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The Impact of Human-Robot Interfaces on the
Learning of Visual Objects

Pierre Rouanet, Pierre-Yves Oudeyer, Fabien Danieau and David Filliat

Abstract—This paper studies the impact of interfaces allowing need to be addressed before allowing personal robots to
non-expert users to ef ciently and intuitively teach a robot to operate in our homes. They include a diverse set of ques-
recognize new visual objects. We present challenges that needijqns related to perception, navigation, manipulation, learning,

to be addressed for real-world deployment of robots capable . - P o .
of learning new visual jobjects in interaction with everyday human-robot interaction, usability and acceptability. In this

users. We argue that in addition to robust machine learning and Paper, we are more particularly interested in the transverse
computer vision methods, well-designed interfaces are crucial for challenge: providing the robot with the ability to adapt itself
learning ef ciency. In particular, we argue that interfaces can be  tg its environment through learning by interaction with non-
key in helping non-expert users to collect good learning examples expert users. This is a key feature for the development of

and thus improve the performance of the overall learning system. . . . .
Then Wep presentpfour alternative human-robot in%er%laces- personal robotics. Indeed, unlike industrial robotics where the

three are based on the use of a mediating artifact (smartphone, €nvironment is very structured and known in advance, personal
wiimote, wiimote and laser), and one is based on natural robots will have to operate in uncontrolled, unknown and/or
human gestures (with awizard-of-Ozrecognition system). These changing environments. More importantly, they will have to
interfaces mainly vary in the kind of feedback provided to the interact with humans who may potentially have very diverse

user, allowing him to understand more or less easily what the .
robot is perceiving, and thus guide his way of providing training expectations and preferences. Thus, the robot should have the

examples differently. capacity to learn from non-expert humans.

We then evaluate the impact of these interfaces, in terms of
learning ef ciency, usability and user's experience, through a real
world and large scale user study. In this experiment, we asked
participants to teach a robot twelve different new visual objects in
the context of a robotic game. This game happens in a home-like
environment and was designed to motivate and engage users in
an interaction where using the system was meaningful. We then
discuss results that show signi cant differences among interfaces.
In particular, we show that interfaces such as the smartphone
interface allows non-expert users to intuitively provide much
better training examples to the robot, almost as good as expert
users who are trained for this task and aware of the different
visual perception and machine learning issues. We also show
that artifact-mediated teaching is signi cantly more ef cient for
robot learning, and equally good in terms of usability and user's
experience, than teaching thanks to a gesture-based human-like
interaction.

Index Terms—Human-robot interaction, user interfaces, robot
learning, object visual recognition, user study, personal robotics.

Fig. 1. Using a device as a mediator object between the human and the
robot to control the movements of a personal robot allows non-expert users
|. INTRODUCTION to teach it how to recognize new visually grounded objects.

A. One challenge of personal robotics: learning from non-
expert humans

Personal robotics has been drawing an increasing amogntStudying the role of the interface for social robot teaching
of interest recently, both from an economic and a scienti f new visual objects

pomt_of VIEW. Many |n<j|cators seem o show that. the arrival Techniques allowing robots to learn from interaction with
of this kind of robot in our everyday homes will be on

. . umans have been widely explored in the literature, includ-
of the major events of the century [1]. In particular, . y exp

th dicted to ol K o i i ' _ing approaches such as imitation learning and learning by
€y are predicted fo play a ey role In our aging SOCIeQ’emonstration (e.g ]3],[4]) or socially guided exploration
and especially in applications such as domestic services, t

: X .g. [5]). Having robots learn from humans requires both the
surveillance or entertainmerit!/[2]. Yet, many challenges st g. [S]) 9 q

evelopment of machine learning algorithms (e.g. to encode
P. Rouanet, P-Y. Oudeyer, F. Danieau and D. Filliat are with INRIA anﬁnd generalize new capac_ities) and the ela_boration OT intuitive
Ensta-ParisTech, France ($ee http:// owers.inria.fr/) and robust human-robot interaction techniques. While those
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two challenges are crucial, a large part of the work dorte him. This form of synchronization of what each other is
in social learning focuses on the rst probleim [4][6][7]. Yetlooking at, and made possible by particular kinds of user
the interaction mechanisms are known to play a key role interfaces, is an elementary form of joint atter{ﬂ(which has
human teaching (e.g.![8]). Thomaz and Breazeal have shobgen shown to be crucial in the the eld of developmental
the importance of understanding the human teacher/robatidbotics for teaching new visual concepts to a robot [11][12].
student relationship in developing learning algorithms suit€ur work is thus located at the crossover of three important
for social learning [[5]. Calinon and Billard have proposedesearch domains: social learning in robotids [4], human-robot
the development of learning by demonstration systems whitfteraction [13] and developmental robotics|[14].

take into account the interaction scenatio [9]. Mechanisms

such as joint attention have also been identi ed as crucial in =

social learning for both humans and robots teaching [10][11].
Furthermore, the importance of the role of interfaces and
interaction becomes paramount when it comes to deploying
robot learning systems outside the laboratory, where they shall
be used by non-expert humans users.

In this paper, we focus on this latter issue and study the
impact of human-robot interfaces allowing non-expert users
to ef ciently and intuitively teach a robot to recognize new
visual objects. This is a case-study task bound to be needed in
many future personal robotics applications. We present an iflg. 2. To allow users to designate a particular object to a robot in a cluttered
tegrated system which combines machine learning techniqm,imhment, we neec_i to provide them With a 'robust gnd accurate pointing
computer vision techniques, and various alternative huma} }renciggnéxgxglrx.se it may lead to restrictive interaction and even to false
robot interfaces. The goal of the whole system is to allow
a non-expert humans to show new visual objects to a robot
(for which it does not already have a model and thus cannotWe then evaluate and compare in sector} IV the impact
segment easily) and associate a name so that it can be useddstaese interfaces, in terms of learning ef ciency (robot's
training example allowing the robot to recognize these objeqisint of view) and usability and user's experience (user's
later (see gure[R). A strong constraint is that the systepoint of view), through a real world and large scale user
should be ef cient and usable by non-expert users which waktudy (107 participants). In this study, which took place in a
provide only very few training examples per object class. It science museum in Bordeaux, we asked participants to teach
important to notice that by “visual objects” we are not onlya humanoid robot N%thelve different new visual objects in
referring to actual physical objects (e.g. a ball) but to arthe context of a robotic game. This robotic game happened
region of an image having speci c visual features. This verjn a home-like environment and was designed to motivate
generic de nition also includes more abstract objects such asd engage users in an interaction where using the integrated
a painting, stairwell or even an open door which should alsystem was meaningful.
be recognized by a personal robot. We chose to follow a very standard user-centered approach

As we will explain, a key challenge is that non-expert usete design our interfaces based on mediator objects as we
typically have a wronga priori understanding of what the wanted our system to be effectively usable by non-expert
robot sees or does not see, which can easily lead themhtgmans in plausible interactions, i.e. outside of the lab, with
provide low quality training examples (e.g. examples wheee personal robot. With such an approach we rst analyzed
the objects they want to show to the robot is not even on thige context of use, then conceived the interface and nally
image perceived by its camera). We argue that the designwid evaluated it. This cycle was repeated until the specied
interfaces can be key in helping non-expert users to colleefquirements were matched. In this paper, we are presenting
good learning examples and thus improve the performancetiogé last complete iteration of our development. While some
the overall learning system. earlier versions of subparts of our integrated system have

After detailing the related work ifi]ll, we present in secalready been presented in [16][17][18][19], they have been
tion[[Mfour alternative human-robot interfaces: three are based
on the use of a mediating artifact (smartphone, wiimote, 1t is an elementary form of joint attention in the sense that both agents
wiimote and laser) and one is based on natural human gestuwsasinfer what the other is looking at and/or perceiving, without an explicit
(with a Wizard-of-Ozrecognition system). These interface§°gnitive model of attention, see [11]

