol is $r

The XQuery program e is parsed, and the analysis is triggered at the root of the above output
type:

Analyzing ’sample.xq’ vs ’sample.dtd’ starting at ’r’...
Considered Input XQuery expression:
let $v := root() return element r {child::* }

The system prints the tree of all rules that apply for the present example, as shown in the
trace presented in Figure 12. The trace notably shows parameters for each intermediate rule
called. The name of the applied rule is printed together with its input parameters (instruction
and type) whenever the rule is triggered. Whenever the rule returns its result (potentially after
calling other rules), the resulting formula corresponding to the inferred input type portion is
printed. Indentation in the trace corresponds to the depth in the tree of rule calls.

2Checking containment A ⊆ B corresponds to checking the logical implication A ⇒ B. Since we use a
satisfiability checker (and not a validity checker), this property is checked by testing the unsatisfiability of A ⇒
B = ¬A ∨B, that is, the satisfiability of ¬(A⇒ B) = A ∧ ¬B.
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Specifically, the first rule triggered is let-elem of Figure 11, which is instantiated as follows:

let-elem
t1 ←− root(), θ(xany) t2 ←− <r>{$v child::∗}</r>, tout

t2
[
$v/t1

]
←− let $v := root() return <r>{$v child::∗}</r>, tout

(2)

The application of this rule recursively calls one rule for building t1 and one rule for building
t2. It therefore generates two branches.

For the first branch, since θ(xany) = (element ∗ {xany, xany}) | () is a disjunction at top level,
the formula t1 is obtained by the application of expr-union, which in turn calls root-elem
and root-empty. The application of root-empty directly yields the formula ⊥ and therefore
only the result root-elem is relevant for the disjunction. This result is obtained as follows:

root-elem
ϕ = ¬

〈
1
〉
> ∧ ¬

〈
2
〉
> ∧ next(1, xany) nullable(θ(xany))

ϕ←− root(), element ∗ {xany, xany}

This rule performs the auxiliary computations: toF(∗) = >, next(1, xany) = ¬ 〈1〉> ∨
〈1〉 f(xany) which is equivalent to > because f(xany) = µX.(¬ 〈1〉> ∨ 〈1〉X) ∧ (¬ 〈2〉> ∨ 〈2〉X)
is equivalent to >, and nullable(θ(xany)) = true. It then returns the inferred type t1 =
¬
〈
1
〉
> ∧ ¬

〈
2
〉
> that simply requires the existence of a root in the input tree.

For the second branch, the rule expr-rec is applied twice to go through the let statements
in tout until the rule elem-elem applies for element r {x, xε}. This rule application recursively
triggers expr-union for splitting the choice θ(x). Again, two branches are created from the split:
one that applies child-empty, which terminates immediately with $v ∧ ¬ 〈1〉>, and another
one which triggers expr-union and so forth, as illustrated in 12.

If we pop the stack of recursive calls, at (2) we end up with t1 as computed above and a value
for t2 returned by rule elem-elem, as shown in 12. The final inferred type is then obtained by the
substitution t2

[
$v/t1

]
which denotes t2 where every occurrence of $v (X1 in the implementation

trace) is replaced with t1. This yields the final formula tinf shown in Figure 13:
This inferred formula is surrounded by a formula that ensures its satisfaction at the root of

the input tree, before being used in the formula to check containment.
The first part of the formula in Figure 13 states that the root does not have any child (line

1), or the root has a first child labeled “b” (does not have any children) and an immediate sibling
which is labeled “b” and do not have any children, as well as all its potential successors (recursion
on X2, line 2), or the root has only one first child child labeled “b” without children and no sibling
(line 3).

One can easily check that this is exactly the type that represents the set of all admissible
input documents for e to generate a valid tout document.

Notice that the final inferred type contains duplicate formulas (it refers to the root three
times). This is because rules do not communicate (different branches do not share their results)
in the current state of the implementation. However, this duplication of subformulas is not a
real issue, because duplicate subformulas are automatically factorized by the satisfiability solver.

