N
N

N

HAL

open science

Mixability is Bayes Risk Curvature Relative to Log Loss
Tim van Erven, Mark D. Reid, Robert C. Williamson

» To cite this version:

Tim van Erven, Mark D. Reid, Robert C. Williamson. Mixability is Bayes Risk Curvature Relative

to Log Loss. Journal of Machine Learning Research, 2012, 13, pp.1639-1663. hal-00758204

HAL Id: hal-00758204
https://inria.hal.science/hal-00758204

Submitted on 28 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-00758204
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research 13 (2012) 1639-1663 bm8ted 8/11; Revised 3/12; Published 5/12

Mixability is Bayes Risk Curvature Relativeto Log L oss

Tim van Erven TIM @TIMVANERVEN .NL
Département de Ma#imatiques

Universié Paris-Sud

91405 Orsay Cedex, France

Mark D. Reid* MARK.REID@ANU.EDU.AU
Robert C. Williamson* BOB.WILLIAMSON @ANU.EDU.AU
Research School of Computer Science

The Australian National University

Canberra ACT 0200, Australia

Editor: Gabor Lugosi

Abstract

Mixability of a loss characterizes fast rates in the onliearhing setting of prediction with ex-
pert advice. The determination of the mixability constamthBinary losses is straightforward but
opaque. In the binary case we make this transparent andesiimpicharacterising mixability in
terms of the second derivative of the Bayes risk of propesdes We then extend this result to
multiclass proper losses where there are few existingtesile show that mixability is governed
by the maximum eigenvalue of the Hessian of the Bayes risktive to the Hessian of the Bayes
risk for log loss. We conclude by comparing our result to otherk that bounds prediction perfor-
mance in terms of the geometry of the Bayes risk. Althougleattulations are for proper losses,
we also show how to carry the results across to improperdosse

Keywords: mixability, multiclass, prediction with expert advice oper loss, learning rates

1. Introduction

In prediction with expert advic@/ovk, 1990, 1995, 2001; Cesa-Bianchi and Lugosi, 2006) a &zarn
has to predict a sequence of outcomes, which might be chosen a@lgrs@he setting is online,
meaning that learning proceeds in rounds; and the learner is aided by adimiteer of experts. At
the start of each round, all experts first announce their predictiotisgbround, then the learner has
to make a prediction, and finally the real outcome is revealed. The discyepatween a prediction
and an outcome is measured blpss functionand losses add up between rounds. Finally, the goal
for the learner is to minimize theiegret which is the difference between their cumulative loss and
the cumulative loss of the best expert afferounds.

Strategies for the learner usually come with guaranteed bounds on te¢iretre worst case
over all possible outcomes and expert predictions, which ensuredegming performance under
all circumstances. How strong these guaranteed bounds can be sepethé loss function. Some
losses are easy in the sense that the worst-case regret can bedbyrdeonstant, which i©(1)
in T. For other losses only a rate 6f+/T) or worse can be guaranteed (Kalnishkan and Vyugin,
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2008). Our results provide new insight and new technical tools for tiss oflosses for which fast,
O(1) rates are possible.

1.1 Fast Ratesand Mixability

It is known that, under very general conditio®@,1) rates are possible if and only if the loss)is
mixable(defined below) for somg > 0, which means that mixability characterizes fast rates. More
specifically, if a loss ig)-mixable and there arll experts, then using the so-calladgregating
algorithm (Vovk, 2001) the learner is guaranteed to have regret bounded by

inN
n

which does not grow witfT. Conversely, if the loss is naf-mixable for anyn > 0 and satisfies

very mild regularity conditions, then it is not possible to bound the worsti&aget by an additive

constant for any strategy (Kalnishkan and Vyugin, 2008; Vovk, J9B%amples of mixable losses
include the logarithmic loss, the relative entropy loss, the square loss ay bitaomes (Haussler
et al., 1998) and the Brier score (Vovk and Zhdanov, 2009), whietatrl-mixable except for the
square loss, which is 2-mixable.

A related condition requires the loss to &gp-concav€Cesa-Bianchi and Lugosi, 2006). Al-
though exp-concavity implies mixability, the converse is not true, and therefg-concavity does
not characterize fast rates.

Although mixability is associated with fast rates, it also appears in the analfsisses with
O(V/T) rates. For example, the analysis of Kalnishkan and Vyugin (2008) mayedrgiiated as ap-
proximating non-mixable losses by a sequenag-ofixable losses with going to zero (Kalnishkan
and Vyugin, 2008, Remark 19). Thus mixability appears to be one of theformental proper-
ties to study in the prediction with expert advice setting.

; (1)

1.2 Main Results

The aggregating algorithm dependsrmrand its regret bound (1) is optimized wheiis as large as
possible. For any loss of intergsit is thus desirable to know the largestor which / is n-mixable.
We call this themixability constantor ¢.

For outcomes with two possible values, determining the mixability constant is stfaigyard
using a formula due to Haussler et al. (1998), but their expressiondhakear interpretation. In
Section 4.1 we show how, for the important clasgpadper lossesthe result by Haussler et al.
simplifies considerably, and may be expressed in terms of the curvatureRdiyies riskof the loss
relative to the Bayes risk for the logarithmic loss. The relevant notionsopfgsness and Bayes risk
will first be reviewed in Section 3.

We refer to the case where outcomes have more than two possible valuesrasltiblass
setting. Here no general result has previously been available, and thbilityxconstant has only
been determined for a limited number of cases (mainly logarithmic loss and thesBoiex). Our
main contribution is a simple explicit formula for the mixability constant in the multiclagmge
(Theorem 13 and Corollary 14), which generalises our result fompimalued outcomes. Along
the way we develop other useful characterizations of mixability in Theot@mle illustrate the
usefulness of our results by giving a short proof for 1-mixability of thdtitlass Brier score in
Section 5, which is simpler than the previously known proof (Movk and Bbda2009).
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Although our results are stated for proper losses, in Section 6 we shewhkg carry across to
losses that are not proper.

1.3 Outline

The paper is structured as follows. In the next section we introduceaa@emsation. Then Sec-
tion 3 reviews the class of proper losses and the definition of Bayes lisig aith some of their
properties that are required later. It also states Condition A, which listsaa@ontinuity conditions
on the loss that are required for our main results.

In Section 4 we come to the main part of the paper. There mixability is formallyetgfand in
Section 4.1 we state our results for binary-valued outcomes. The remain8ection 4 is devoted
to generalising this result to the multiclass setting (Theorem 13 and CorollaryAbimportant
intermediate result is stated in Theorem 10, and we discuss some of its dirsgigeiences in
Corollaries 11 and 12. These show that the sum ofrjwixable losses ig-mixable and that the
logarithmic loss is the “most mixable” in a sense.

Section 5 contains a simplified proof for 1-mixability of the Brier score. Andeot®n 6 we
show how our results carry across to losses that are not properectio® 7 we also relate our
results to recent work by Abernethy et al. (2009) in a related onlineilggagetting. Our proofs in
Section 4 require some results from matrix calculus, which we review briefppendix A.