. . . . The Nao robot represents, in our opinion, the current personal affordable
mainly vary in the kind of feedback provided to the USer$yqs well, with a humanoid appearance. Furthermore, we choose to use it as
permitting them to understand more or less easily what the autonomous robot, i.e. with only onboard sensors, and not to enhance its
robot is perceiving, and thus guide their way of providing{é)acities with external devices such as cameras xed on the ceiling such as

A

traini | diff . A se used in smart environments or ubiquitous robotics approaches [15]. We
raning examples difrerently. AS a consequence, as We Wiy e that the complexity of this kind of installation could prevent their use

show, interfaces that provide the right kind of feedback cameveryday homes in the near future. Second, it is important to note that this
allow at the same time the human to understand what tkgd of system, while improving the perceptual capacities of the robot will

bot i . . d vi ﬁot fundamentally change the attention problem that we are trying to tackle
robot Is seeing at any given moment, and vice versa Q€ For instance, a pointing gesture will remain ambiguous in a cluttered

robot can infer ef ciently what the human is trying to showenvironment even with the use of xed cameras.



modi ed and improved since then and they are here presentaale to be used by expert users in the sense that they have
as an integrated system for the rst time. to understand the limitations of the robot in order to behave

We then discuss results that show signi cant differencexccording to a very restrictive protocol which will allow the
among interfaces. In particular, we show that interfaces suchiakeraction to work. One way to circumvent this problem is
the smartphone interface allows non-expert users to intuitively have a very controlled setup. For instance, Roy presented
provide much better training examples to the robot, almost aframework that allows a robotic system to acquire visually
good as expert users who are trained for this task and awaregufunded words [31]. Here, users have to place objects in front
the different visual perception and machine learning issues. Wethe robot and then describe them. We argue that this kind
also show that artifact-mediated teaching is signi cantly moref experiment cannot be directly transposed into a real world
ef cient for robot learning while better in terms of usabilityapplication in personal and social robotics with non-expert
than teaching using gesture-based human-like interaction. users.

Finally, a discussion of the main results and of our design Yet, as personal robotics is predicted to become common-
choices is presented in the sectjor] VI. place in our home environments in the’2dentury, it is really
important that even non-expert users can robustly designate
objects to their social robot in an uncontrolled environment.
We should provide interfaces which are intuitive in order to

The classi cation and recognition of new visual objects havavoid misunderstanding or frustration during interaction but
been studied intensely from visual perception and machiaio to help users collect good learning examples. Indeed, in
learning perspectives. Many approaches, such abalgs of a cluttered environment, non-robust pointing may lead to the
visual wordswe are using in this paper, have been recentljesignation of the wrong object and thus completely incorrect
developed [[20[[21L][22]. Those learning systems are highlgarning examples which will decrease the performance of
ef cient when trained with a large database of good labelatle whole learning system. In their work, Kaplan and Steels
examples (see PASCAL VOC for instancel[23]). Yet, to solviglenti ed the lack of robustness in the interface as a major
this problem in a real human-robot interaction scenario: i.émitation of their system and they showed that the lack of
outside of the laboratory, with non-expert users in a realistiobustness of the interface often leads to a number of bad
use scenario, one needs to tackle a crucial issue not addregeerhing examples [32].
in the machine learning and computer vision literature: how Another widely used way to tackle this pointing and joint
to collect good training examples through relatively few buittention problem is to allow users to directly wave objects in
intuitive interactions with non-expert users? And, how tfront of the camera of the robot [8B][B4]. Thus, we can ask
collect examples by using current social robots which typicaltyie robot to always focus its attention on the moving objects.
have limited sensors and, in particular, a strongly constrainEdrthermore, it also allows the separation of the object from
visual apparatus? Those questions are addressed in this artible.background by subtraction of the motionless part of the

The questions of drawing a robot's attention, pointingcene. However, with this technigue, users can only show to
toward objects and realizing various forms of joint attention tine robot small and light objects which can be easily carried
teach the name of new objects have also been widely studiad.they will have to be waved in front of the robot. Thus, we
For instance, they are closely related to research donecin not show objects such as a table, a plug or a painting on a
robot language acquisition and in particular the construction whll. Moreover, for the elderly or the disabled waving objects
visually grounded lexicons [24][25][26]. Yet, in this literaturecould be really tiring or even impossible.
most authors are focusing on the perception and machinéVe argue that one way to help achieve some of the abilities
learning questions. In particular, as they try to model humatescribed above intuitively and robustly without facing the
language acquisition, they choose to directly transpose thblems encountered when waving objects, is to develop
human-like interactions to human-robot interactions to allogimple artifacts that will serve as mediators between the human
humans to show new associations between visual objects amd the robot to enable intuitive communication. Interfaces
their names. For instance, Kaplan developed a complete sotiabed on mediator objects have already widely been used in
framework based on human-like interactions such as pointittee domain of human-robot interaction and especially to draw
gestures and speech recognition to allow users to teach woad®bot's attention toward an object. For instance, Kemp et al.
associated with objects to an AIBO robot [27]. Scasselatsed a laser pointer to easily and robustly designate objects
used pointing gestures and gaze tracking to draw a robdtsa robot in order to ask it to fetch ther [35]. Here, they
attention [[28]. In this work, he used a xed upper-torso andsed the laser pointer as a point-and-click interface. They
thus constrained the interaction. Pointing gestures have as$mwed that inexperienced participants managed to correctly
been used to guide a robot companion| [29][30]. designate objects to a robot. Furthermore, thanks to the laser

Unfortunately, existing associated techniques for gestuspot light, the human can also accurately know what he is
gaze and speech recognition and interpretation are not robosinting at. Yanco et al. used an interface based on an input
enough in uncontrolled environments (due to noise, lighting device (touch screen or joystick) to select objects which will
occlusion) and most social robots have a body whose shdpmegrasped by a wheelchair mounted robotic arn [36]. In their
and perceptual apparatus is not compatible with these modesxk the user can directly monitor the object selection on the
of interaction (low quality and noisy sensor, small angle afcreen of the device. As in our system, they can both draw the
view, small height...). Thus, these priori intuitive systems robot's attention toward objects and so realize joint attention