Once tinf is computed, type-checking is performed by checking whether tinf ⊆ tin. This is
formulated as follows:

phi => ~<-1>T & ~<-2>T & mu X. tinf | <1>X | <2>X

where tinf is the formula shown in Figure 13 and phi is the logical formula corresponding to
tin.

For instance, if we instantiate tin as a type allowing one children labeled “a” under the root,
then the system produces a counter-example of the form *[a]. Obviously, in realistic scenarios,
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more rules are triggered, the rule application tree is bigger, and generated formulas are much
harder to read. Counter-examples, which are also more complex, become of greater value for the
XQuery programmer. In hard cases, this counter-example can be given to a XQuery runtime
debugger, for a step-by-step analysis to find the precise locations of the erroneous statement(s)
in the program. Notice, that the soundness of our type-checker implies that the XQuery program
generates an output which is necessarily not valid (with respect to the expected output type)
when fed with the counter-example as input. Contrary to other approaches investigated in the
literature that produce false negatives, here the effort spent in debugging is always relevant.
Notice also that our type-checker is capable of detecting a wide range of errors, from basic ones
to much more involved ones. The class of basic errors detected ranges from very basic ones such
as inexistent elements, errors in element names, to wrong ordering in expected content models
and generation of an element in inappropriate locations. The type-checker also detects much
more subtle errors depending on the expressive power used to describe expected output type
constraints. In particular, features such as context-sensitive content models allowed in XML
schemas or in Relax NGs are fully captured by our BTT and logical modelings. Therefore the
type-checker is equipped to detect errors caused by the generation of an output that matches a
possible content model but not in the proper context.

The secret for capturing extremely precise context information is that we are capable of
tracking precisely all the context manipulation performed by forward, backward and recursive
path expressions. We believe that this removes a major obstacle that prevented the development
of precise type-checkers and their widespread use. This is precisely the limitation of existing type-
checkers, such as the pioneering Galax [6] which is still among the few available implementations
today. Galax is typically unable to detect the error induced by the use of the backward axis in
the example given in Section 2, because it directly implements the type-system proposed in the
XQuery recommendation [5].

5 Related Work

The closest works in terms of objectives are the ones of W3C [5] and [4]. [5] describes a type
system based on forward type inference which is polynomial (except for nested let clauses).
Colazzo goes one step further by a thorough analysis of precision and complexity of this type-
system and by introducing his own, more precise (but exponential) type system. Both works
suffer from the same limitations inherent to forward type inference, as described in Section 1.
The work in [4] fails to capture backward axes: the proposed type system only supports child
and desc-or-self axes. Furthermore, it involves a complex decomposition of the “in” clause
of the for loop, which can be avoided using backward type inference, without loss of precision.
The type-system proposed by the W3C has been inspired by the seminal work found in [10],
which is itself based on finite tree automata containment [11]. In the programming languages
community, the XML type-checking problem has also been studied for other particular domain-
specific languages such as CDuce [1], XSLT [13] or with specific transformers like transducers
[14, 15]. For a recent survey of related works on type-checking for XML, see [2] and references
thereof.

The closest work in terms of technical machinery and spirit is [17] which develops backward
type inference for a fragment of XSLT called XSLT0. This fragment only supports the parent-
to-child relationship, and its expressive power is incomparable to the much more expressive
XQuery fragment we consider here. Furthermore, at the time, the logic proposed in [9] on which
we develop the present work was not known. This logic is key for an efficient implementation
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because it avoids the drawbacks of the automata-based approach described in [17]. Specifically,
it overcomes the blow-ups due to tree automata complementation.

The concept of backward type inference was first theoretically introduced in [16]. They
propose a theoretical framework based on k-pebble tree transducers, which is a output-tree
producing version of finite tree automata. They show that the type inferred as input is definable
in MSO (monadic-second order logic). In other terms, there exists a monadic-second order
logic formula that describes the input type. Unfortunately, their method relies on a conversion
from MSO to finite tree automata which requires non-elementary time complexity, that is, the
time complexity is not bound by any fixed number of composition of exponentials. As a result,
while this is an interesting theoretical result, this makes any direct implementation out of reach.
Similar approaches have been proposed in [12, 15].