2. Setting

We consider a game girediction with expert advigevhich goes on for rounds=1,...,T. At

the start of each rourigl N experts choose their predictiovﬂs ... ,vtN from a setV; then the learner
chooses their prediction € V; and finally the true outcomg € Y = {1,...,n} is revealed. When
the outcomes are binary-valued= 2, but in the multiclass setting can be any positive integer.
Losses are measured by a functiany x V — [0, ] and over the course of the game add up to
LosyT) := S{_1£(y,w) for the learner and to LogéT) = S{_, (%, V) for the j-th expert. The
goal for the learner is to predict nearly as well as the best expert, asinegicby theegret

R(T) = LosgT) —minLoss(T).
i
Typical strategies in the literature come with bounds on the regret that hole wwdrst case, for
any possible expert predictions and any possible sequence of outdorpesticular, if the losg is
n-mixable for some) > 0 and the learner predicts according to the aggregating algorithm, then the

regret is bounded by

InN
R(T) < R (2)

no matter what the expert predictions or the outcomes are.

2.1 Notation

We use the following notation throughout. Let:= {1,...,n} and denote bR, the non-negative
reals. The transpose of a vectors X. If x is an-vector, A = diag(x) is then x n matrix with
entriesAj; = , i € [n] andA; j =0 fori # j. We also write diagx ) ; := diag(X,...,%n) :=
diag((x1,...,%n)’). The inner product of twe-vectorsx andy is denoted by matrix produgty. We
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sometimes writé\- B for the matrix producABfor clarity when required. IA— B is positive definite
(resp. semi-definite), then we writéh > B (resp. A = B). The n-simplex A" =
{(X1,..., %) €R": % >0, ie€n], S1x =1}. Other notation (the Kronecker produet, the
derivative D, and the Hessiahl) is defined in Appendix A, which also includes several matrix
calculus results we use.

3. Proper Multiclass L osses

We consider multiclass losses for class probability estimation, in which predici@nprobability
distributions:V = A". As we will often consider how the loss changes as a function of the peedic
distributiong € A", it is convenient to define partial loss functior¥;(q) = ¢(i,q) for any outcome

i € [n]. Together these partial loss functions make up theldst functior? : A" — [0, ]", which
assigns a loss vectdq) = (¢1(q),...,¢n(q))’ to each distributiorg € A". If the outcomes are
distributed with probabilityp € A" then therisk for predictingq is just the expected loss

L(p.q) == p'é(a) = i pifi(a).

TheBayes riskfor pis the minimal achievable risk for that outcome distribution,

L(p) := inf L(p,q).
gean
Aloss is callecproperwhenever the minimal risk is always achieved by predicting the true outcome
distribution, that isL(p) = L(p, p) for all p € A". A proper loss istrictly properif there exists no
q # p such that(p,q) = L(p). For example, théog 10SS/og(p) := (—IN(P1),...,—In(pn))" is
strictly proper, and its corresponding Bayes risk is the enttgpyp) = — 5, piIn(pi).

We call a proper losé strongly invertibleif for all distributionsp # g € A" there exists at least
one outcome € [n| such that/;(p) # 4i(q) and p; > 0. Note that without the requirement that
pi > 0 this would be ordinary invertibility. One might also understand strong inviktibs saying
that the loss should be invertible, and if we restrict the game to a face of théexgigaffectively
removing one possible outcome), then the loss function for the resulting daoaddsagain be
strongly invertible.

Since it is central to our results, we will assume all losses are strictly pfopdre remainder
of the paper (except Section 6 where we show how the assumption malakedle Lemma 2 in
the next section shows that strictness is not such a strong requirement.

3.1 Projecting Down to n— 1 Dimensions

Because probabilities sum up to one, ang A" is fully determined by its firsh — 1 components
p=(p1,...,Pn-1). It follows that any function op can also be expressed as a functiopofvfiich
is convenient in order to use the standard rules when taking derivatiM®s To go back and forth
betweenp and g, we definep,(p) :=1— z{‘;ll pi and the projection

Na(p) := (P1,--., Pn-1)’,

which is a continuous and invertible function frof to A" := {(py,...,pn_1)": p € A"}, with
continuous inversﬁlgl(f)) = (P1,---, Pn—1, Pn(P)). For similar reasons, we sometimes project loss
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Figure 1: Mappings and spaces.

vectors/(p) onto their firsn— 1 component$/1(p),...,¢—1(p))’, using the projection
I‘I/\()\) = ()\1, e ,)\nfl)/.

We write A := £(A") for the domain of 1 andA for its range.
For loss functiong(p), we will overload notation and abbreviatgd) := ¢(M;({)). In addi-
tion, we write _
£(P) = NA(L(P) = (ea(P); - -, n-2(P))’

for the firstn — 1 components of the loss (see Figure 1). By contrastL{@) we will be more
careful about its domain, and use the separate notafipn:= L(M,*(p)) when we consider it as
a function ofp:

It may well be that one can avoid the explicit projection dowmte 1 dimensions using the
intrinsic methods of differential geometry (Thorpe, 1979), but we haenhunable to prove our
results using that machinery. In any case, in order to do calculationsyibmeed some coordinate
system. Our projection simply defines the natyrat- 1)-dimensional coordinate system AR.

3.2 First Properties

Our final result requires the following conditions on the loss:

Condition A The los¥/(p) is strictly proper, continuous oA", and continuously differentiable on
the relative interiorrelint(A") of its domain.

As the projectiorfl, is a linear function, differentiability of(p) is equivalent to differentiability of
e(p), which will usually be easier to verify. Note that it follows from (15) belowvattexistence of
D/ guarantees the existenceHif.

Lemmal Let/(p) be a strictly proper loss. Then the corresponding Bayes rigK lis strictly
concave, and if(p) is differentiable on the relative interiarelint(A") of A" then it satisfies the
stationarity condition

p'DI(P)=0,_1  for perelint(A"). (3)

If ¢(p) is also continuous on the whole simpis% thenlx, £(p) and /() are all continuous and
invertible, with continuous inverses.

Proof Let pp, p1 € A" and letpy, = (1—A)po+Apz. Then for anyA € (0,1)

L(pa) = PAL(Pr) = (1= A)L(Po, pr) +AL(p1, Pr) > (1 —A)L(Po) +AL(p1),
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Figure 2: Left: the (boundary of the) superprediction set on two outsdorethe Brier score and
the boundary of the superprediction set for log loss. Right: the samedbhdan after

applying then-exponential operator faf € {3/4,1,5/4}. The dark curves correspond
ton=1.

soL(p) is strictly concave. Properness guarantees that the funcgid@ := L(p,q(d)) has a mini-
mum atg’= f. HenceDL(§) = p'D¢(§) = On—1 atd= P, giving the stationarity condition.

Now suppos¢ is continuous o\", and observe thdi is also continuous. Then by tracing
the relations in Figure 1, one sees that all remaining claims follow if we canlisstétvertibility
of 7 and continuity of its inverse. (Recall th@t is invertible with continuous inverse.)

To establish invertibility, suppose there exjst£ in A" such that/() = /(§) and assume
without loss of generality that,(p) < ¢n(q) (otherwise, just swap them). Theriq) = §¢(g) +
Onln(Q) > q'Z( P) + an/n(p) = L(q, p), which contradicts strict properness. Heriaaust be invert-
ible.