IIl. RELATED WORK



between the human and the robot. However, their robot is alide image categorization and object recognition and relies on
to automatically grasp the object from a detected 3D spot anrepresentation of images as a set of unordered elementary
a framework that requires an image segmentation algorithnsual features (the words) taken from a dictionary (or code
and/ora priori object knowledge. If objects are not knowrbook). The term “bag of words” refers to text document
beforehand these are still dif cult problems. classi cation techniques that inspired this approach where doc-
Other mediator object based interfaces have been developetknts are considered to be an unordered sets of words. In its
recently. For instance, Fong et al. used a PDA for remobasic implementation that we use here, a classi er predicting
driving [37], and Kaymaz et al. used it to tele-operate the object identity is based on the occurrence frequencies
mobile robot [38]. Sakamoto et al. showed how they casf the visual words in an image, thus ignoring any global
control a house cleaning robot through sketches on a Talileage structure. There are several extensions which introduce
PC [39]. Ishii et al. proposed a laser pointer-based interfaseme global geometry in order to improve performance (e.g.
where users can draw stroke gestures using the laser to spe@if}), but these extensions were not necessary to implement
various commands such as path de nition or object selectiam order to demonstrate the interest of the interfaces which is
with lasso gestures [15]. However, in their work they usetthe subject of this paper. Several applications also exist for
calibrated ceiling-mounted cameras and vision-based ID tagbotics, notably for navigation (e.d. [41], [42]).
to circumvent object recognition issues. Yet, to our knowledge, The words used in image processing are based on auto-
nobody has used this kind of interface for interactions thaiatically detected local image features. The feature detectors
involve robot teaching, such as teaching new words for nayged are usually invariant to image rotation, scale and partially
visual objects. to af ne deformation so as to be able to recognize objects
under varying point of view. Among the many existing feature
[II. OUTLINE OF THE SYSTEM detectors, we chose SURF [43] for its performance and rea-
As explained above, we present here an integrated systg@mable processing cost. For each detected feature, a descriptor
to allow non-expert users to teach a personal robot hawcomputed that encode the local image appearance. A dictio-
to recognize new visually grounded objects in real worldary is created by clustering a large set of feature descriptor
conditions. In particular, this means that our system shoudgtracted from images representative of the environment. In
allow a user to draw the robot's attention toward an objeeur implementation, we use a hierarchical k-means algorithm
present in its surrounding and then collect a learning exampe create a tree-structured dictionary that enable fast word
of it. The robot could thus recognize and search for an alreal®pk up [44]. The size of the dictionary was set 2% in
taught object later on. In this version of the system, labels a®8r experiments.
automatically associated with images. We will describe in the This model has interesting characteristics for our applica-
section[V], a more advanced version of our system whidlon: the use of feature sets make it robust to partial object
allows users to associate new acoustic words to the vis@aklusions and the feature space quantization brings robustness
objects. to image noise which is linked to object position, camera noise
This system has to deal with visual perception, machime varying illumination.
learning and interaction challenges. The visual perception and
machine learning parts of our system are based on a vers'@n
of the advancedags of visual wordgechnique [[211]. These
computer vision and machine learning algorithms have beenfor our application, the classi er designed for object recog-
chosen because, to us, they represent robust and standiign should be trained incrementally, i.e. it should be able
tools often used as a baseline to compare with more recéhtprocess new examples and learn new objects without the
techniques. Furthermore, we are here focusing on the four dieed to reprocess all the previous data. To achieve that, we
ferent interfaces notably developed to tackle the pointing akge & generative method in which training entails updating a
attention challenges. Three interfaces are based on medi&f@tistical model of objects, and classifying involves evaluating
objects while the last one is based on arm and hand gestuf likelihood of each object given a new image.
with Wizard-of-Oz recognition. More speci cally, we use a voting method based on visual
Our system was embedded in the Nao robot designed Wgrds occurrences for each object. The recorded statistics
the company Aldebaran Roboﬁi:sThe robot was only used during learning (according to the learning method described
here to collect the learning examples (i.e. take the picturdgjer) are the number of occurrenc€,, of each visual
and store them. The actual learning was performed of ingord w of the dictionary in the training examples of each
on a computer. We have already explained why we chogbjecto. For object detection in a new image, we extract all
this particular robot and used it as an autonomous robot. Tt visual words from this image and make each werdote

Machine learning

implication of this choice will be discussed later. for all objectso for which Oy, 6 0. The vote is performed
using theterm frequency—inverted document frequency (tf—idf)
A. Visual perception weighting [20] in order to penalize the more common visual

We adopted the populdiags of visual wordspproach([20] words. The recognized object is the one with the best vote.

to process images in our system. This method was develop(TESt'matmg_the stat|_st|c©wo requires the Iabellng_of exam-
ples with their associated object name. The quality of object

2http:/Awww.aldebaran-robotics.com/ recognition is obviously strongly in uenced by the number and
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quality of training images_ [45]. In computer vision, creatinghe eld of view of the robot could have helped knowing what
good image datasets is therefore an important aspect, to whicé robot could see).

a large amount of time is devoted, but this time is not

available when interactive learning takes place with a robDt iPhone interface

for new objects as performed in our work. Moreover, precisely The rst interface is based on an Apple iPhone used as a
selecting reIevant'training images is also not always DOS.Sibllﬁediator object between the human and the @;bue chose
depending on the interface used to control the robot. As will Rgis device because it allows the display of information on the
described later, we will use two methods for labeling based @Breen to the user and also allows interaction through intuitive
the information given by the user: labeling the whole image giq standard gestures. In addition, the multi-touch capacity
labeling only an image area (given by the user) that represegtgyides numerous possibilities. Due to the large success of the

the entire object. Then we will show the in uence of thesgonone we can take advantage of a familiar interface, allowing
methods on nal object recognition. ease of use.

C. Human-robot interaction

In this section, we present the different interfaces developed.
They were chosen to span the variety of mediator interfaces
that one can imagine but also to explore the different kinds of
feedback of what the robot is perceiving that can be provided
to the users. Three of the interfaces are based on mediator
objects such as the iPhone, the Wiimote or the laser pointer.
We chose rather well-known and simple devices so users can

. : Fig. 4. We display the vi f th fth h .
quickly learn how to use them. The fourth interface was adde} @ display the video stream of the camera of the robot on the screen

is allows accurate monitoring of what the robot is seeing.

in order to compare the mediator based interfaces to a human-

like interaction which, as we will demonstrate reveals itself

to be less usable and less ef cient than the mediator basedn this system, the screen of the handheld device displays

interfaces. a continuous video stream of the robot's camera. It accurately
In order to be compared fairly, each of these four interfac€§0ws what the robot is looking at, which can be monitored

has to provide the users with the exact same following abilitiedy the user which resolves the ambiguity of what the robot is

driving the robot really seeing (see gurg]4). However, the user's attention is

drawing its attention toward a direction or a speci Splitinto direct and indirect monitoring of the robot which may
object lead to the increase of the user's cognitive workload. Finally,

de ning the object area inside the image (only the iPhorfaving visual feedback seems to entertain the user while the

and Wiimote laser interfaces provide this ability; for théOPOt IS moving as shown in pilot studies [16].
two other interfaces the whole image was taken into When the human wants to draw the robot's attention toward

account in the evaluation) an object, which is not in its eld of view, the user can

Th diat biect ; d 1o tri th tsketch on the screen to make it move to an appropriate
€ mediator objects were not used 1o trigger the Captfqiiq - yertical strokes for forward/backward movements and
of a new learning example. Instead, when users think that

bot the obiect th t 1o teach thev had to di tSrizontal strokes for right/left turns. Elementary heuristics are
robot sees the object they want to teach they had 10 dIrecliyyy 1, recognize these straight touch gestures. The moves of

to.uch Its heaq. we cho§e to force this .phyS|caI |nteragthﬂe robot are continuous until the user re-touches the screen
with the robot in order to increase the feeling of collaboratior

: . . . in order to stop it. Pointing on a particular point on the screen
Y_et, the d_|fferent mediator objects could easily be adapted akes the robot look at the corresponding spot (see fjire 5).
directly trigger the capture.

