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Abstract
Complexity, heterogeneity, interdependencies and, especially, evolution of sys-
tem/services specifications, related operating environments and user needs, are
more and more highly relevant characteristics of modern and future software ap-
plications. Taking advantage of the experience gained in the context of the Eu-
ropean project CONNECT, which addresses the challenging and ambitious topic
of eternally functioning distributed and heterogeneous systems, in this paper we
present a framework to analyse and assess dependability and performance prop-
erties in dynamic and evolving contexts. The goal is to develop an adaptive ap-
proach by coupling stochastic model-based analysis, performed at design time to
support the definition and implementation of software products complying with
their stated dependability and performance requirements, with run-time moni-
toring to re-calibrate and enhance the dependability and performance prediction
along evolution. The proposed framework for adaptive assessment is described
and illustrated through a case study. To simplify the description while making
more concrete the approach under study, we adopted the setting and terminology
of the CONNECT project.

Key words: Adaptation, Dependability, Evolving Heterogenous Systems,
Model-based Assessment, Monitoring, Performance

1. Introduction

Modern software applications are increasingly pervasive, dynamic and hetero-
geneous. More and more they are conceived as dynamically adaptable and evolv-
able sets of components that must be able to modify their behaviour at run-time
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to tackle the continuous changes happening in the unpredictable open-world set-
tings [3]. Operating in the open-world poses a number unprecedented challenges
to software systems, including:

• The reference specification of expected/correct operation is not a-priori avail-
able;

• Specifications are learnt/inferred, thus they can be incomplete, unstable,
uncertain, with impact on all the software engineering processes built upon
system specification;

• System components are assembled dynamically, with potential strong im-
pact on interoperability in presence of heterogeneity;

• Assessment activities must accommodate change (and must be adaptable
themselves), therefore special emphasis is on run-time assessment (possibly
coupled with off-line analysis techniques, wherever possible), which is a
new paradigm with respect to traditional assessment methods.

As a result of such prominent trends two related needs emerge.
On the one side, we observe that the interconnected components, which we

refer to as the Networked Systems (NSs), are independently developed. The fast
pace at which technology advances along diverging tracks can form gaps and es-
tablish separately evolving technological islands, between which communication
is hampered. Thus the state of practice is that ad hoc bridging solutions need to
be continuously developed to fill those communication gaps.

On the other side, the everyday life of modern and future society is growingly
depending on the services provided by such highly complex and pervasive sys-
tems. In some cases their failures might even lead to catastrophic consequences
in terms of damages to human life, environment, economy. Therefore, increasing
importance is given to dependability and performance properties of such systems.

The European FP7 Future and Emerging Technology Project CONNECT ad-
dresses both needs, aiming at enabling seamless and dependable interoperability
among NSs in spite of technology diversity and evolution. The ambitious goal
of the project is to have eternally functioning distributed systems within a dy-
namically evolving open-world context. This is pursued through the on-the-fly
synthesis of the CONNECTors through which heterogeneous NSs can communi-
cate in dependable and secure way. Indeed, effective interoperability requires
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to ensure that such on-the-fly CONNECTed systems provide the required non-
functional properties and continue to do so even in presence of evolution, thus
calling for enhanced and adaptive assessment frameworks.

In the context of the CONNECT project, approaches to both off-line and run-
time analysis are under development to analyze and ensure the synthesis of CON-
NECTors with required dependability and performance levels. In particular, an
assessment framework is proposed which combines continuous on-line assess-
ment of non-functional properties through a lightweight flexible monitoring in-
frastructure with stochastic model-based analysis. The goal is to assess complex
dependability and performance metrics through accurate analysis that adapts to
the evolving context. Although not novel in its basic principles, this off-line and
run-time integrated framework is proposed as a general, automated approach to
fulfill the dependability and performance assessment needs in dynamic and evolv-
ing contexts.

In this paper, we initially point out the challenges of assessing non func-
tional properties in dynamic CONNECTed systems and provide the context for
our research objectives (Section 2). Then we introduce first separately the pre-
deployment analysis method (Section 3) and the run-time monitor (Section 4) un-
der development and hence their synergic usage (Section 5), through which adap-
tive assessment is pursued. A case study is also included (Section 6) to demon-
strate the applicability of the integrated analysis framework. Finally we overview
related work (Section 7) and draw conclusions (Section 8).