To establish continuity of 1, we need to show that fim) — #(f) implies pm — p for any
sequencepm)m-1,2,.. of elements fromA\". To this end, let > 0 be arbitrary. Then it is sufficient
to show that there exist only a finite number of element§in) such that| fm — p|| > €. Towards
a contradiction, suppose thd)k=1.2.... is a subsequence ¢fm) such that|dk — p|| > € for all &
Then the fact thaA" is a compact subset & implies (by the Bolzano-Weierstrass theorem) that
(qk) contains a converging subsequengest. Since continuity of andl‘lA imply continuity of
7, we have€(rv) — 0(F). But sincery is a subsequence 6fm), we also have that(f,) — () and
hence@( )= E(p) But then strict properness implies thiat P, which contradicts the assumption
that||fy — f| > € for all v. |

4. Mixability

We use the following characterisation of mixability (as discussed by VoviZiwa@nov, 2009) and
motivate our main result by looking at the binary case. To define mixability wd tieenotions
of a superprediction set and a parametrised exponential operatosupbeprediction setor a
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loss? : A" — [0,]" is the set of points ij0, c|" that point-wise dominate some point on the loss
surface. That is,
S :={A€[0,00]": g€ A", Vi € [n], Li(q) <A} 4)

For any dimensiom andn > 0, then-exponential operator & [0,]™ — [0,1]™ is defined by
Eq(A) := (e ... e Mm),

Forn > 0 it is clearly invertible, with inversEn‘l((p) = -—n~Y(Ing,...,In@n). We will both apply
it for m=nand form= n— 1. The dimension will always be clear from the context.

Aloss/ is n-mixablewhen the seE, () is convex. The largest such that a loss ig-mixable
is of special interest, because it determines the best possible bound\ivie(23ll this themixability
constantand denote it by),:

Ne:=max{n > 0: ¢isn-mixable}.

A loss is always 0-mixable, sg; > 0, but note that fon, = 0 the bound in (2) is vacuous. A loss
is therefore callednixableonly if its mixability constant is positive, that ig, > 0.
One may rewrite the definition @&, (S) as follows:

En(S) = {Eq(A\): A€ [0,0]", Tq € A, Vi € [n], £i(q) < Ai}
={ze[0,": Ige A", Vi € [n], e i@ > 7},
sincex — e ™ is nonincreasing (in fact, decreasing fpr> 0). Hence in order foE,(S) to be
convex graphfy) = @, := {(e"4@ ... e n(@): qc A"} needs to beoncave Here f, is the
function whose graph is given by the set above. An explicit definitiofy,aé given in (11) after

we have introduced some more notation. Observedjas the (upper) boundary &, (S ); that is
why concavity off,, corresponds teonvexityof E, (S).

Lemma 2 If a proper, strongly invertible los&is mixable, then it is strictly proper.

An example of a mixable proper loss that is not strictly proper, is wiipihdoes not depend op
In this case the loss is not invertible.

Proof Supposé# is not strictly proper. Then there exigt# q such that(p) = L(p,q). In addition,
mixability implies that for any\ € (0, 1) there exists a distribution, such that for ali € [n]

(1) <~ Hlog (1= M) 1P 4 Ae @) < (1- M) (p) + Mi(a)

where the second inequality follows from (strict) convexityxof> e * and is strict whert;(p) #
¢4i(q). Sinceti(p) # ¢i(q) for at least oné with p; > 0, it follows that

L(p,ra) = () < P((1=N)e(p)+Ae(a)) = L(p),

which contradicts the definition @f( p). Thus mixability implies that must be strictly proper. B
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4.1 TheBinary Case

A loss is called binary if there are only two outcomas: 2. For twice differentiable binary losses
¢ itis known (Haussler et al., 1998) that

L £1(B)5(B) — £1(P)¢5(P)
= inf L2 L2 5
R AGTAG A AT ©
When a proper binary logsis differentiable, the stationarity condition (3) implies
pe1(P) + (1 - P)la(P) =0
= pli(p) = (P—1)¢5(P) (6)
1(B) _ 45(P) . ~
= ~1(p): 22— w(p) =: w(P). 7
51 b (B) =t w(P) (7
We havel () = pl1(p) + (1 — p)¢=(p). Thus by differentiating both sides of (6) and substituting
(P

(1
into L"(f) one obtaind” (p ) — _w(p). (See Reid and Williamson, 2011). Equation 7
implies £1(B) = (P — 1)w(), £5(B) = PW(P) and hencey () = w(p) + (P— L)W' () andl;(p) =
w(p) + Pw (). Substituting these expressions into (5) gives

ne= inf

pe(0.) (B—1)w(p) pw(P)[PwW(P) — (P —L)w(f)] pe0.1) P(1— P)W(P)

Observing thaL|og(p) =—p1lnpr— pzln p2 we havel_|og(|5) —pInp—(1—p)In(1—P) and thus
Liog(P) = 5725 and sowiog(B) = 5=+ Thus

e Wog(B) - og(P)
pe01) We(B)  pe@n) L'(p)

(8)

That is, the mixability constant of binary proper losses is the minimal ratio oktbesl derivatives
of the Bayes risks for log loss and the loss in question. The rest of thisr peplevoted to the
generalisation of (8) to the multiclass case. That there is a relationship beBeses risk and
mixability was also pointed out (in a less explicit form) by Kalnishkan et al. 4200

By substitutingw,(p) = I;“)) andwieg(p) = p(lj;f)) into (8), one obtains an expression to com-
puten, that is simpler than (5):

-1
— = inf ps(p). 9
PYPLL pe1(P) 9)

This result also generalizes to the multiclass case; see Corollary 14.

4.2 Mixability and the Concavity of the Function fj

Our aim is to relate mixability of a loss to the curvature of its Bayes risk surfioee mixability is
equivalent to concavity of the functiofy, which maps the first — 1 coordinates ofp,, to then-th
coordinate, we will start by giving an explicit expression fer We will assume throughout that the
loss/ is strictly proper and continuous a@?.
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It is convenient to introduce an auxiliary functiop: A" — [0,1]" ! as

(P) = Eq(l(p) = (614, .eWnalP), (10)

which maps a distributiop fo the firstn — 1 coordinates of an eIement@h The range of,, will

be denotean (see Figure 1). In addition, let the projectibly: Oy — CDn map any element of

@ € @y to its firstn— 1 coordinateg@y,...,¢.—1). Then under our assumptions, all the maps we
have defined are well-behaved:

Lemma 3 Let/ be a continuous, strictly proper loss. Then fpr=- 0 all functions in Figure 1 are
continuous and invertible with continuous inverse.

Proof Lemma 1 already covers most of the functions. GivenByatatisfies the required properties,
they can be derived for the remaining functions by writing them as a compositifunctions for
which the properties are known. For exampie= E; o/ is a composition of two continuous and
invertible functions, which each have a continuous inverse. [ |

It follows that, under the conditions of the lemma, the functign &’n — [0,1] may be defined as

o (@) = e (t0"@) (11)

and is continuous. Moreover, &ts,l (the domain offy,) is the preimage under? of the closed set
A", continuity oft— implies thatCDr] is closed as well. However, continuity implies that we may
restrict attention to the interiors din and of the probability simplex:

Lemma4 Let/ be a continuous, strictly proper loss. Then, fpr- 0, f, is concave if and only if
it is concave on the interiaint(®y) of its domain. Furthermore this set corresponds to a subset of
the interior of the simplexr,;l(int(tbn)) Cint(A") = Na(relint(AM)).

Proof The restriction to ir(tﬁ)n) follows trivially from continuity of f,. The setr*l(int(én)) is the
preimage under;, of the open set irftby ). Sincety is continuous, it follows that this set must also
be open and hence be a subset of the interidof |

4.3 Relating Concavity of f, totheHessian of L

The aim of this subsection is to express the Hessiafy,0h terms of the Bayes risk of the loss
function definingf,,. We first note that a twice differentiable functidn X — R defined onX C
R"1is concave if and only if its HessianatH f (x), is negative semi-definite for atle X (Hiriart-
Urruty and Lemagchal, 1993). The argument that follows consists of repeated applisatidhe
chain and inverse rules for Hessians to compitg.