7 . : This is a very convenient way of drawing the robot's attention
It is important to notice that all the interfaces were bas y y 9

. . . Oward a speci ¢ object.
on the exact same sensorimotor capacities and functionalities

of the Nao robot. As argued before, the Nao sensorimotor
apparatus represents well the present form of existing social
robots to us. We also voluntarily choose not to enhance its
capacities by using a ceiling or a wide range camera although
it may have improved the usability of our interfaces. Indeed,
as discussed in detail in sectipn| VI, such improvement woufdd- 5. Dra\r/]ving EttentiOE t?]warﬁ an t?_bieqt: the useqdrstf Sketcfgle?t )direCéiQPS
H osition the robot such that the o jECI is in its eld of view (left), and i
not haYe solved the fundamental attention prOblems that Weéjwants to center the robot's sight on a speci c spot the user can just tap
are trying to tackle here. on the screen (right).
In the next sections, we will describe each interface in detalil
nd emphasize their i cities. We ch tof n thr . .
a d emphas € their spec cities © chose 1o focus o s explained above, when the user wants to show an object
interfaces, which seemed the most interesting to us, but other .
. : . . in_order to teach a name for it, he can rst make sure that
mediator objects or interaction metaphors could have been

imagined in this context (e.g. using a pico projector to display4http://youtu.be/vrMsalj2SDM
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(a) draw the attention toward an object (b) trigger the capture (c) encircle the area of the object (d) the new learning example

Fig. 3. To make the robot collect a new learning example, users have to rst draw the robot's attention toward the object they want to teach through simple
gestures. Once the robot sees the object, they touch the head of the robot to trigger the capture. Then, they directly encircle the area of the image that
represents the object on the screen. The selected area is then used as the new learning example.

the object is in the eld of view of the robot by monitoringdirection. To aim the head of the robot, users have to orient the
whether the object is displayed on the screen or not. Onédédimote: i.e. we directly map the values of the accelerometers
he is certain that the robot sees the object, he touches tbethe panftilt values of the robot's head. Thus, users can
head of the robot to ask it to take a picture. Then, the systertways focus their attention on the robot.

asks the user to sketch a circle around this object directly

on the touch screen (as shown on gyrg 6). Circling is a

really intuitive gesture because users directly “select” what

they want to draw attention to. This gesture is particularly

well-suited to touch-screen based interactions. For instance,

Schmalstieg et al. used the circling metaphor to select objects

in a virtual world [46]. Hachet et al. used 2D circle inputs for

easy 3D camera positioning_[47]. As for the straight strokes,

heuristics are used here to recognize circular touch gestures

based on the shape of the stroke and the distance between the

rst and the last point of the gesture. Circling is crucial to

the robot since it provides a rough visual segmentation of thg. 7. Users can move the robot by using the directional cross or directly
object which is otherwise a very hard task in unconstrain@denting the Wiimot_e to aim its head. However, the lack of fee(_jback makes
environments. With the stroke and the background image, \& etrg/tc(ijlftgglct;;o estimate whether the robot really sees the object the user
can extract the selected area and de ne it as our object's image. '

Classical computer graphics algorithms are used to compute o )
this area (Bresenham line drawing and ood II). The complete However, this interface does not provide any feedback about

sequence of actions needed to provide a new learning examsfit the robot is perceiving. In particular, users can not be
is summarized in the gurg]3. sure whether the robot sees an object or not. So, they have

to “guess” what the robot really sees, which can be a very
dif cult task as illustrated in the experiments presented below.

F. Wiimote and laser interface

In this third interface, the Wiimote is also used to drive
the robot. However, as shown on gufd 8, a laser pointer
is combined with the Wiimote and used to draw the robot's

Fig. 6. Once th ks the rob ke a pi f bject, h attentiorll

515, onse e user ek I obot 0 ke 8 e o & e e, b 8¥he robot is automaticaly racking the laser spot and aims
its head in order to keep the spot near the center of its sight. We
chose a laser pointer as the interaction device as this method
to draw someone's attention is quite common in our every-day

E. Wiimote interface life, in oral presentations for instance, and so is an intuitive

The second interface is based on a Wiimote device (sééeraction for users. Here, users can draw the robot's attention

gure [7)ff} The users can press one of the buttons of the arrof¥vard a direction by smoothly aiming its head toward the

to move the robot. We use the very common ying vehicléight direction or they can point to a particular object directly

metaphor: if we want to make the robot move forward, wance inside the robot eld of view, by designating it with the

keep the up arrow pressed and as soon as the button is reledag®f pointer.

the robot will stop. This technique permits easy driving of We automatically detect the laser spot in the images received

the robot or the ability to draw it's attention toward a generdfom the camera of the robot. We used a very bright laser

Shttp://youtu.be/vrMsalj2SDIM €http://youtu.be/vrMsalj2SDIM



(a) draw the attention toward an object (b) trigger the capture (c) encircle the area of the object (d) the new learning example

Fig. 9. With this interface users can draw the robot's attention with a laser pointer toward an object. The laser spot is automatically tracked by the robot.
They can ensure that the robot detects the spot thanks to haptic feedback on the Wiimote. Then, they can touch the head of the robot to trigger the capture
of a new learning example. Finally, they encircle the object with the laser pointer to delimit its area which will be de ned as the new learning example.

the laser spot allows users to monitor what they are really
pointing at and thus they can adjust their pointing if needed.
This is particularly important in a cluttered environment where
small deviations may lead to pointing to the wrong object
leading to an incorrect learning example.

Once users manage to draw the robot's attention toward
an object and trigger the capture of a learning example by
touching the head of the robot, they can then encircle the

object directly with the laser pointer (see gure 9 for the whole
Fig. 8. Users can drive the robot with a Wiimote and draw its attention towa

an object by pointing it with a laser pointer as the robot is automatical%équence)' To record the e_”c'rd'”g gestures done by the user,
tracking the laser spot. we store the detected points during these movements. Yet,

as the frame rate of the camera is low and as the speed of
the movement may really vary from one person to another,
e(?ncircling once was not always enough to compute a reliable
ﬁ;féoke. So, we asked participants to encircle the objects many
everyday environment and so much more salient. times. All the .detectec.i points are recprded vy|thout keeplng
@ny structure information and stored in a point cloud. It is

Unlike Kemp et al. who used an omnidirectional came o S
[35], or Ishii et al. who used ceiling-mounted cameras [15§r'1en tted on an ellipsis, as the shape of encircling gestures

in our work the eld of view of the robot is very limited. So ends to be elliptic. Finally, the robot indicates through a head

drawing the robot's attention requires that the user correcﬁg}ov?mem V\./he.ther it hag dgtepted enough points to compute
estimates the eld of view of the robot. This can be a dif cult? '€liable ellipsis. The ellipsis is computed as follows] [48]:

task as non-expert humans are often prone to assume that tHaased on the implicit equation of an ellipsis we can obtain
robot has a eld of view which corresponds to a human ond1€ following system:

pointer with a signi cant spot size. We chose a green point
because “laser” green is probably a color less present in

while it is not the case most of the time. Ax?+ Bxy + Cy?+ Dx + Ey+ F =0 with A 61
We provide different feedback to help users better under-
stand when the robot is detecting the laser spot and thus ) Bxy + Cy?+Dx+Ey+F = x?
correctly estimate the eld of view of the robot. First, as thw . . . i
. . ; ritten in a matrix form:
robot is tracking the laser, users can monitor the movements
of its head so that they have visual feedback. Second, we also X = with
provided haptic feedback by vibrating the Wiimote each time 0 ) 1 o
the laser spot was detected by the robot. With the combination Xl_“yl yl Xl yl 1A @ _?flA
of these two feedbacks, users know whether the robot was = PV = "
detecting the laser spot or not and can make sure that the Xn Yn Yo Xn Yo 1 Xn
laser pointer, and thus nearby objects, are in the eld of views this system is overdetermined, we try to nd tHewhich
of the robot. best ts the equation in the sense of the quadratic minimization

The feedback for this interface is more restricted than thgoblem (least squares):
complete feedback that is provided by the iPhone interface _
where users can directly monitor what the robot sees. Fur- argmin = X
thermore, users can not be sure that the robot sees the object X
they are designating entirely. They can only be sure that thdich is equivalent to solve the equation:
robot is detecting the visible spot on a part of the object. For ¥ = (T )T
instance, when it is not possible to center the robot's head on
the laser spot due to the robot's physical limit, a part of the Once the ellipsis has been computed, we can use it to
object may be outside of its eld of view. delimit the boundary of the object and thus roughly segment
The laser also provides visual feedback to the user. Indetlie image. In opposition to the iPhone interface where the

