F. Milner and R. Zhao, A deterministic model of schistosomiasis with spatial structure, Mathematical biosciences and engineering, vol.5, pp.505-522, 2008.

J. P. Pointier and J. Jourdane, Biological control of the snail hosts of schistosomiasis in areas of low transmission: the example of the Caribbean area, Acta Tropica, vol.77, issue.1, pp.53-60, 2000.
DOI : 10.1016/S0001-706X(00)00123-6

G. Macdonald, The dynamics of helminth infection, with special reference to schistoso- miasis, Trans. R. Soc. Trop. Med. Hyg, pp.59-489, 1965.

J. E. Cohen, Mathematical Models of Schistosomiasis, Annual Review of Ecology and Systematics, vol.8, issue.1, pp.209-233, 1977.
DOI : 10.1146/annurev.es.08.110177.001233

Z. Chen, L. Z. , D. Shen, W. Zhang, and S. Ruan, Mathematical modelling and control of Schistosomiasis in Hubei Province, China, Acta Tropica, vol.115, issue.1-2
DOI : 10.1016/j.actatropica.2010.02.012

M. E. Woolhouse, On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission, Acta Tropica, vol.49, issue.4, pp.241-270
DOI : 10.1016/0001-706X(91)90077-W

E. J. Allen and H. D. Victory, Modelling and simulation of a schistosomiasis infection with biological control, Acta Tropica, vol.87, issue.2, pp.251-267, 2003.
DOI : 10.1016/S0001-706X(03)00065-2

H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Review, vol.42, issue.4, pp.599-653
DOI : 10.1137/S0036144500371907

R. M. Anderson and R. M. May, Helminth Infections of Humans: Mathematical Models, Population Dynamics, and Control, Advances in Parasitology, pp.1-101
DOI : 10.1016/S0065-308X(08)60561-8

A. R. Kimbir, A mathematical model of the transmission dynamics of schistosomiasis, J. Nigerian Math. Soc, vol.1617, pp.39-63, 1997.

J. Wu, Z. Feng, C. Castillo-chavez, S. Blower, P. Van-der-driessche et al., Mathematical models for schistosomiasis with delays and multiple definite hosts, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods , and Theory, pp.215-229, 2002.

V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, 1989.
DOI : 10.1007/978-3-319-27200-9

M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability, IEEE Transactions on Automatic Control, vol.25, issue.4, p.773, 1980.
DOI : 10.1109/TAC.1980.1102422

P. Van-den-driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, vol.180, issue.1-2, pp.29-48
DOI : 10.1016/S0025-5564(02)00108-6

O. Diekmann, J. A. Heesterbeek, and J. A. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, vol.28, issue.4, pp.365-382
DOI : 10.1007/BF00178324

C. Castillo-chavez, Z. Feng, and W. Huang, On the Computation of R 0 and its Role on Global Stability, Theoretical And Applied Mechanics, vol.5, pp.1-22, 2002.
DOI : 10.1007/978-1-4757-3667-0_13

A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics Society for Industrial and Applied Mathematics (SIAM), vol.9, p.340, 1994.
DOI : 10.1137/1.9781611971262

J. A. Jacquez and C. P. Simon, Qualitative Theory of Compartmental Systems, SIAM Review, vol.35, issue.1, p.43, 1993.
DOI : 10.1137/1035003

F. Brauer and C. Castillo-chavez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics Series, 2001.

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, pp.599-653, 2000.

J. P. Lasalle and S. Philadelphia, The stability of Dynamical Systems, Mathematical Regional Conference Series in Applied Mathematics, 1976.

J. (. Ma, J. Liu, and . Li, Stability analysis for differential infectivity epidemic models, Non-linear Anal.: real world appl, pp.841-856, 2003.

. (. Carr, Applications of Centre Manifold Theory
DOI : 10.1007/978-1-4612-5929-9

C. Castillo-chavez and B. Song, Dynamical Models of Tuberculosis and Their Applications, Mathematical Biosciences and Engineering, vol.1, issue.2, pp.361-404
DOI : 10.3934/mbe.2004.1.361

C. Bowman, A. B. Gumel, P. Van-den-driessche, J. Wu, and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bulletin of Mathematical Biology, vol.67, issue.5, pp.1107-1133
DOI : 10.1016/j.bulm.2005.01.002

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 1990.

H. L. Smith, Systems of Ordinary Differential Equations Which Generate an Order Preserving Flow. A Survey of Results, SIAM Review, vol.30, issue.1, 1988.
DOI : 10.1137/1030003

M. W. Hirsh, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math, vol.383, 1988.

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Mathematical Biosciences, vol.75, issue.2, pp.205-277, 1985.
DOI : 10.1016/0025-5564(85)90038-0

M. Diaby, M. Sy, A. Sene, and A. Iggidr, Global Stability of schistosomiasis infection with spatial structure, in progress, Inria RESEARCH CENTRE NANCY ? GRAND EST 615 rue du Jardin Botanique CS20101 54603 Villers-lès-Nancy Cedex Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria.fr ISSN, pp.249-6399