We start the analysis by considering th@xponential operator, used in the definitiort@fL0):

Lemma5 Suppose > 0. Then the derivatives ofEand E,]‘1 are
DEy(A) = —ndiag(Eq(A)) and DE;*() = —n"*[diag@)]
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And the Hessian of,‘E1 is

L diag(@;%,0,...,0)
HE, H(@) = = ; . (12)

diag0,....,0,¢-2)

Ifn=1andl=liog=p+— —(Inpy,...,In pn)’ is the log loss, then the map is the identity map
(i.e., @=T11(P) = P) and E 1(P) = fiog(P) is the (projected) log loss.

Proof The derivatives follow immediately from the definitions. By (24) the HesHqu((p) =
D (DE,*(¢)) and so

HE; '(¢) = D ((rll [diag(cp)]l) ) ~—~Ddiagig Y-
Let h(¢g) = diag(@ 1) ;. We have

diag —@;%,0,...,0)
Dh(¢) = Dvech(g) = :
diag0,...,0,—@;?)

The result fom = 1 and/jeq follows from 1y (f) = Ey(7(p)) = (e L~ nPr .. gL Inbray, [ ]

Next we turn our attention to other componentsfef Using the stationarity condition and
invertibility of £ from Lemma 1, simple expressions can be derived for the Jacobian asthH®f
the projected Bayes ridk(p) := L(M,*(f)):

Lemma6 Suppose the logssatisfied Condition A. Takg e int(A"), and let \{ ) := —/pn(p).
Then

Y(B) = — pa(P)DY(P) = (mwéﬂﬁna_l)

is invertible for all p, and

Dén(B) = y(B)"- DE(P). (13)

The projected Bayes risk functidiip) satisfies
DL(P) = 2(B)' ~ tn(P) 11 (14)
and HL(p) =Y(f)' - DI(f). (15)

Furthermore, the matrbHE(ﬁ) is negative definite and invertible for gil, and wher? = /o4 is the
log loss

HL og(F) = —Y ()’ [diag(p)] . (16)

Proof The stationarity condition (Lemma 1) guarantees fHB¥Y(f5) = 0,1 for all p € relint(A").
This is equivalent tg/'DZ(P) + pn(P)Dln(P) = On_1, Which can be rearranged to obtain (13).
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By the product rulda’b = (Da' )b+ a'(Db), we obtain

Dy(f) = —pD[pn(P) ] — [pn(P) '|DP
= Blpn(B) ?]Dpn(P) — [Pn(B) Jln-1
p)”

— —Blpn(B) A1y — [Pa(F) Tl 1
I P oY
T Tem M e

sincepn(p) = 1— Ficjn_1 fi impliesDpn(P) = —1;,_;. This establishes that( ) = In—1+ pn%p) pL;,_,.
That this matrix is |nvert|ble can be easily checked since

1
Ino1—P1,_)(h—1+ ——=p1, ;) = In_
(nl pnl)(nl pn(p)pnl) n-1
by expanding and notingl?, lp]ln 1=(1-pn)pL;_,
The Bayes risk i€ () = §7(P) + pn(B)¢n(p). Taking the derivative and using the product rule
gives

]
€n(P) + pPn(P)DIn(P)
)ﬂ% 1+ Pn(P)Den(P)

by (13). ThusDL(p) = #(B)’ — ¢n(P)1/,_,, establishing (14).
Equation 15 is obtained by taking derivatives once more and using (&8),adelding

HL(P) = ((DL(P))") = DF(P)~ 1o 1-D1n(B) = (In-2+ 108 ) DI(p)

n

as required. NovL(p) = L(p1,. .., Pn-1,Pn(B)) = L(P1,. .., Pn-1,1— 313 pi) = L(C(f)) whereC
is affine. Sincep — L(p) is strictly concave (Lemma 1) it follows (Hiriart-Urruty and Lergahal,
1993) thatp— L(p) is also strictly concave and thid () is negative definite. It is invertible
since we have showri( ) is invertible andD7 is invertible by the inverse function theorem and the
invertibility of 7 (Lemma 1).

Finally, Equation 16 holds since Lemma 5 givesEq§ = Eog so (15) specialises ﬂdLog(f’) =
Y(B)' - Dliog(P) = Y(B)' - DE; *(B) = —Y(p)' - [diag(F)] *, also by Lemma 5. u

4.4 Completion of the Argument

Recall that our aim is to compute the Hessian of the function describing thedbouof then-
exponentiated superprediction set and determine when it is negative eénited The boundary is
described by the functiofy, which can be written as the compositibgo g, whereh,(z) := e "*
andgn(fp) = ln (T,{l(fp)). The Hessian ofy, can be expanded in terms gf using the chain rule
for the Hessian (Theorem 21) as follows.
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Lemma 7 Suppose the logssatisfies Condition A ang > 0. Then for allp € int(®), the Hessian
of f, at@is

Hf, (@) =ne " @, (@),

wherel () :=nDgy (¢)' - Dgn (§) — Hgy (). Furthermore, fom > 0 the negative semi-definiteness
of Hf, (@) (and thus the concavity of,¥is equivalent to the negative semi-definiteneds,0).

Proof Usingf := f, andg := g, temporarily and letting = g(fp), the chain rule foH gives

Hf(9) = (11®Dg(@)’) - (Hhy(2)) - DY() + (Dhy (2) @ In-1) - H(9)

(Dh
=n’e ""Dg(@)’ - Dy(9) —ne ”ZHQ(EP)

=ne 9% [nDg(®)"- Dg(¢) — Hg(@)] ,
sincea ® A = aA for scalara and matrixA and Dh, (z) = D[exp(—n2z)] = —ne™"* so Hh(z) =
n2e "% WhetheH f < 0 depends only ofi,, sincene 19 is positive for alln > 0 andq. [ |

We proceed to compute the derivative and Hessiag, bf

Lemma 8 Suppose satisfies Condition A. Fon > 0and@ e mt(d)n) letA := En—l(fp) andf:=
¢=X(\). Then

Dan (®) = () Aq () (17)
and Hgn(¢) = —

where A (@) := DE; ().

Proof By definition, gy (¢) := ¢n(T;1(@)). Sincety = 1oE;* we haveg, = fyo0 1o E L.
Thus, by the chain rule, Equation 13 from Lemma 6, and the inverse furtbganem, we obtain

Dy (§) = Den(B) - DI (N - DE; (@) = ¥(B)'DI(B) - [DI(p)] - [DE;H(@)] = Y(B)'Aq(®)
yielding (17). Sincep= ral(fp) andHg, = D((Dgy)’) (see (24)), the chain and product rules give

Ho (@) = D[(DE @)y (171(@) |
) @ ln- 1) D (DE; (@ ) (lh® (DE;*(@)) - D (y (13 (®))

= (Y1, (®)
= (y(B) ®In-1) -HE; }(@) + (DE; X(®) - Dy(p) - D1, 4(®)
=—pnr(‘ﬁ)An<>duag<p> (@) + An() y(B) - DT, 1(@). (18)
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The first summand in (18) is due to (12) and the fact that

) diag@;2,0,...,0)
(y@ln-1) - HE (@) = [ lyaln-1.--- Yo-tln-al- 5
diag(0,...,0,¢-%)
1 n-1

==5 v lp1-diago,...,0,¢2,0,...,0
ni;yl n—1 g @ )

1. N
=y diadyia gy

N g s A
=—— -diag(p) - .
pn(mAn(cp) gb)-Aq(@)
The last equality holds becausg ()’ - Ay (@) = n—2diag(@ ?)"-} by Lemma 5, the definition of
y(P) = —[pn(P)] 1B, and because all the matrices are diagonal and thus commute. N
The second summand in (18) reducesyy5) = — 55 Y () from Lemma 6 andy = Eq o /:

= [DEZ(V)- (¥
= [HL(P)] " Y(p)'- DE;*(N)
Substituting these into (18) gives
~—_r] ~.. ~. ~_l / ~. ~~_1. ~/. p
Hon () = — 5 An(9) - diad(B) - Aq (@) — - An(9)-Y () [HL(B)] - Y(B) - Aq (),
which can be factored into the required result. |

We can now use the last two lemmata to express the funEtjan terms of the Hessian of the
Bayes risk functions for the specified losand the log loss.