2



encircling is done on the 2D image, here users encircle directli§ll show in the experiments below, even such a well-known
on the 3D environment. This could lead to projection issueisterface with human-level intelligence may in fact lead to
especially when the background is not planar. As we céiragile interactions due to the differences between the robot's
see in the examples in gure [LO, the projected stroke coutgtnsorimotor apparatus and the human's ones.
sometimes “cut” the object and thus decrease the quality ofObviously, this interface embeds a strong difference with
learning examples. the others. Indeed, the Wizard is a human who already has
knowledge and strong biases about what may constitute an
object shown to him, i.e. the object segmentation problem is
here automatically solved by the human. Thus, when the object
was pointed at, the wizard naturally centered the sight of the
robot on it. Yet, on the other hand, in spite of this advantage
when compared to other interfaces that are coupled with an
autonomous robot, this interface does not perform so well as
Fig. 10. Encircling with a laser pointer raises dif culties mostly due to thgye will demonstrate.
projection of the laser spot in the plane of the camera. Although this interface embeds some strong differences with
the other, it still appears very interesting to us, as it rst
allows the investigation of a human-like interaction with an
G. Gestures based interface with WoZ autonomous personal robot with a limited visual apparatus if
e assume a human-level recognition and interpretation of
stures. Second, it also permits the comparison of our inter-
aces based on mediator objects with a human-like interaction
md showed that because of the particular visual apparatus of
} e robot, this interaction may lead to a more restrictive and
us less satisfying interaction for users.

In this last interface, users can guide the robot by maki
hand or arm gesturgs As we wanted to keep this interface a
intuitive as possible we did not restrict the kinds of gestur
that users can make. However, as gesture recognition is
a complex task, we used a Wizard-of-Oz framework whe
a human was controlling the robot according to differeﬁ
gestures the magician recognized. We can thus ensure that the
recognition of the different gestures was not a limitation of V. EXPERIMENTAL EVALUATION WITH NON -EXPERT
this interface. As stated above we did not want to enhance the USERS
robot's capacities with a ceiling or wide-angle camera as we As previously explained, we want here to study the impact
wanted to study a human-like interaction between non-expeftinterfaces on robot learning of new visual objects through
users and what we think represent a typical actual persohgh-expert user teaching and in a real world home-like envi-
robot well. Thus, all the four interfaces are based on thgnment. This impact is evaluated along two main dimensions:
same robot sensorimotor capacities which allows a comparison Learning Efciency: We test the quality of training
of the different interfaces on a fairer basis. Furthermore, as examples collected by the robot through human guid-
explained in the discussion, even if using external sensors ,..o This quality is evaluated both qualitatively (see
would probably improves the usability of this interface it below) and quantitatively through a measure of accuracy
would not fundamentally change pointing or attention issues. ;. c|assi cation in generalization (i.e. on images not

in the collected dataset). We also want to study more
speci cally how encircling can impact the performance
of the learning system.

Usability and user's experience:We study below how
intuitive, effortless and entertaining our interfaces are for
non-expert users.

We argue that potential future users of social robots will not
necessary be expert users, in the sense that they should be able
to interact with their social robot without any prior specic
training. Thus, it is crucial that our study is not a laboratory
study but a real world study. In particular, we want to create

Fig. 11. In this mode of interaction, the robot is guided by the_hand and afﬁ‘plausible context of interaction and have representative non-
gestures made by the user. In order to have a robust recognition, we used ‘a

WOZ framework, where the wizard was only seeing the interaction throu@XPErt participants, in Prder to preserve the ecological vaIiQity
the robot's viewpoint. of our results and avoid the classical pitfalls of the evaluation

in the HRI domain|[[4B][50].
As the Wizard was only seeing interaction through the However, as those users have probably never interacted with
robot's eyes and therefore through a very limited visud social robot before, asking them to show and teach objects to

apparatus, most of the gestures made by the users were out@jffRP0t is still an unusual and arti cial task as shown by pilot

of the robot's eld of view. As a consequence, and as Wgtudies [16'__[1?1[5.‘1]. There_zfor_e, we need _to embed this task
in a scenario in order to justify it. In particular, we need to

ttp://youtu.be/l5GOCGXdgQg encourage the users to collect high quality learning examples.
Thttp:/f be/l d th t llect high lity | I



Moreover, we want a scenario that can entertain and maintain
the user's motivation during the whole experiment. Finally, we
want to conduct a large scale study and so we need to design
a formal and reproducible experiment.

A. A Robotic Game Experiment

We argue that one solution to tackle the above mentioned
issues was to design our user study as a robotic game. Games
are well known to be a powerful way of captivating and
engaging users through their storyline. For instance, serious
games have been Widely used for education or traini 'g. 12. For the experiment, we used 12 textyred obje_cts directly related to

. . . . . -fogtball: beer, ball, gloves, coke, a poster of Zidane, a jersey of Beckham, a

allowing learners to experience situations that are Imposs:’giter of a stadium, a jersey of the Bordeaux team, shoes, a gamepad, a video
or hard to reproduce in the real world [52]. We think that, igame and magazines. Each participants had to teach four randomly chosen
the same way that video games have managed to make noyRiects to the robot to help it better understand football.
users solve complex and unusual tasks by using mechanisms
such as tutorials or brie ngs, we could design a robotic game
experiment that helps users to better understand and remember Conduct the experiment in a realistic environment, so
all the steps needed to teaching visual objects to a robot. The users have to navigate the robot through a cluttered area
scenario of the game also permits us to justify this arti cial and to collect real world learning examples (lighting
task. Finally, presenting the experiment as a game allows us to conditions, complex background, ...).

attract a wide and varying panel of participants. Participants |mmerse users in the scenario.
would feel more comfortable participating in a game than a tpe global structure of the room remains unchanged during

scienti ¢ experiment. the whole experiment in order to get a constant test environ-

Thus, we created a game scenario to try to match all pfent Nevertheless, the small objects were randomly arranged
the above. The users were told the following staayrobot,

i every ve experiments. Indeed, in a real home, while big
which has come from another planet, has been sent to Earthyfects such as furniture will not move, most of the small

order to better understand what seems to be a popular hum@ﬂjects will often be moved and thus must be recognized in
habit: “playing football”. Indeed, from their remote home’spite of their background.

the robots have just picked up partial information about this
practice and so they want to investigate further. Therefore, one
robot was sent to the living room of a football fan to gather
more clues. As the robot was damaged during its journey, it
could no longer ful Il its mission alone. So, you will need to
help it! The user was asked to help the robot to collect clues
(i.e. collect learning examples of four different objects related
to football). Every time the robot collected a new example, a
false and funny interpretation of what the object can be used
for was given by the robot.

B. Experimental setup

. . 2
1) Game EnvironmentWe recreateq a typicdlom |I}/Iﬂg Fig. 13. The real world environment designed to reproduce a typical living
room located next to the dafof a science museum in Bor-room. Many objects were added in the scene in order to make the environment

deaux, France. We arranged furniture such as tables or ch&fféered.

and many other various everyday objects (newspaper, plush

toys, posters, etc...) in order to make it look inhabited. Among 2) Robot: As stated previously, we used the Nao for our
these various objects, 12 were directly related to football (serperiment. To make it more lively, we developed some basic
gure [2). Those objects were the possible clues the robbéhaviors such as yawning or scratching its head if the robot
needed to collect. They were chosen because they t welas idled for a long time. We also used different colors for
within the scenario but also because they were textured and itgJeyes to express simple emotions or to provide feedback to
enough so they could be robustly recognized by classical vistia¢ users (see gurg 14). Moreover, we added organic sounds
recognition algorithms (if provided with good quality learningo express the robot's mood.

examples). Other usual objects were added to the scene t8) Game Interface:As explained above, the design of our

make the environment cluttered (see giirg 13). robotic game was inspired from a classic video game. We used
The design of the game environment had three main pardarge screen as the game interface to display information to
poses: users such as cutscene video explaining the story.