2. Context

Before introducing our approach, in this section we set the reference context
within which we settled our study on dependability and performance assessment
methodologies able to account and adapt to system and environment changes. In
the following two sub-sections we first provide a brief overview of the already
mentioned CONNECT project, tailored to investigate research on eternally con-
nected systems despite heterogeneity and dynamic evolution, and then discuss
some emerging issues when addressing the assessment of systems in such con-
text.
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2.1. Overview of the EU CONNECT project
Our research is carried out in the context of the FP7 “ICT forever yours” Eu-

ropean Project CONNECT1, belonging to the Future and Emerging Technologies
track. CONNECT collects a consortium of partners whose expertise covers mid-
dleware, software engineering, formal methods, machine learning, software syn-
thesis and systems dependability. The CONNECT world envisions dynamic envi-
ronments populated by technologically heterogeneous Networked Systems (NSs),
and by the components of the CONNECT enabling architecture, called the CON-
NECT enablers.

The ambition of the project is to have eternally functioning systems within a
dynamically evolving context. To overcome interaction protocol heterogeneity at
all layers the project introduces a revolutionary approach that dynamically gen-
erates the inter-mediator components to connect heterogeneous systems. This is
achieved by synthesizing on-the-fly the CONNECTors through which the NSs com-
municate. The resulting emergent CONNECTors then compose and further adapt
the interaction protocols run by the CONNECTed System. In brief, the NSs man-
ifest the intention to connect to other NSs. The enablers are networked entities
that incorporate all the intelligence and logic offered by CONNECT for enabling
the required connection. The emergent CONNECTors produced by the action of
enablers are called the CONNECTors, whereas as an outcome of the successful
creation and deployment of CONNECTors we obtain the CONNECTed systems.

In Figure 1 we provide an overview of the CONNECT vision and architecture.
We show in schematic form the enablers which are currently part of the CONNECT

enabling architecture. From top to bottom, we see:

Discovery Enabler catches the requests for communication coming from the NSs
and initiates the CONNECT process. We tend to make the minimum possible
assumption on the information (called affordance) that NSs must provide;

Learning Enabler : we use active learning algorithms to dynamically determine
the interaction behaviour of a NS and produces a model in the form of a
labeled transition system (LTS);

Synthesis Enabler : from the models of the two NSs, this enabler synthesizes a
mediator component through automated behavioural matching;

Deployment Enabler finally deploys and manages the CONNECTors.

1http://connect-forever.eu
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Figure 1: The CONNECT Architecture

Evidently, such a dynamic context strongly relies on one side on mechanisms
for ensuring dependability, security and trust, and on the other side on functional
and non-functional behaviour monitoring, through which run-time adaptation of
CONNECTors is triggered. Hence the CONNECT architecture also includes the
following important enablers:

Monitoring Enabler collects raw information about the CONNECTors behaviour
and passes them to the enablers (the monitor’s customers) who requested
them; the CONNECT monitoring infrastructure is further described in Sec-
tion 4;

CONNECT bus : all communication among the enablers and with the CONNECTors
happens through a message bus, which is currently implemented by a simple
message-based communication model as for instance the Java Messaging
Service (JMS);

DEPER Enabler : this is the main focus of this paper and is described in detail
in the next section;
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Security and Trust Enabler collaborates with the synthesis enabler to satisfy
possible security and trust requirements. It also continuously determines if
the requirements are maintained at run-time, by receiving monitoring data
from the monitoring enabler (similarly to the integrated approach we exem-
plify for dependability and performance in Section 5).

2.2. Challenges in dependability and performance assessment in evolving context
The need for research advancement in the assessment of evolving, ubiquitous

systems is recognized by the dependability/resilience community, being indicated
as one of the prominent research challenges in the research agenda set up by the
ReSIST European Network of Excellence [9]. In fact, it is observed that, since
current and future systems result from evolutions of pre-existing systems, as a con-
sequence assessment should move from off-line and pre-deployment, to continu-
ous and automated operational assessment. The traditional approaches to assess-
ment, which dominate the current assessment practices, are: i) pre-deployment
assessment, i.e. collecting data in a simulated environment (e.g. “model-based
analysis”, “statistical testing”, “dependability benchmarking”, etc.), and/or ii) pro-
cessing the measurement data accumulated in real operation at a later stage, e.g.
periodic reviews widely used in some safety-critical industries such as the nu-
clear sector. Both these categories of methods have shortcomings when dealing
with evolution and dynamicity of the system under analysis. In fact, dealing with
evolution and dynamicity raises two major challenges from the point of view of
dependability and performance analysis:

• Pre-deployment assessment is limited by its nature: the impact on system
dependability/performance cannot be known for unforeseen environments.
Therefore, given the many possible variations occurring during software ap-
plication lifetime, it would be necessary to analyze beforehand, through off-
line analysis, all the possible scenarios which could take place at run-time,
to be stored in a look-up table from which to retrieve the correct analysis
upon scenario’s occurrence. But this cumbersome activity is in general im-
possible to conduct at a sufficiently satisfactory level, especially for critical
applications subject to strong dependability requirements. Resorting to pro-
cessing the measurements collected in real operation at a later stage, e.g.
in periodic reviews, may be inadequate as well, since by the time the ob-
servations are processed the operational environment may have changed to
something not yet seen before.
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• Pre-deployment assessment, however, plays an important role in providing a
priori knowledge about how the system is expected to operate, especially if
the simulated environment is “close” to the operational environment post-
deployment, and to take appropriate design decisions. Stochastic model-
based assessment has been widely recognized as a helpful means to cover
this role [5]. Nevertheless, the unavoidable higher chance of inaccurate/un-
known model parameters needs to be considered as a weakness that could
result in too inaccurate analysis results, thus negatively impacting design
decisions.

To contribute to overcome such deficiencies of current methods in assessing
dynamic systems, we developed an approach which tries to combine the benefits
of both pre-deployment and processing of data obtained from real executions, as
illustrated in the following.

3. Pre-deployment stochastic model based analysis: the way to start support-
ing design decisions

As already mentioned, pre-deployment assessment is a crucial activity to drive
the system design towards a realization compliant with the required level for qual-
ity of service indicators. In fact, it allows for early detection of design deficiencies,
so as to promptly take the appropriate recovery actions, thus significantly saving in
money and time with respect to discovering such problems at later stages. Also,
it is central to the decision making process among alternative design solutions,
again gaining in efficiency and better guarantee to end up with the “right” system.
Stochastic model-based approaches are very suited and widely adopted for early
prediction of dependability and performance metrics. Research has developed a
variety of models, each one focusing on particular levels of abstraction and/or sys-
tem characteristics, including State-Based Stochastic methods ([20]). These last
use state-space mathematical models, expressed with probabilistic assumptions
about time durations and transition behaviours; a short survey on State-Based
Stochastic methods and automated supporting tools for the assisted construction
and solution of dependability models can be found in [5].

The pre-deployment assessment part of our proposed method, tailored to dy-
namic and evolving systems assessment, exploits State-Based Stochastic model-
ing and analysis, which are embedded in an automated process. In the following,
we overview the architecture and main functionalities of the Dependability and
Performance enabler, introduced in Figure 1 and shortly referred to as DEPER.
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Figure 2: Architecture of the Dependability&Performance (DEPER) Analysis in CONNECT

DEPER supports the automated dependability and performance analysis and al-
ready partially described in [17, 4]. Figure 2 illustrates the five main modules
composing DEPER, whose activities start from pre-deployment assessment of the
generated bridging CONNECTors to subsequent refinements based on run-time
observations of real networked systems and CONNECTors executions. A brief
summary is provided for each module except for the Udapter module, which is
fully described in Section 5, when focusing on the integration with monitoring.
As already introduced in section 2.1, the DEPER enabler interacts with other en-
ablers in the CONNECT framework to: i) be triggered on the analysis to perform
and take in input both the specification of the system to analyze and the metric
to assess together with the value required for it. The enablers contributing to this
step are Discovery, Learning, Deployment and Synthesis; ii) provide the feedback
from the analysis to Synthesis, which can then proceed with the deployment of
the CONNECTor or refine it according to the feedback.

Builder The Builder module takes in input the specification of the CONNECTed
system. This specification is given as Labelled Transition Systems (LTSs) an-
notated with non-functional information necessary to build the dependability and
performance model of the CONNECTed system. Annotations include, for each
labelled transition, the following fields: time to complete, firing probability, and
failure probability.
The module produces in output a dependability and performance model of the
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CONNECTed system suitable to assess the given dependability and performance
requirements. Such model is specified with a formalism that allows to describe
complex systems that have probabilistic behaviour, e.g., stochastic processes.

Analyser The Analyser module takes in input the dependability and performance
model from the Builder module and the dependability and performance properties
required by the NSs from Discovery/Learning. These requirements are expressed
as metrics and guarantees. Metrics are arithmetic expressions that describe how
to obtain a quantitative assessment of the properties of interest of the CONNECTed
system. To allow for automated assessment, they are expressed in terms of tran-
sitions and states of the LTS specification of the NSs. Guarantees are boolean
expressions that are required to be satisfied on the metrics. The module extends
the received model with reward functions suitable to quantitative assessment of
the metrics of interest. Then, it makes use of a solver engine to produce a quanti-
tative assessment of the dependability and performance metrics.