Lemma9 Suppose a losé satisfies Condition A. Then for > 0 the matrix-valued functiofi,
satisfies the following: for alp € int(®,,) and = Tal((p),

-1

(@) =A@ Y(B)- [[HL(B] 0 Mg ] - YO @, (19)

and is negative semi-definite if and only ifrR¢, p) := [HL(ﬁ)]_l

semi-definite.

=N [Hglog(ﬁ)} “tis negative

Proof Substituting the values dbg, and Hg, from Lemma 8 into the definition of ; from
Lemma 7 and then using Lemma 5 and the definitiop(@), we obtain

M (® =AY @) -Y(B) - Y(B)' - An(®)

A(@)' [ndiag(P) +Y(B)- [HL(F)] *-Y(B)'] -An (@)

L1
Pn(P)
= aAn(a’)/' [nplnfr P +ndiag(p) +Y(p)- [H[(ﬁ)}l-Y(ﬁ)’} A (9). (20)
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Using Lemma 6 we then see that

1 N o
=(In-1+—1n 10 - diagp)
Pn
o1
= diag(f) + —p- 7’
Pn
Substituting this for the appropriate terms in (20) gives

-1

~

(@ = ;An«p)’- [Y(P): [HL(B)] Y (B) = nY(B)- [HLiog(B)] *-Y(B)'] - Aq(®),
which equals (19).

Sincely = [pn] 'BRB whereB = Ay (¢)'Y(P) andR = R(n, 4, f) the definition of negative
semi-definiteness and the positivity pf means we need to show that: XThx < 0 <= Vy:
YRy < 0. It suffices to show tha is invertible, since we can lgt= Bx to establish the equiva-
lence. The matrixdy, (@) is invertible since, by definition, (¢) = DE; () = —n~[diag(g)] * by
Lemma 5 and so has matrix inverse diag(@). The matrixY () is invertible by Lemma 8. Thus,
B is invertible because it is the product of two invertible matrices. |

The above arguments result in a characterisation of the concavity of ticéidm f,, (via its
Hessian)—and hence the convexity of thexponentiated superprediction set—in terms of the
Hessian of the Bayes risk function of the Igsand the log losgjo4. As in the binary case (cf. (8)),
this means we are now able to specify the mixability constait terms of the curvaturdL of the
Bayes risk fol relative to the curvaturleIL,og of the Bayes risk for log loss.

Theorem 10 Suppose a losssatisfies Condition A. Ldt( ) be the Bayes risk fdfandﬂmg(lﬁ) be
the Bayes risk for the log loss. Then the following statements are equivalent:

(i.) ¢isn-mixable;

(ii.) NHL(B) = HLog(P) for all f € int(A");
(iii.) NL(p) —Liog(p) is convex omelint(A");
(iv.) NL(P) — Liog(P) is convex orint(A").

Note that the largesy that satisfies any one of (i)—(iv) is the mixability constant for the loss. For
example, y
ne=max{n > 0: Vf € int(A") , nHL(P) = HLiog () }-

Proof The case) = 0 is trivial, so supposg > 0. Then by Lemmas 7 and 9 we kndwf, (p) <
0 <= R(n,¢,p) < 0. By Lemma6HL() < 0 andHL,,4(p) < 0 for all fand so we can use the fact
that for positive definite matriceésandB we haveA = B <= B~! = A~ (Horn and Johnson, 1985,
Corollary 7.7.4). This mear(n,¢,p) < 0 <= HL(P)~* < nHL,4(F) "t < nHLg(P) <
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HL(P) <= nHL(P) = HLo4(P). Thereforef,, is concave ap if and only if NHL(B) = HLjoq ().
Since concavity off, was equivalent t-mixability, this establishes equivalence of (i) and (ii).
SincenHL(p) = HLog(P) <= H(NL(P) — Liog(P)) = 0, equivalence of (ii) and (iv) follows
from the fact that positive semi-definiteness of the Hessian of a funati@m @pen set is equivalent
to convexity of the function (Hiriart-Urruty and Lem’mhal, 1993). Finally, equivalence of (iv) and
(iii) follows by linearity of the mappn(p) = 1— S} fii. [ |

The lemma allows one to derivgmixability of an average of twg-mixable proper losses that
satisfy its conditions:

Corollary 11 Supposéa and /g are twon-mixable losses that satisfy Condition A. Then, for any
A €(0,1), the loss/ = (1—A){a+ Alg is alson-mixable.

Proof Clearly? is continuous and continuously differentiable. And because propeoidés and
(g implies thatL,(p) = (1—A)L,, (p) + AL, (p), itis also strictly proper. Thus Theorem 10 applies
to ¢, and we just need to verify thgL,(p) — L;o4(p) is convex. Noting that

NL/(P) ~ Liog(P) = (2= A) (1Lr, (P) ~ Liag(P) ) +A (1L (P) ~ Liog(P))

is a convex combination of two convex functions, the result follows. [ |

One may wonder which loss is the most mixable. In the following we derive @striorward
result that shows the (perhaps unsurprising) answer is log loss EeA" denote the point-mass
on thei-th outcome. Then we call a proper lo&sr if L(g,g) = L(g) =0 for all i (Reid and
Williamson, 2011). That is, if one is certain that outconwveill occur and this is correct, then it is
only fair if one incurs no loss. Any loss can be made fair by subtractingriigua affine function
that interpolategL(e): i € [n]} from its Bayes risk. This does not change the curvature aid
thus by Theorem 10 it has the same mixability constant (provided the condititins theorem are
satisfied). We will call a proper lossormalisedif it is fair and maxcan L(p) = 1. If a fair proper
loss is not normalised, one may normalise it by dividing the loss on all outcoyn@sikyan L(p).
This scales up the mixability constant by myax L(p). For example, log loss is fair, but in order
to normalise it, one needs to divide by max»Li,4(p) = log(n), and the mixability constamt, for
the resulting loss is log).

Corollary 12 Suppose a losésatisfies Condition A. Then, 4fis normalised and (p) is contin-
uous, it can only be-mixable forn < log(n). This bound is achieved ifis the normalised log
loss.

Proof SinceL(p) is continuous and has a compact domain, there exigts=aarg maxa» L(p)
that achieves its maximum, which is 1 by assumption. Now by Theorem-hbtixability implies
convexity ofnL(p) — Liog(p) oNn int(A"), which extends to convexity oA" by continuity ofL(p)
andL4(p), and hence
0= EINIO* [m- I—Iog } Llog(p*) =n _Llog(p*)
=N SLIog(p ) < I-Iog( %) - IOg( )
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where the first equality follows from fairness ©and log loss, and the first inequality follows from
Jensen’s inequality. |

The mixability constant can also be expressed in terms of the maximal eigen¥#hesratio”
of the Hessian matrices for the Bayes risk for log loss and the loss in questidhe following,
Ai(A) will denote theth largest (possibly repeated) eigenvalue ofrttken symmetric matriXA. That
iS, Amin(A) :==A1(A) < A2(A) < --- < Anp=: Amax(A) Where eachi;(A) satisfiesA—A;(A)l| = 0.