Reproduce a daily life area to provide participants with a This interface was also used to recreate a tutorial where
stressless environment and to reduce the feeling of beiparticipants learn one ability at a time: walking straight,
evaluated. turning, aiming the head of the robot and collecting a learning



Each participants was asked to follow the following proto-
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col, generated from the result of several pilot studies:

1) Fill in a consent form
2) Fill in a pre-questionnaire
3) Experimentation (robotic game)

Fig. 14. Behaviors, such as “happy” (on the left) or scratching its head (on
the right), were designed to make the robot look more lively and help the
users better understand its behavior.

example. For each step, a short video explained how to realize
the task with the interface they were using. After the video,
the user was asked to effectively complete the task. Once they
succeed, they could move on to the next stage. These videos
were also a way to make users know the robot better. The
nal objective of the tutorial was to rst collect a learning
example which, in fact, was a picture of the user's face. The
whole tutorial lasted about ve minutes on average. After the
tutorial, the real mission was explained to the participants via

Tutorial

a) Wake up the robot by touching its head
b) Make it move forward

¢) Make it turn left and right

d) Turn its head left, right, up and down

e) Make it watch your face (or a ball for the laser

interface)
f) Enable the photo mode by touching its head

Mission

a) Draw the robot's attention toward one randomly
chosen object among the 12 other possible ob-

jects
b) Take a picture of it

The steps from a) to b) were repeated 4 times

another video similar to the one in gufe[15. Thus, the game 4y Fij| in a post questionnaire
interface allowed us to present the whole experiment (both

tutorial and mission parts) in one single game. The whole experiment (including the questionnaires) lasted

between 20 to 30 minutes per participant.

D. Measures

During the experiments, we collected the pictures taken by
the robot and analyzed them as described below. Due to the
nature of the game interface the images were automatically la-

opr .. .

_SlJp(gjed. Indeed, the participants were asked to show a particular
object indicated by the game interface. We also measured the
time needed to complete the game and also the intermediate

Furthermore, it also allowed us to conduct each test in tﬂgwes, i.e. each time a picture was taken.

same way. Indeed, all participants received the exact sam&" top of these measures, we also conducted two question-
information and instructions through the game interface. Naire based surveys inspired by the classical guidelines found
in the HRI literature [49][5B]. Before the experiment, we ad-

ministered a demographic survey and a pre-task questionnaire
C. Experimental Protocol concerning the participant's technological prole (computer,

The experiment took place from June to November 20Mideo games and robotic experience) and their attitude toward
and 107 persons participated in it. Most of them (74) wef@botics. After the game, we conducted a post-task survey
recruited at Cap Sciencf a science museum in BordeauxWith the following assertions to which agreement had to be
most of which where visitors. We expected to nd, in generagvaluated on a 5 points Likert scale:
non-expert participants within the public; although, it might  Usability and user's experience
have introdu_ced a bias as science museum visitors are prok_)ably 1) It was easy to learn how to use this interface.
more receptive to technology. Thg others (33) were recruited 2) It was easy to move the robot.
on the campus of Bordeaux University of Technology. We

Fig. 15. The story of the game was told through video displayed on
game interface. This display was also used to provide users with step-by:
instructions of the tutorial.

. : o 3) It was easy to make the robot look at an object.
expected to nd here participants with a signi cant techno- 4) It was easy to interact with a robot.
logical background and a knowledge of classical interfaces 5) The robot was slow to react.
but without any particular robotic knowledge. 6) Overall, it was pleasant to use this interface.

Seventy-seven participants were male and 30 were female.
The participants were aged between 10 and 76 (M=26.3,
STD=14.8). Among the 107 participants: 32 used the iPhone
interface, 27 the Wiimote interface, 33 the Wiimote-laser
interface and 15 the gestures interface.

Robotic game

1) Completing the game was easy.

2) The game was entertaining.

3) | felt like cooperating with the robot.

4) | picture myself playing other robotic games in the

Ehttp://www.cap-sciences.net/ future.
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V. RESULTS
A. Qualitative analysis of the images

We rst manually sorted the collected pictures, i.e. the visual
training examples corresponding to a new object, into three
categories: 1) images where the object was entirely seen, 2)
images where the object was only partially present, 3) images
where the object was not present at all. The objects were
de ned as “partially visible” as soon as a part was missingig. 17. This gure presents similar charts to the gUre] 16, but here the
We here considered the object corresponding to the lalselected images were split into two subsets: small and big objects. We can
obtained thanks to the game interface. The glr 16 depice "0 ot LR eA ECie", i Gastue mterfaces partcipants faing to.
these results. We performed a one-way ANOVA where thgovide correct learning examples in about a third of cases.
independent variable was the interface used and the depen-
dent variable was the number of object corresponding to the

“entirely visible” condition. We found a statistical difference ; -
. in about a third of the examples for the Wiimote and Gesture
between the four interface$4 103 = 13:7;p < 0:001). In P

. X . conditions.
particular, we can observe that without providing any feedback

about what the robot sees to the users (the Wiimote and o ] )

gestures conditions), the object is entirely visible in only 5093: Quantitative analysis of the images

of the images. The Tukey post-hoc test showed that providingWe also used the collected images as input training for our

feedback signi cantly improves this result (80% for the lasdearning system in order to have an effective measure of the

and 85% for the iPhone). Furthermore, we can discern that tigality of the learning examples and their impact on the overall

iPhone interface and in particular its video feedback, prevemsrformance. As explained above, our learning system is based

users from collecting incorrect learning examples (i.e. wheg# abags of visual wordgpproach. This technique is based

the object is not present) in most cases (only 2%). on a dictionary used to categorize the features extracted from
the images. For our tests we built a dictionary by recording
a ve minute sequence using the camera of the Nao (about
1000 images) while it was navigating in the living room of
our lab. We ensured that none of the furniture or the objects
used during the experiments were present during the recording
in order to have a dictionary that was not specic to our
experimental setup.

We used the following protocol for all the tests:

We randomly chose N input images per object collected
by users who used a speci c interface. Thus, we mixed
images taken by several users. As collecting one examples
Fig. 16. This gure shows the partition of the collected images into three O.f.ve objects already took about 20-30 minutes per par-
categories: the object is 1) entirely, 2) partially or 3) not at all visible on  ticCipant, we could not a§k them FO COHe_Ct fe_W examples
the images. We can see that without any feedback (Wiimote or Gesture of each of the twelve objects. This certainly introduced a
interfaces) the object was entirely visible in only 50% of the examples. ; ; ;
Providing feedback signi cantly improves this result (80% for the laser and F)IaS that we tried to .Counterbalance by randomly selectlng
more than 85% for the iPhone). images and repeating our tests many times. As shown
on the results below, the variability between users (the
standard deviation) is rather low. In particular, in most

We also split the images into two subsets: cases the variability among interfaces is larger than the
big objects: the two posters, the two jerseys and the ball differences among the users of an interface.
small objects: the other objects We trained our learning system with these input images.

As we can see in the gurg 17, the differences between We tested our learning on the test database (see below).
the interfaces are more accentuated for small objects. In The test was repeated 50 times by choosing a different set
particular, we can see that the lack of feedback led to about a Of N training images each time in order to counterbalance
third of examples being incorrect. While the laser feedback the randomization effect.
improves this result (an error rate of only 20%), only the The nal results are the mean recognition rate and vari-
iPhone interface seems to really prevent users from providing ances of each test.
incorrect learning examples regarding small objects. Finally, The test database was built by an expert user who collected
we can also observe that users managed to provide rath@r examples of each of the objects through the Wizard
good examples of the big objects across all the interfaces. Yaterface. The images were taken in the same experimental
while the objects were almost always entirely visible undesetup as the actual experiment. These examples represented
conditions where they used the iPhone and Laser interfacke “best” examples that we could expect as an input. The
(more than 85% of the case), they were only partially visibldatabase was then split in half: the rst part was used as a
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“gold” training input while the other half was used as the test
data. These “gold” examples were to be used in a similar way
as the examples collected with one interface. They were to
provide us with an interesting baseline to determine which
recognition rate our learning system can achieve with such
optimal examples.