Evaluator The Evaluator module is in charge of checking whether the analysis
results match with the guarantee, as requested by the networking systems willing
to communicate, or not. Evaluator informs Synthesis about the outcome of the
check and, in case of mismatch it may receive back a request to evaluate if en-
hancements can be applied to improve the dependability or performance level of
the CONNECTed system, namely:

a) To take into account an alternative CONNECTor deployment (e.g., a de-
ployment that uses a communication channel with lower failure rate). A
new analysis is triggered, considering the updated specification of the CON-
NECTor.

b) Enhance the specification of the CONNECTor by including dependability
mechanisms, which are counter-measures to contrast failure modes affect-
ing performance and/or dependability metrics (e.g., a message retransmis-
sion technique). Such mechanisms then applied by the Enhancer module
to model elements that are considered weak from the point of view of the
metric under assessment.

Instead, in case the analysis results provided by Analyser match with the guar-
antee, the CONNECTor’s design is considered satisfactory and ready to be de-
ployed, thus terminating the pre-deployment analysis phase. However, because
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of possible inaccuracy of model parameters due to potential sources of uncer-
tainty dictated by the dynamic and evolving context, Evaluator also instructs the
Updater module about its interaction with the Monitor enabler about on-line ob-
servation of events. Collection of such events allows to determine whether a new
analysis needs to be performed, to properly adapt to changes (or unforeseen cir-
cumstances), as better detailed later in Section 5, when focusing on integration
between model-based analysis and on-line monitoring.

Enhancer The Enhancer module is activated by Evaluator when the guarantees
are not satisfied and Synthesis makes a request to enhance the CONNECTor with
dependability mechanisms. Enhancer is instructed by the Evaluator module with
indications about how to select the dependability mechanism to try and to which
elements of the original model the mechanism has to be applied. Then, it performs
the following actions: (i) selects the dependability mechanisms that can be em-
ployed, among those available in the category indicated by Evaluator; (ii) instructs
the Builder module on the application of the selected dependability mechanism in
the CONNECTed system model, in accordance with indications from Evaluator,
and triggers a new analysis. At the end of this new analysis, Evaluator verifies
whether the enhanced CONNECTor fulfills the dependability and performance re-
quirements. If yes, Evaluator informs the Synthesis enabler about the mechanism
to add to the CONNECTor design and the DEPER’s support to the design of this
CONNECTor is completed. Otherwise, Enhancer makes a further attempt with
the next dependability mechanism (if available), according to some internal pre-
defined policies about the rank of available mechanisms and about how to apply
them to model elements provided by Evaluator, and a new cycle with Builder, An-
alyzer and Evaluator is repeated. This loop ends either when a successful mecha-
nism is found, or when all the mechanisms are exhausted. A library of models for
triggering the generation of typical dependability mechanisms suitable to contrast
two typical classes of failure modes that may happen during interactions has been
defined and implemented (see [18]). Given the focus of this paper on the adapta-
tion of model-based analysis through on-line observations, these mechanisms and
related models will not be further treated.

4. The on-line view: incremental accumulation of observations through mon-
itoring

The best way to provide a valid bridge between the observed system and the
pre-deployment analyser is to insert a new layer, the monitoring layer, able to
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Figure 3: GLIMPSE architecture

gather and filter information useful to the dependability and performance analy-
ses. Indeed, monitoring has been used for on-line dependability analysis since the
advent of debuggers in the sixties.

In CONNECT we have developed a modular, flexible and lightweight mon-
itoring infrastructure, called GLIMPSE2. Although expressly conceived for use
in CONNECT, GLIMPSE infrastructure, shown in Figure 3, is totally generic and
can be easily applied to different contexts. To provide a better communication
decoupling, we adopted a publish-subscribe communication paradigm.

The lowest level of the monitoring is represented by the probe deployed into
the CONNECTor; this probe monitors the messages exchanged among the NSs in-
volved into the communication, possibly applying a local filter in order to decrease
the amount of messages sent on the CONNECT bus. Note that such probes are non
intrusive data collectors (proxies), i.e., they have no effect on the order and timing
of events in the application and do not generate overhead on the communication
or on the interacting services.

The second layer of the monitoring infrastructure is represented by the infor-
mation consumers, the entities interested to obtain evaluation of a non-functional
properties or interested to receive notification of occurrences of events/exceptions
that may occurs into the CONNECTor.