6 Conclusion

We proposed a backward type inference algorithm and a type-checking method for XQuery
programs. The XQuery fragment we consider is equipped with the main control statements (for
loops, conditionals, let binders) as well as backward, forward and recursive navigation performed
by XPath expressions. We also propose a prototype implementation of these techniques.

This is a step in the design and development of a new generation of type-checkers for XQuery
that: (i) are more precise, (ii) are feasible in practice (implementation is tractable and efficient)
and (iii) natively support a larger set of features found in XQuery programs, and in particular
backward XPath axes. We believe that we identified the main obstacle in type-checking XQuery,
namely the combination of precision and practical feasibility, when the main traits of the XQuery
language are considered.

One perspective for further work consists in converting the inferred formula to a XML rep-
resentation (XML Schema). Another perspective for further work consists in implementing the
support of attributes and basic types such as string and integer, which can be modeled in the
logic using atomic propositions.
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succ (e, t1 | t2) = succ (e, t1) ∪ succ (e, t2)

succ (e, let x = t1 in t2) = succ (e, t2)

succ (<σ>{e}</σ>, ()) = ∅
succ (ε, ()) = {xε}

succ (e1, e2, ()) =

{
{xε} if nilable(e1) ∧ nilable(e2)
∅ otherwise

succ (for $v in e1 return e2, ()) = succ (e2, ())

succ (let $v := e1 return e2, ()) = succ (e2, ())

succ (if cond then e1 else e2, ()) = succ (e1, ()) ∪ succ (e2, ())

succ ($v axis::n, ()) = {xε}
succ ($var , ()) = {xε}

succ (root(), ()) = ∅

succ (<σ>{e}</σ>, t) =

{
{x2} if match(σ,n)
∅ otherwise

succ (ε, t) = ∅

succ ((e1, e2), t) =

{ ⋃
x∈succ(e1,t)

succ (e2, θ(x)) if ¬nilable(e1)⋃
x∈succ(e1,t)

succ (e2, θ(x)) ∪ succ (e2, t) otherwise

succ (let $v := e1 return e2, t) = succ (e2, t)

succ (if cond then e1 else e2, t) = succ (e1, t1) ∪ succ (e2, t2)

succ (for $v in e1 return e2, t) =

k⋃
i=1

succ
(
ei, t

)
such that

k+1⋃
i=1

succ
(
ei, t

)
=

k⋃
i=1

succ
(
ei, t

)
where e def

= e2

succ (root(), t) = {x2}

succ
(
$v axis::n ′, t

)
=

{
∅ if ¬match(n ′,n)
{x2} ∪ succ ($v axis::n ′, θ(x2)) if match(n ′,n)

succ ($var , t) = Γ($var)

Figure 10: Computation of the set of variables reached in type t after output production by e.
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child-elem
ϕ = toF(n ′) ∧ next(1, x1) ∧ next(2, x2) ∧

〈
1
〉
$v

ϕ←− $v child::∗, element n ′ {x1, x2}

child-elem’
n 6= ∗ match(n,n ′) Hsibl m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧ µX.
〈
1
〉
$v ∨ (¬toF(n) ∧

〈
2
〉
X)←− $v child::n, element n ′ {x1, x2}

wrong-axis-elem
n 6= ∗ ¬match(n,n ′) ∨ ¬Hsibl

⊥ ←− $v axis::n, element n ′ {x1, x2}

parent-elem
match(n,n ′) nullable(θ(x2)) m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧ 〈1〉µX.$v ∨ 〈2〉X ←− $v parent::n, element n ′ {x1, x2}

parent-elem’
¬match(n,n ′) ∨ ¬nullable(θ(x2))

⊥ ←− $v parent::n, element n ′ {x1, x2}

desc-elem
ϕ = toF(n ′) ∧ next(1, x1) ∧

〈
1
〉
$v

ϕ←− $v desc::∗, element n ′ {x1, x2}

desc-elem’
n 6= ∗ match(n,n ′) Hsibl m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧ µX.
〈
1
〉
$v ∨

