Incremental Decision Tree based on order statistics

Christophe Salperwyck 1, 2 Vincent Lemaire 1
2 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : New application domains generate data which are not persistent anymore but volatile: network management, web profile modeling... These data arrive quickly, massively and are visible just once. Thus they necessarily have to be learnt according to their arrival orders. For classification problems online decision trees are known to perform well and are widely used on streaming data. In this paper, we propose a new decision tree method based on order statistics. The construction of an online tree usually needs summaries in the leaves. Our solution uses bounded error quantiles summaries. A robust and performing discretization or grouping method uses these summaries to provide, at the same time, a criterion to find the best split and better density estimations. This estimation is then used to build a na¨ıve Bayes classifier in the leaves to improve the prediction in the early learning stage.
Type de document :
Communication dans un congrès
Workshop on Active and Incremental Learning (without proceedings), 2012, Montpellier, France. 2012
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : Christophe Salperwyck <>
Soumis le : mardi 27 novembre 2012 - 18:59:05
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : jeudi 28 février 2013 - 03:46:21


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00758003, version 1



Christophe Salperwyck, Vincent Lemaire. Incremental Decision Tree based on order statistics. Workshop on Active and Incremental Learning (without proceedings), 2012, Montpellier, France. 2012. 〈hal-00758003〉



Consultations de la notice


Téléchargements de fichiers