Efficient fault monitoring with Collaborative Prediction

Dawei Feng 1 Cecile Germain-Renaud 1, 2 Tristan Glatard 3
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Isolating users from the inevitable faults in large distributed systems is critical to Quality of Experience. We formulate the problem of probe selection for fault prediction based on end-to-end probing as a Collaborative Prediction (CP) problem. On an extensive experimental dataset from the EGI grid, the combination of the Maximum Margin Matrix Factorization approach to CP and Active Learning shows excellent performance, reducing the number of probes typically by 80% to 90%.
Document type :
Other publications
Journées scientifiques mésocentres et France Grilles. 2012


https://hal.inria.fr/hal-00758025
Contributor : Cecile Germain-Renaud <>
Submitted on : Tuesday, November 27, 2012 - 9:30:56 PM
Last modification on : Tuesday, January 19, 2016 - 2:59:36 PM
Document(s) archivé(s) le : Thursday, February 28, 2013 - 3:46:50 AM

File

mesogrilles_CPFDV2.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

  • HAL Id : hal-00758025, version 1

Collections

Citation

Dawei Feng, Cecile Germain-Renaud, Tristan Glatard. Efficient fault monitoring with Collaborative Prediction. Journées scientifiques mésocentres et France Grilles. 2012. <hal-00758025>

Export

Share

Metrics

Record views

260

Document downloads

98