(
¬toF(n) ∧ (

〈
1
〉
X ∨

〈
2
〉
X)
)
←− $v desc::n, element n ′ {x1, x2}

anc-elem
ϕ = toF(n ′) ∧ next(1, x1) ∧ 〈1〉 $v

ϕ←− $v anc::∗, element n ′ {x1, x2}

anc-elem’
n 6= ∗ match(n,n ′) Hsibl m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧ 〈1〉µX.$v ∨ (¬toF(n) ∧ (〈1〉X ∨ 〈2〉X))←− $v anc::n, element n ′ {x1, x2}

psibl-elem
ϕ = toF(n ′) ∧ next(1, x1) ∧ 〈2〉 $v

ϕ←− $v psibl::∗, element n ′ {x1, x2}

psibl-elem’
n 6= ∗ match(n,n ′) Hsibl m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧ 〈2〉µX.$v ∨ (¬toF(n) ∧ 〈2〉X)←− $v psibl::n, element n ′ {x1, x2}

nsibl-elem
ϕ = toF(n ′) ∧ next(1, x1) ∧ next(2, x2) ∧

〈
2
〉
$v

ϕ←− $v nsibl::∗, element n ′ {x1, x2}

nsibl-elem’
n 6= ∗ match(n,n ′) Hsibl m = ntoF(n,n ′) ϕ = m ∧ next(1, x1)

ϕ ∧
〈
2
〉
µX.$v ∨ (¬toF(n) ∧

〈
2
〉
X)←− $v nsibl::n, element n ′ {x1, x2}

Figure 11: Rules for navigation steps in the presence of the element type as output.
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Inferring Input Type...
let_elem let $v := root() return
element r {child::* } , r($1, $Epsilon)

expr_union root() , *($Any, $Any) | EPSILON
root_elem root() , *($Any, $Any)
root_elem returns: (~<-2>T & ~<-1>T)
root_empty returns: false

expr_union returns:(~<-2>T & ~<-1>T)
elem_elem element r {child::* } , r($1, $Epsilon)

expr_union child::* , EPSILON | b($Epsilon, $Epsilon)
| b($Epsilon, $2)

child_empty: $v child::* , EPSILON
child_empty returns (X1 & ~<1>T)
expr_union child::*, b($Epsilon,$Epsilon)|b($Epsilon,$2)

child_elem: $v child::* , b($Epsilon, $Epsilon)
child_elem returns:(b & ~<1>T & <-1>X1 & ~<2>T)
child_elem: $v child::* , b($Epsilon, $2)
child_elem returns:(b & ~<1>T & <-1>X1 &
<2>(mu X2.((~<1>T & b & <2>X2) | (~<1>T & b & ~<2>T))))

expr_union returns:((b & ~<1>T & <-1>X1 & ~<2>T)
| (b & ~<1>T & <-1>X1 & <2>(mu X2.((~<1>T & b & <2>X2)
| (~<1>T & b & ~<2>T)))))

expr_union returns:((X1 & ~<1>T) | (b & ~<1>T & <-1>X1
& ~<2>T) | (b & ~<1>T & <-1>X1 & <2>(mu X2.((~<1>T &

b & <2>X2) | (~<1>T & b & ~<2>T)))))
elem_elem returns: ((X1 & ~<1>T) | (b & ~<1>T & <-1>X1 & ~<2>T)

| (b & ~<1>T & <-1>X1 & <2>(mu X2.((~<1>T & b & <2>X2)
| (~<1>T & b & ~<2>T)))))

let_elem returns: ((~<1>T & ~<-2>T & ~<-1>T) | (b & <-1>(~<-2>T &
~<-1>T) & ~<1>T & <2>(mu X2.((~<1>T & b & <2>X2) | (~<1>T & b
& ~<2>T)))) | (b & <-1>(~<-2>T & ~<-1>T) & ~<1>T & ~<2>T))

Figure 12: Tree of rules application.

Inferred input type represented as a formula:
1. ((~<1>T & ~<-2>T & ~<-1>T) |
2. (b & <-1>(~<-2>T & ~<-1>T) & ~<1>T &

<2>(mu X2.((~<1>T & b & <2>X2) | (~<1>T & b & ~<2>T))))
3. | (b & <-1>(~<-2>T & ~<-1>T) & ~<1>T & ~<2>T))

Figure 13: Inferred Input Type (tinf).
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