Theorem 13 Suppose a losésatisfies Condition A. Then its mixability constant is

Ne=_inf_ Amax((HC(B)) ™t HLog(P)) - (21)
peint(A")

Equation 21 reduces to (8) whai= 2 since the maximum eigenvalue of & 1 matrix is simply
its single entry. Since the maximum eigenvalue of the Hessian of a functionecobght of as
the “curvature”, the above result justifies the title of the paper.

Proof For fe int(A"), we defineCy(f5) := NHL(P) — HLjog(5) andp(p) := HL(B) - HLog(P)
and first show that zero is an eigenvalu€g(p) if and only ifnj is an eigenvalue gf(f). This can
be seen sincBL(p) is invertible (Lemma 6) so

ICa(B) =0l =0 <= [NHL(P) — HLog(P)| = 0 <= [HL(P) *|InHL(P) — HL;pq(P)| =0
= |HL(P) " [NHL(P) — HL1pg(P)]| =0 <= [nl —HL(P)~*-HLo4(P)| = 0.

Since a symmetric matrix is positive semidefinite if and only if all its eigenvaluesoareagative it
must be the case thatifyn(Cy(p)) > 0 thenC;,(p) = 0 since every other eigenvalue is bigger than
the minimum one. Conversely, @, (p) »# O then at least one eigenvalue must be negative, thus the
smallest eigenvalue must be negative. Thus:(Cy(p)) > 0 <= C,(p) = 0. Now definen(p) :=
sup{n > 0:Cy(P) = 0} =sup{n > 0: Amin(C,(f)) > 0}. We show that for eachp the functionn —
Amin(Cq(P)) is continuous and only has a single root. First, continuity follows becausentiies
of C,(p) are continuous im for eachp™and eigenvalues are continuous functions of their matrix’s
entries (Horn and Johnson, 1985, Appendix D). Second, as a faraftits matrix arguments, the
minimum eigenvalué\n, is known to be concave (Magnus and Neudecker, 1999, §11.6)., Thus
for any fixedp;, its restriction to the convex set of matricS, (p) : n > 0} is also concave in its
entries and so im. SinceCo(p) = —HLog(ﬁ) is positive definite for every (Lemma 6) we have
Amin(Co(P)) > 0 and so, by the concavity of the map-> Amin(Cy (P)), there can be only ong> 0
for which Amin(C(P)) = 0 and by continuity it must be largest non-negative one, that(is).

Thus

N(P) =sup{n > 0 : Amin(Cy(P)) = 0} =sup{n > 0:n is an eigenvalue gb(p)} = Amax(P(P)).

Now let n* := infgcinyan) N(B) = INfscingan Amax(P(P)). We now claim thaCy- () = O for all p
since if there was some<A" such thaCy- (§) % 0 we would have) (§) < n* sincen — Amin(Cq(4))
only has a single root—a contradiction. Thus, since we have shgws the largest) such that
Cy-(P) = 0 it must ben,, by Theorem 10, as required. |
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The following Corollary gives an expression figr that is simpler than (21), generalising (9)
from the binary case.

Coroallary 14 Suppos¢€ satisfies Condition A. Then its mixability constant satisfies

-1 . . ~
— = inf_ Amax(diag(p)-D/()) . (22)
Ne  peint(an)

Proof Theorem 13 combined with Lemma 6 allows us to write

Ne= inf_ )\max((Y(ﬁ)/ ’ Dg(ﬁ))il' (Y(ﬁ)/ ’ Dglog(ﬁ)))

peintAn
= i,nf~ )\maX«DZ(ﬁ))il‘ Dglog(ﬁ))
peintAn
= inf )\max((DZ(ﬁ))il‘diag(_l/pi)in;f) :
peintAn
= — sup Amin ((DZ(P))*-diag(1/pi){=7)
peintAn
and thus (22) follows SinCBmax(A) = 1/Amin(A™1). [ |

5. Mixability of the Brier Score

We will now apply the results from the previous section to show that the multiBldaes score is
mixable with mixability constant 1, as first proved by Vovk and Zhdanov 200hen-class Brier
score i$

aner(Ya ) ([[y. - 1ﬂ - pl) )

':M:

wherey € {0,1}" andp € A". Thus

n

Zl(pi —2pifi + P?).

LBrler pv ZLEYMJ [[YI - 1]] pl) -

HenCd—Brler( p) LBner( p, 2) ZP 1( 2pi pi + p|2) =1- Zinzl pi2 SinceZinzl pi=1, andﬂBrier(ﬁ) =
1- Z|1p|_( |1p|)

Theorem 15 The Brier score is mixable, with mixability constaygier = 1

Proof ~It can be verified by basic calculus thagier is continuous and continuously differentiable
on int(A"). To see that it is strictly proper, note that foe£"p the inequalityLgrier(P, P) > Lgyier(P)

is equivalent to
n n

Z(p?—ZpiﬁiW?) >0  or Zl(pi —pi)* >0,

1. This is the definition used by Vovk and Zhdanov (2009). Cesa—Bm’ruhLugo& (2006) use a dn‘ferent definition
(for the binary case) which differs by a constant. Their definition resulif) = p(1— p) and thud” (p) = —2. If
n= 2, thenLge, as defined above leadsit@ie () = HLgrier(B) = —2(1+1) = —4.
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and the latter inequality is true becayses p; for at least onéby assumption. Hence the conditions
of Theorem 10 are satisfied.

We will first prove thamgrier < 1 by showing that convexity L grier(P) —Llog(ﬁ) on int(A")
impliesn < 1. If NLgyier(B) — Liog(P) is convex, then it is convex as a function jpf when all
other elements op are kept fixed. Consequently, the second derivative with respgxitricust be
nonnegative: ,

0< aap:zl (nLBrier(ﬁ) _Llog(ﬁ)> = ;-1"‘ ;-n —4ﬂ-
By letting p; and p,, both tend to 12, it follows thatn < 1.

It remains to show thafigrier > 1. By Theorem 10 it is sufficient to show that, for< 1,
NLgrier(P) — Liog(P) is convex on relintA"). We proceed by induction. For= 1, the required
convexity holds trivially. Suppose the lemma holdstior 1, and letf(p1, ..., Pn) = Nkgier(P) —
Liog(p) for all n. Then forn > 2

fn(plv .. '7pn) - fnfl(pl‘f‘ p27 p?n' (RN} pn) +g(pla p2)7

whereg(ps, p2) = —NPZ — NP3 +N(P1+ P2)? + p1inp1+ p2Inp2 — (1 + P2) In(p1 + p2). Since
fn_1 is convex by inductive assumption and the sum of two convex functionsiegoit is therefore
sufficient to show thag)(ps, p2) is convex or, equivalently, that its Hessian is positive semi-definite.
Abbreviatingg = p1 + pz, we have that

1/p _]_/q 2r]—l/q
Ho(p1, p2) = ( 2r]l—l/q l/pz—l/Q>.

A 2 x 2 matrix is positive semi-definite if its trace and determinant are both non-negathich

is easily verified in the present casE:(Hg(p1, p2)) = 1/p1+1/p2 —2/q > 0 and|Hg(py, p2)| =
(1/p1—1/9)(1/p2—1/9) — (2n — 1/9)?, which is non-negative if

1 1 1, %4

Pip2  PQ  pP2q q
0>4n’q—4n
ng<1
Sinceq = p1 + p2 < 1, this inequality holds fon < 1, which shows thag(p1, p2) is convex and
thereby completes the proof. |

6. Extension to Improper L osses

Our results are stated for proper losses. However, they also extertar¢ealass oimproper(i.e.,
not proper) loss functiongmp: V — [0, o], which may be related to a proper lodswith the same
mixability constant using the following construction.

