. [. Bern-m and . Eppstein-d, The crust and the beta-skeleton: Combinatorial curve reconstruction, GMIP Proceedings, vol.60, issue.2 1, pp.125-135, 1998.

. [. Cohen-steiner-d, . Tong-y, and . Des-brun-m, Voronoi-based variational reconstruction of unori- c 2011 The Author(s)

. [. Sharf-a, . Greif-c, and . D. Cohen-or, 1 -sparse reconstruction of sharp point set surfaces, ACM Trans. on Graphics, vol.29, issue.5 1, pp.1-12, 2010.

. [. Cohen-steiner-d and . Mérigot-q, Geometric Inference for Measures based on Distance Functions, 2009.

[. , F. S. Golin-m, . Kumar-p, . Poon-s.-h, and . Ramos-e, Curve reconstruction from noisy samples, Proc. of the Conf. on Comp, pp.302-311, 2003.

. Cga and . Cgal, Computational Geometry Algorithms Library

. [. Daehlen-m and . Sevaldrud-t, Simultaneous curve simplification, Journal of Geographical Systems, vol.11, issue.3, pp.273-289, 2009.

[. F. De, . Goldenstein-s, . Desbrun-m, and . Velho-l, Exoskeleton: Curve network abstraction for 3d shapes, Comput. Graph, vol.35, issue.2, pp.112-121, 2011.

D. T. Kumar-p, A simple provable algorithm for curve reconstruction, SODA Proceedings, pp.893-894, 1999.

D. , D. T. Mehlhorn-k, and . A. Ramos-e, Curve reconstruction: Connecting dots with good reason, SoCG Procedings, vol.15, issue.1, pp.229-244, 1999.

D. T. Wenger-r, Fast reconstruction of curves with sharp corners, Int. J. Comput. Geometry Appl, vol.12, issue.5 1, pp.353-400, 2002.

. [. Kirkpatrick-d, . Seidel-r, . S. Fleishman, and S. D. Cohen-or, On the shape of a set of points in the plane Robust moving least-squares fitting with sharp features, Proceedings of ACM SIGGRAPH, pp.551-559, 1983.

F. S. Ramos-e, Reconstructing a collection of curves with corners and endpoints, SODA Proceedings, pp.344-353, 2001.

G. M. Zhou-y, Quadric-based simplification in any dimension, ACM Transactions on Graphics, vol.24, issue.8 9, pp.209-239, 2005.

. [. Bolitho-m and . Hoppe-h, Poisson Surface Reconstruction, SGP Proceedings, pp.61-70, 2006.

. [. Polishchuk-v, Robust curve reconstruction with k-order alpha-shapes, Shape Modeling International, pp.279-280, 2008.

S. [. O-'brien-j, Spectral surface reconstruction from noisy point clouds, SGP Proceedings, pp.11-21, 2004.

L. Y. Daubechies-i, Conformal wasserstein distances: Comparing surfaces in polynomial time, Advances in Mathematics, issue.2, 2010.

]. Lee00, Curve reconstruction from unorganized points, Computer Aided Geometric Design, vol.17, issue.2, pp.161-177, 2000.

. [. Das-a, Curve reconstruction in the presence of noise, CGIV Proceedings, pp.177-182, 2007.

M. , M. X. Decarlo-d, and . Stone-m, Abstraction of 2D shapes in terms of parts, NPAR Proceedings, pp.15-24, 2009.

M. F. Mém11, Gromov-wasserstein distances and the metric approach to object matching, Foundations of Computational Mathematics, issue.2, 2011.

. [. Ipson-s and . Booth-w, A novel triangulation procedure for thinning hand-written text, Pattern Recognition Letters, vol.22, issue.10 1, pp.1059-1071, 2001.

[. Memari-p, . F. De, and . Desbrun-m, HOT: Hodge Optimized Triangulations, ACM Trans. Graph, issue.2, p.30, 2011.

. [. Tripathi-p and M. N. Sheffer-a, Visibility of noisy point cloud data, Computers and Graphics, vol.34, issue.3 1, pp.219-230, 2010.

P. F. Shamos-m, Computational Geometry: An Introduction, 1985.

[. A. Vanegas-c and C. C. , Ellipsebased principal component analysis for self-intersecting curve reconstruction from noisy point sets, The Visual Computer, vol.27, issue.227 1, 2011.

]. Son10 and . Y. Song, Boundary fitting for 2d curve reconstruction, The Visual Computer, vol.26, pp.187-204, 2010.

]. Vil10 and . C. Villani, Topics in Optimal Transportation, 2010.

W. J. Kobbelt-l, Fast mesh decimation by multiplechoice techniques, Proceedings of the Vision, Modeling, and Visualization Conference, pp.241-248, 2002.