Fig. 19. Recognition rate for the ve big objects: We can see that all the
mediator interfaces allow users to collect equally good learning examples. So
for the big objects the interface does not seem to have a strong impact on the
recognition rate.

Fig. 18. Recognition rate for all the 12 objects: This gure shows the
impact of the interface on the quality of the learning examples and therefore
on the generalization performance of the overall learning system. In particular,
we can see that the iPhone interface allows users to collect signi cantly higher
quality learning examples than the other interfaces. Furthermore, it allows even
non-expert users to provide the learning system with examples of a quality
close to the “gold” examples provided by an expert user.

. . Fig. 20. Recognition rate for the seven small objectsWe can see that
As shown in gure[I8, we notice rst that the exampleshe iPhone interface allows users to provide higher quality learning examples

collected with the iPhone interface led to a signi cantly highethan the other three interfaces (especially with few learning examples). The
recognition rate than the other three interfaces. In particul§f'e" three interfaces gave approximately equal results.
we notice that only three examples collected with the iPhone
give as good results as eight examples of any other interface.
Furthermore, the iPhone interface seems to allow non-expertn the above tests, the whole image was used as an input.
users to achieve results close to the results achieved with Teus, the encircling feature of the iPhone interface was
gold training after eight examples. We can also see that eusot leveraged. We also investigated how encircling impacts
with very few good learning examples (such as three or fotlie performance of the overall system. As we can see in
iPhone examples) we can achieve a rather high recognitigmre P}, encircling with the iPhone allows us to improve
rate of 12 different objects (about 70% correct recognitionthe performance of the system, especially when the system
Then, we can see that the lowest score was obtained with therained with very few learning examples. In particular, we
Gesture interface. This result can probably be explained bsn see that the recognition rate is between 5 and 10% higher
the lack of usability of this interface (see details in the nexthen trained with less than three encircled learning examples.
section). Yet, we did not nd any statistical difference here. Although
As in the previous section, we also separated the 12 objettte experimental environment was cluttered to reproduce a
into two categories: big or small. As can be seen in 19lausible environment, the background was still relatively
the recognition rate for the big objects is very high (abouytain with comparison to many real-world environments where
90%) for all the mediator interfaces. Furthermore, we cahis result would probably be even more important.
see that no signi cant difference was found between theseWe also studied the impact of encircling with the Laser
interfaces. On the other hand, we can see in 20 thiaterface. However, we did not nd any difference between the
for the small objects we obtained signi cantly higher resultsvo conditions: whole or encircled images. We thus looked in
with the iPhone interface than with the three other interfacedetail at the images collected with this interface and found
So, while the interface does not seem to have a very stratigit in many cases the encircling was correct and should
impact on the recognition of the big objects, interfaces sutheoretically improve the results. Yet, in many other cases the
as the iPhone interface allows users to obtain a signi cantlgser stroke cut the object and so the encircling actually led to
higher recognition rate for small objects, especially with verg decrease in the quality of the learning examples (as shown
few learning examples. Those results are coherent with tbe the gure[10).
gualitative results presented earlier. These results allow us to show that the interface plays an
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Fig. 22. While the feedback provided by the Laser interface allows users to
make sure that the object is visible, it does not help them to realize how the
object is actually perceived by the robot. For instance, we can see that the
video game on the left is almost entirely occluded by the table. In the center
we can see a cluttered foreground in front of the poster of Zidane and nally
in the image on the right we can see that the image of the magazine has been
taken with an almost horizontal point of view.

Fig. 21. This gure shows the impact of encircling with the iPhone interface
on the recognition rate. As we can see this intuitive gesture allows us to

improve the recognition rate, especially when the system is trained with Ve&%sumptions about a humanoid's visual apparatus, we argue
few learning examples. . . !
that the design of the interface should help users to better
understand what the robot perceives but should also drive them
to pay attention to the learning examples they are collecting.

important role allowing non-expert users to robustly teac'fpr_instance, the_iPhone interface presents,_on the screen of the
visual objects to a robot. In particular, we showed that iffievice, the learning gxample that users encircle and prowd_e to
interface has a strong impact on the quality of the learnite robo_t. Thus, the interface naturally forces them to monitor
examples gathered by users. Indeed, we rst showed that wifte quality of the examples they collected.

simple interfaces such as the Wiimote or the Gesture interfaces

that do not provide any feedback to the users, only 50% Qf Subjective evaluation of the usability and game experience
the learning examples collect_ed_by_users can be consi_o_leregigure@ presents the answers to the usability question-
“good”. We also found that encircling improves the recog_mthaireS_ We performed a one-way ANOVA where the inde-
rate. Furthermore, we showed that three examples provideddy,qent variable was the interface used and the dependent
the iPhone interface allow us to obtain a higher recognitiQRriaple was the answer given in the questionnaires. We

rate than eight examples collected with any other interfagg,nq statistical differences for the questions @k {o3 =
These results are particularly important to us as we state t%§§5.p < 0:001), Q2 Fzi03 = 2:44p < 0:05) Q3

real world use.rs would pr_obably want to give. very few Iearning;s;103 = 6:41p < 0:001) and Q6 Fa.103 = 3:38 p < 0:05).
examples as it could quickly become a tedious task. The Tukey post-hoc tests showed that the iPhone, Wiimote

We also showed that speci cally designed interfaces suglhd Laser interfaces were judged as easier to learn and more
as the Laser and the iPhone interfaces, which provides ggctical to move the robot than the Gesture interface. The
the users a feedback of what the robot perceives allows n@Rers also stated that it was easier to make the robot look at an
expert users to ensure that the object they want to teachoi§iect with the iPhone and Wiimote interfaces. Furthermore,
actually visible. While it was expected that providing feedbadiey also judged that overall the iPhone was signi cantly more
to the users will help them to collect “apparently” bettepleasant to use than the Laser interface. In particular, during
learning examples, it is very interesting to see that only thRe experiments we observed that the Gesture interfaces led to
examples collected by the iPhone interface led to a ve§yme misunderstanding while interacting and so participants
signi cant improvement of the overall performance of theended to rush through the experiment.
learning system. Indeed, the Laser and the Wiimote interfacerigure [24 shows the results for the game part of the
gave a rather equal recognition rate. Thus, we can see thaéstionnaires. The only statistical difference was found for
the kind of feedback of what the robot perceives also Stron%estion Q1. We can see that the participants found the game
inuences the quality of the examples. More precisely, weasier when using interfaces based on mediator objects rather
think that while the Laser interface allows users to knowhan with the gestures interfaceBs(i0s = 5:17;p < 0:005).
whether an object is visible or not, it does not provide anyhe game was judged as entertaining by participants for all
information on how the object is actually perceived by thegonditions. It is also interesting to note that the gestures
robot. For instance, as shown by the examples in 2@ondition seems to improve the feeling of cooperation with
many examples were captured either far from the object (g robot. Similarly, participants seemed to be more willing
the object was very small in the picture), or the taught objegs play other robotic games with the gestures interface in the
was in the background while other uninteresting objects wefigure than with the other conditions. However, no statistical
in the foreground, etc. difference was found for these results.

