Parallel predator-prey interaction for evolutionary multi-objective optimization

Abstract : Over the last decade, the predator-prey model (PPM) has emerged as an alternative algorithmic approach to multi-objective evolutionary optimization, featuring a very simple abstraction from natural species interplay and extensive parallelization potential. While substantial research has been done on the former, we for the first time review the PPM in the light of parallelization: We analyze the architecture and classify its components with respect to a recent taxonomy for parallel multi-objective evolutionary algorithms. Further, we theoretically examine benefits of simultaneous predator collaboration on a spatial population structure and give insights into solution emergence. On the prey level, we integrate a gradient-based local search mechanism to exploit problem independent parallelization and hybridize the model in order to achieve faster convergence and solution stability. This way, we achieve a good approximation and unfold further parallelization potential for the model.
Type de document :
Article dans une revue
Natural Computing, Springer Verlag, 2012, 11 (3), pp.519-533. 〈10.1007/s11047-011-9266-9〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00758211
Contributeur : Joachim Lepping <>
Soumis le : mercredi 28 novembre 2012 - 13:08:31
Dernière modification le : mercredi 11 avril 2018 - 01:56:24
Document(s) archivé(s) le : samedi 17 décembre 2016 - 16:10:21

Fichier

nc_glp2010_online.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Grimme Christian, Joachim Lepping, Papaspyrou Alexander. Parallel predator-prey interaction for evolutionary multi-objective optimization. Natural Computing, Springer Verlag, 2012, 11 (3), pp.519-533. 〈10.1007/s11047-011-9266-9〉. 〈hal-00758211〉

Partager

Métriques

Consultations de la notice

286

Téléchargements de fichiers

289