For any distributionp € A" and actiorv € 'V, let Limp(p,V) = p'fimp(v) denote the risk and let
Limp(P) = infyey Limp(p, V) denote the Bayes risk fdimp. If the infimum in the definition of the
Bayes risk is achieved for afi, there exists a (possibly non-uniquejerence linkpimp: A" — V
(Reid and Williamson, 2010), which is a function satisfying

Limp(P, Yimp(P)) = Limp( p).
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This function can be seen as one which “calibratggp by returningyimp(p), the best possible
prediction under outcomes distributed pyThe loss function defined by

£(a) == limp(Wimp(@)) (@€ A"

is proper by definition of the reference link.

If for every actionv € 'V there exists a distributiop € A" such thatyimp(p) = v (i.e., the
reference link is surjective), thehis just a reparametrization éf,, and their superprediction sets
S andS,,,, as defined in (4), are the same. It then follows BatS,) = E,(S,,,) for all n, such
that? and/imp must have the same mixability constants.

It turns out that the superprediction sets/cdnd /im, are often the same evenyfinp is not
surjective. This follows from Theorem 20 of Chernov et al. (201@) &s proof? which may be
reformulated as follows.

imp)

Theorem 16 (Chernov et al., 2010) LetAimp = £imp(V) be the set of achievable loss vectors. Sup-
poselimp is mixable and satisfies the following conditions:

(i.) Aimp is a compact subset ¢, |" (in the extended topology);
(i) There exists an action& V such that all components 6fnp(v) are finite;

(iii.) For every distribution pc A" such that p= p; = 0 for some &£ j, the minimum of |mp(p, -)
is unique.

Then a unique reference linkimp exists and 5= S,
constants. Moreovef,is continuous and strictly proper.

so /¢ and /imp have the same mixability

Remark 17 To see the equivalence between our version and Theorem 20 of @letralo (2010),
note that mixability o¥imp implies that>) = =, in their notation, for anyny > 0 such thatlimp is
n-mixable.

It seems likely that the mixability constants i, and/ will be the same even under weaker
conditions than those of Theorem 16. In particular, we suspect that mixaifiliy;, is not always
necessary, and Chernov and Vovk (2010) suggest that Conditionyibmaemoved. See also the
discussion on mixability of composite losses by Vernet et al. (2012).

In the absence of such strengthenings of Theorem 16, it may be ueefatall that exp-
concavity oflimp implies mixability (Cesa-Bianchi and Lugosi, 2006). An easy test to determine
the mixability constant fo¥imp in Ssome cases where it is 0, is given by the following observation
(Kalnishkan and Vyugin, 2008):

Lemmal8 If S is not convex, thefimp is not mixable.

Proof Suppos€imp is n-mixable for somen > 0. Then, for anyx,y € S,/ and anyA € [0, 1],
the setEy (S;,,,) contains the point = (1—A)Eqp(x) +AEn(y). Consequentlysy, = itself contains
Z= En‘l(z), and by construction each componentdatisfies

imp

7= _r1] In ((l—A)e*”X‘ +>\e*”yi) <@-Mxi+Ayi (i=1....n)

2. We thank a COLT2011 referee for referring us to this result.
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by convexity of the exponential function. It follows that the paifit— A)x+ Ay dominatesz and
hence is also contained B, . ThusS,  is convex, and we have shown that mixability implies
convexity ofS,__, from which the result follows. [ |

imp?

7. Connection to a-Flatness and Strong Convexity

We now briefly relate our result to recent work by Abernethy et al. 200rhey formulate the
learning problem slightly differently. They do not restrict themselves tp@réosses and so the
predictions are not restricted to the simplex. This means it is not necesgarydahe submanifold
A" in order for derivatives to be well defined.

Abernethy et al. (2009) have developed their own bounds on cumulasgein terms of the
a-flatness (defined below) &f( p). They show thati-flatness is implied by strong convexity of the
loss?. The duality between the loss surface and Bayes risk that they estalilishagh the use of
support functions can also be seen in Lemma 6 in the relationship betweerghiaiof and the
derivative of/. Although it is obscured somewhat due to our use of functions tfi$ relationship
is due to the properness bfjuaranteeing that ! is the (homogeneously extended) Gauss map for
the surfacd.. Below we point out the relationship betweesflatness and the positive definiteness
of HL(p) (we stress that in our work we uséti(f)). Whilst the two results are not precisely
comparable, the comparison below seems to suggest that the conditionraEfkiyeet al. (2009) is
stronger than necessary.

SupposeX is a Banach space with nori ||. Given a real numbea > 0 and a function
0 : R, — [0,] such thato(0) = 0, a convex functiorf : X — R is said to bga,o, || - ||)-flat (or
(a,a,]| - ||)-smooth§ if for all x,xp € X,

f(x) = f(x0) < Df(x0) - (X—X0) +-a0(||x—Xol|).

A concave functiory is flat if the convex function-g is flat. When||- || = | - ||, ando(x) = %2,

it is known (Hiriart-Urruty and Lemdachal, 1993) that foar > 0, f is (a,x — X2, || - ||2)-flat if and
only if f —a||-||2is concave. Thug is a-flat if and only if H(f — a| - ||2) is negative semi-definite,
which is equivalent tédf — 2al < 0 <— Hf < 2al.

Abernethy et al. (2009) show thatlifis (a,x — x, || - [|1)-flat, then the minimax regret for a
prediction game withT rounds is bounded above bwitbgT. It is thus of interest to relate their
assumption ork to the mixability condition (which guarantees constant regret, in the prediction
with experts setting).

In contrast to the above quoted result for|2, we only get a one-way implication fdjr- ||1.

Lemma19 If f —a|- |7 is concave oR"} then f is(a,x+— X2, | - ||1)-flat.

Proof Itis known (Hiriart-Urruty and Lemaachal, 1993, page 183) that a functiois concave if
and only ifh(x) < h(xo) + Dh(Xo) - (X— o) for all x,x. Hencef —af| - || is concave ofR" if and

3. This definition is redundantly parametris¢d; o, || - ||)-flatness is equivalent {d, ag, | - ||)-flatness. We have defined
the notion as above in order to relate to existing definitions and because onfasometimes fixes and then is
interested in the effect of varyirg Whenao(x) = x2, Abernethy et al. (2009) and Kakade et al. (2010) call thitat
with respect td| - ||. Azé and Penot (1995) andalinescu (1983) would saf is o-flat with respect to an implicitly
given norm iff is (in our definition)(a, o, || - ||)-flat for somea > 0 (which in their setup is effectively bundled into
0). These differences do not matter (unless one wishes to use resuitshie earlier literature, which we do not).
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only if for all x,xo € R",

F(x) —alx|3

< () -1

< f(x0) —al%o||f +D(f(¥0) —al|xa7) - (X—Xo)
< a|x||f — of|xo[| £+ Df (%0) - (x—X0) —aD([[%0l}) - (x—X0).  (23)
SinceD([[xo1$) = 2/[%ol|11 and Z[xo|[1(1 - (x—xo0)) = 2l[Xol 1 ([IX]| — [[¥oll2) = 2l[Xoll1/IX]| — 2|0l

(23) & f(x)
< f(X)

IN

a (JIXI12 =+ [1%ol % = 2||%o]|1[|X][1) + Df (x0) - (X— X0)
Df (%) - (x—Xo) + 0 (||X]2 — [[%o]|1)?.