Thus, if one is interested in allowing non-expert users It is interesting to note that while the gestures interface
to teach visual objects to a social robot by providing veryas stated as being less usable than the other three interfaces,
few learning examples, we think that the interface shoufshrticipants judged that the game was as entertaining with
really be taken into consideration and speci cally designed. this interface as with the others. To us, this result can be
particular, as naive participants seem to have strong incorregplained by several factors. First, it is important to notice
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Wizard was adapting its behavior to the participants and thus
was effectively cooperating with him. Although further studies
should be carried out in this direction, our preliminary results
about this seem to show that the gestures interface could be
interesting if one tries to develop a simple robotic game.

As stated above, we also timed the experience. However,
we did not nd any signi cant difference between the different
interfaces. Furthermore, for all the results above, no signi cant
differences was found between the participants from the sci-
ence museum and the participants from the university campus.
We also studied other sociological differences (age, gender)

) y o ) o without nding any remarkable result.
Fig. 23. Usability: Participants found the gestures interface signi cantly less

intuitive and harder to use than the other interfaces. They also stated that the

iPhone interface was overall more pleasant than the Laser interface. VI. DISCUSSION AND FUTURE WORK

Q1: It was easy to learn how to use this interface. ’

Q2: It was easy to move the robot. . We have proposed an integrated system based on a combi-
Q3: It was easy to make the robot look at an object. . . . . .
Q4 It was easy to interact with a robot. nation of advanced interfaces, visual perception and machine
Q5: The robot was slow to react. learning methods that allow non-expert users to teach a robotic
Q6: Overall, it was pleasant to use this interface. system how to recognize new visual objects. For experimental

convenience, the robotic system was composed of a personal
mobile robot and a remote computer which achieves of ine
signal processing and statistical learning. All the signal pro-
cessing and statistical learning algorithms used are fast and
incremental and it is possible to use them online and onboard
a mobile robot[[54].

With this system, we have studied the impact of various
interfaces based on mediator objects upon the ef ciency of
robot learning. We have shown that a well designed interface,
such as the iPhone, permits the collection of high quality
learning examples by non-expert users in realistic conditions
and outside of the lab. In particular, providing feedback about
what the robot perceives allows non-expert users to collect as

Fig. 24. Robotic game: Our robotic game was stated as entertaining bgood learning examples as expert users who are familiar with

all participants. They found the game signi cantly harder with the gestureéhe robotic and visual recognition issues.
interfaces but it increased the feeling of cooperation with the robot.

Q1: Completing the game was easy. We have also shown that our interfaces based on mediator
Q2: The game was entertaining. objects were judged intuitive and easy to use by participants.
Q3: | felt like cooperating with the robot. Users stated that they were more intuitive and more ef cient

4: | picture myself playing other robotic games in the future. . . . .
Qe:1p ysell paying g for teaching new visual objects to a robot than a direct

transposition of a human-like interaction based on gestures.

This result can be explained by the misconceptions held
that the participants did not know whether they collecteay non-expert users about what the robot perceives visually.
good learning examples or not; it did not in uence the userArtefact-based interfaces allow users to understand better what
experience. For instance, users who collected only very b robot perceives, and thus guide users into providing good
learning examples could still think that they had successfullgarning examples.
nished the game. Second, while interfaces such as the iPhonén this paper, we also investigated how a robotic game
interface were speci cally designed to help users collect gomdn be used as a framework to conduct real world and
learning examples, it was probably more complicated thdarge scale user studies. We argue that such an approach
necessary for the robotic game. Indeed, users had to monatiows the design of an experimental setup which engages
the robot, the game interface and the iPhone. Furthermoreaitd motivates users, justies aa priori arti cial task but
seemed that the interface should be as transparent as possilde has a speci c and reproducible protocol. We have also
in order to allow users to entirely focus on the game. Finallgxplored the concept and realization of the robotic game which
the gestures interfaces seemed to improve the user's feeliagses interesting questions, especially since robotic games are
that the robot was cooperating with them. We think that thi&relatively unexplored research area [55][56]. Our preliminary
result could be explained by the fact that participants weresult seems to show that users were entertained by our games
closer to the robot and that they were trying different gesturaad were willing to play more robotic games. However, it
to see how the robot reacted and so thereby determinisgems that the game should be rather simple and the interface
which gestures were better understood. The bias introducansparent to allow users to focus on the gameplay. Further
by the Wizard-of-Oz setup also led to a situation where tlsudies should be conducted in these directions.
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The experimental setup presented here was designed foll@Nlewing them to choose among those possibilities. We will
ing some particular design choices. As stated previously, &iso study how the interface could provide the ability for the
chose to restrict ourselves to the use of the Nao robot withduimans to incrementally build the complete clusterization of
enhancing its onboard sensors. In our opinion, this robot wiee different learning examples through intuitive and transpar-
representative of some particular characteristics which madeiit interactions and thus circumvent the issues raised by not
a plausible candidate for the future of personal robotics suchwsng symbolic labels.
having a humanoid shape, being relatively low-cost and easy tdrinally, in the experiments described above, we chose to
integrate in a domestic environment both from a technologicahly perform of ine visual classi cation. Indeed, the experi-
and cultural point of view. ments were already rather complex and time consuming for

This robot also had some limited sensors which constraintite users and so we decided not to include the search part in
the interaction, but this limitation is currently dif cult to our robotic game to keep the experimental time acceptable
avoid in robots targeted for everyday use in the home. Asr users facilitating the testing of many users. It will be
long as robots and humans have different sensorimotor &nteresting to evaluate our integrated system in a complete
cognitive apparatuses, robustness issues during interaction sénario including the search of the objects in order to study
be inevitable, especially if one tries to directly transposte entire interaction, and let users have feedback on the
the human-like interaction into the human-robot interactidearning ef ciency of the robot. The robot should itself assess
domain. the quality of the learning examples. In such a closed loop

Other approaches such as smart environments or ubiquitegsenario, it will be interesting to investigate how the robot
robotics have also widely been explored in the literatuuld provide feedback to the user regarding the quality of
[57][58]. Using an omnidirectional camera or a set of xedhe learning examples collected, or how the robot could use
camera on the ceiling would have changed some of our resudtsive learning techniques to ask informative guestions to the
and in particular it would have probably facilitated the drawingser [60].
of attention when using the gestures based interface and thus

improving its usability.
Nevertheless, we argue that the interaction problems such
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interface or a laser pointer interface have been combined with
ceiling cameras to facilitate drawing a service robot's attention
[39][15]. Further experiments should be conducted both in this
direction and with other types of robots to evaluate the impact
of the robotic setup on our interfaces and on their perception
by users.

In the system presented in this paper, the visual objects were
automatically labeled, which was made possible by the game
context. More precisely, as we used a prede ned set of objects
during our experiments, they could automatically be associated
with a particular symbol provided by the game interface. Such
symbolic labels can be easily and surely compared which then
allows a direct classi cation of the different visual examples.[2
This is an important feature as the clustering of the learningg
examples permits the construction of a better statistical model
of the visual object and so a better recognition. However,4

. - - - - ]
for more diverse kinds of interaction, we should provide thé
ability for the users to directly enter a word that they want
to associate with the object. Pilot studies have shown thdl
the user would prefer to use vocal words I[59]. In future
work, we will thus investigate the use of acoustic wordg6]
associated with visual objects without using an “off-the-shelf”
speech recognition system as we argue that they still suffey
from robustness problems when used on single words and in
uncontrolled conditions. We will in particular investigate the
role of the interface for improving the speech recognition, fm[8
instance by displaying the N closest words to the users and]

VIDEO LINKS

Description of the interfaces based on mediator objects :
http://youtu.be/vrMsalj2SDM

Description of the gestures based interface
http://youtu.be/I5GOCgXdgQg
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