(%)

—f
— f(x0)

IN

By the reverse triangle inequalifik— Xo[|1 > [[|X]2 — [[Xol|1| = [IX||2 — [|Xol|z and thusi|x —xo||§ >
(|IX]1 — [%ol|1)?, which gives

= (%)~ f(x0) < Df(x0)- (x—x0) +ax—Xoll3.

Now f —a| - ||3 is concave if and only iH(f —af - ||3) < 0. We have (again fok € R")
H(f —al|-[3) =Hf —aH(] - |3). Let@(x) = |X|}3. ThenD@(x) = 2|x|1D(||x|) = 2]x]|x1. Hence
Ho(x) = D(D@(X))’) = D(2||x||11") = 21 - 1’. Thus(a,x+— x?,|| - ||1)-flatness ofL is implied by
negative semi-definiteness of the Hessiah oélative to 211 - 1, instead oL,4 (see Theorem 10,
part ii). The comparison with log loss is not that surprising in light of the ola®ns regarding
mixability by Grinwald (2007, §17.9).

The above analysis is not entirely satisfactory for three reasons: nijnael9 does not char-
acterise the flatness condition (it is only a sufficient condition); 2) we lgéagsed over the fact
that in order to compute derivatives one needs to workinand 3) the learning protocols for the
two situations are not identical. These last two points can be potentially addrasfuture work.
However the first seems impossible since there can not exist a charers (a, X — X2, || - [|1)-
flatness in terms of concavity of some function. To see this, consider théimeasional case and
suppose there was some functigsuch thatf was flat ifg was concave. Then we would require
Dg(x) - (X~ X0) = af|x — Xo||3 = Dg(X)(X — o) = a[x— Xo|> = &(x— X)? = Dg(x) = aA(X— Xo)
which is impossible because the left hand didgx) does not depend upog. On the other hand,
perhaps it is not worth further investigation since the result due to Atierm al. (2009) is only a
sufficientcondition for logarithmic regret.

8. Conclusion

Mixability characterizes fast rates in the prediction with expert advice sattitgyms of the mix-
ability constant. An explicit formula to determine the mixability constant was prelyavailable
only for binary-valued outcomes, and the formula did not have a cleaphet@tion.

For strictly proper losses, Theorem 13 simplifies this formula and genevétis® outcomes
with any finite number of possible values. The new formula has a clear iatatjgn as the minimal
curvature of the Bayes risk for the loss relative to log loss. This showspeeise and intuitive
way the effect of the choice of loss function on the worst-case refiteedearner, and the special
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role played by log loss in such settings. Closely related characterizationsability are given in
Theorem 10 and Corollary 14.

Although our main results are stated only for proper losses, Section Gsghatvmany losses
that are not proper can be related to a proper loss with the same mixabilityasgnehich implies
that our results cover these improper losses as well.
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Appendix A. Matrix Calculus

We adopt the notation of Magnus and Neudecker (1989is then x n identity matrix, A’ is the
transpose of\, then-vector 1, := (1,...,1)’, and Q«n denotes the zero matrix with rows and
m columns. The unib-vectore' := (0,...,0,1,0,...,0)" has a 1 in théth coordinate and zeroes
elsewhere. IA = [g;] is ann x mmatrix, vedA is the vector of columns ok stacked on top of each
other. TheKronecker producof anm x n matrix A with a p x g matrix B is thempx ng matrix

AiiB -+ AnB
ARB:= : :
AmiB -+ AmnB
We use the following properties of Kronecker products (See Magndidlendecker, 1999, Chapter
2): (A®B)(C®D) = (AC® BD) for all appropriately size&,B,C,D and(A®B) 1 = (A1@B™?)
for invertible A andB.

If f:R"— R™is differentiable atc then thepartial derivativeof f; with respect to thgth

coordinate at is denoteD; fi(c) and is oftefl also written agdf;/dx;],_.. Themx n matrix of
partial derivatives of is theJacobianof f and denoted

(Df(c));; :=Dijfi(c) forie[m],jen.

Theinverse function theoremelates the Jacobians of a function and its inverse (cf. Fleming, 1977,
84.5):

4. See Chapter 9 of Magnus and Neudecker (1999) for why tBenotation is a poor one for multivariate differential
calculus despite its popularity.
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Theorem 20 Let SC R" be an open set and:— R" be a ¢ function with g> 1 (i.e., continuous
with at least one continuous derivative). Dfy(s) # 0 then: there exists an open set Sich that
se § and the restriction of g toSs invertible; g Sy) is open; f, the inverse of the restriction of g
to S, is C%; and Df (t) = [Dg(s)] * for t = g(s) and sc S.

If F is a matrix valued functio®F (X) := D f (vecX) wheref (X) = vecF (X).
We will require the product rule for matrix valued functions (Fackler,20&upposd : R" —
R™P g: R" — RP*9sothat(f x g): R" — R™9. Then

D(f xg)(x) = (9(x)' @Im) - DF(X) + (Ig® f(x)) - Dg(x).

The Hessianat x € X C R" of a real-valued functiorf : R" — R is then x n real, symmetric
matrix of second derivatives &t
B 92 f
N 6Xk6Xj '

(HF())j k= Dij f(x)

Note that the derivativ®y j is in row j, columnk. It is easy to establish that the Jacobian of the
transpose of the Jacobian bfs the Hessian of. That is,

HT(x) =D ((Df(x))') (24)

(Magnus and Neudecker, 1999, Chapter 10). X — R™ for X C R" is a vector valued function
then the Hessian of atx € X is themnx n matrix that consists of the Hessians of the functiins
stacked vertically:

H fl(X)

Hf(x) := :
Hfm(x)

The following theorem regarding the chain rule for Hessian matrices céoube in the book
of Magnus and Neudecker (1999, pg. 110).

Theorem 21 Let S be a subset &®", and f: S— R™ be twice differentiable at a point ¢ in the
interior of S. Let T be a subset Bf" containing f(S), and g: T — RP be twice differentiable at the
interior point b= f(c). Then the function(x) := g(f(x)) is twice differentiable at c and

Hh(c) = (I,®Df(c))' - (Hg(b)) -Df(c) + (Dg(b) ®1n) - Hf(c).
Applying the chain rule to functions that are inverses of each other giegf®llowing corollary.
Corollary 22 Suppose f R" — R" is invertible with inverse g= f 1. If b= f(c) then
Hf 1(b) = — (G® G)Hf(c)G,
where G:= [Df(c)] " = Dg(b).

Proof Sincefog=idandH[id] =0,2,, Theorem 21 implies that farin the interior of the domain
of f andb= f(c)

H(go f)(c) = (Ih®Df(c))"-Hg(b) - Df(c) + (Dg(b) @1n) - Hf (¢) = Opzp-
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Solving this forHg(b) gives
Hg(b) = — [(In@Df(c))’] - (Dg(b)) ®1n) - Hf(c)- [Df ()] %

Since(A®B) = (A t@B 1) and(A)1 = (A1) we have[(l ®B)] 1= [1®B) ] =(I"'®
B~!) = (I @ B~1Y so the first term in the above product simplifies-td(ln® Df(c)1)]". The
inverse function theorem impligdg(b) = [Df(c)] ! =: G and so

Hg(b) = —(In®G)' - (G®In) - Hf(c)- G
= —(G®G) -Hf(c)-G

as required, sinclA® B)(C® D) = (AC® BD). [ |
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