2Glimpse is an acronym for Generic fLexIble Monitoring based on a Publish-Subscribe infras-
tructurE
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With specific reference to this paper purposes, the Manager module is in
charge to manage all the communication between the DEPER enabler (yet an-
other consumer in the Monitor vision) and the Complex Event Processor (CEP).
_3 It analyzes the request message sent from DEPER and instruments the CEP.
The message sent from DEPER enabler contains one or more rules related to nf-
properties requirements that the monitor enabler must verify. This message is
structured following a generic XSD schema (See listing: 1); we chose such stan-
dard format in order to easily allow the replacement of the CEP with any other
one that from time to time can be considered more specific or efficient for usage.

The XML generated with this schema contains all the necessary information
to interact with the specific knowledge-base used. In particular, into the field
RuleName of the XML, DEPER will put the name of the request. The content
of the RuleBody field is a rule, written using the Drools rule syntax that will be
loaded on the GLIMPSE knowledge base. Drools is a rule engine based on Charles
Forgy’s Rete algorithm [13].

On an event-based monitoring infrastructure, as GLIMPSE, the gathered infor-
mation is provided in form of events. An event is an atomic description, a smaller
part of a more large and complex process at application level. In CONNECT, an
event represents a method invocation on a remote web service: the invocation,
coming from the producer to the consumer, is captured when it comes through the
CONNECTor, encapsulated into a ConnectBaseEvent object, and sent through the
CONNECT bus.

The detailed structure of a ConnectBaseEvent is described in Figure 4.
For completeness we note that, to provide a more abstract generation of a rule

for monitoring non-functional properties, we are developing a Property Meta-
Model (PMM) [16], from which users can generate their own rule model and,
using a model-driven approach, this can then be translated directly to the desired/-
more performant/available CEP language. We leave the metamodel outside the
scope of the present paper.

5. Off-line and on-line integrated: the way to adapt assessment under uncer-
tainty/evolution

After having introduced the pre-deployment and run-time analysis methods
under development, we focus here on their synergic usage, through which adaptive

3Antonella: qui va detto in che cosa consiste questo messaggio
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1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <schema xmlns=”http://www.w3.org/2001/XMLSchema”
3 targetNamespace=”http :// labse . isti . cnr . it /glimpse/xml/ComplexEventRule”
4 xmlns:tns=”http :// labse . isti . cnr . it /glimpse/xml/ComplexEventRule”
5 elementFormDefault=”qualified”>
6 <element name=”ComplexEventRuleActionList”
7 type=”tns :ComplexEventRuleActionType” />
8
9 <complexType name=”ComplexEventRuleActionType”>

10 <sequence>
11 <element name=”Insert” type=”tns :ComplexEventRuleType”
12 maxOccurs=”unbounded” minOccurs=”0” />
13 <element name=”Delete” type=”tns:ComplexEventRuleType”
14 maxOccurs=”unbounded” minOccurs=”0” />
15 <element name=”Start” type=”tns :ComplexEventRuleType”
16 maxOccurs=”unbounded” minOccurs=”0” />
17 <element name=”Stop” type=”tns:ComplexEventRuleType”
18 maxOccurs=”unbounded” minOccurs=”0” />
19 <element name=”Restart” type=”tns:ComplexEventRuleType”
20 maxOccurs=”unbounded” minOccurs=”0” />
21 </sequence>
22 </complexType>
23 <complexType name=”ComplexEventRuleType”>
24 <sequence>
25 <element name=”RuleName” type=”string” maxOccurs=”1” minOccurs=”1” />
26 <element name=”RuleBody” type=”string” maxOccurs=”1” minOccurs=”0” />
27 </sequence>
28 < attribute name=”RuleType” type=”string” />
29 </complexType>
30 </schema>

Listing 1: The Complex Event Rule XSD
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Figure 4: The ConnectBaseEvent Interface

assessment is pursued. Basically, the dynamicity and evolution of the targeted en-
vironment lead to potential sources of uncertainty, which undermine the accuracy
of the off-line analysis. To cope with this issue, adaptive dependability assessment
is investigated, which exploits run-time monitoring to re-calibrate and enhance the
dependability and performance prediction along time. In brief, the picture of the
synergic usage is the following. At design time, stochastic model-based analysis is
performed as a pre-deployment method to support the synthesis of a CONNECTor
suitable to allow interoperability among the systems willing to connect under re-
quired dependability and performance levels. While the prediction so obtained
plays an important role in guiding the building of the CONNECTor, it might suffer
from unacceptable inaccuracy because of possibly limited knowledge at analy-
sis time or successive context evolution. Through monitoring properly selected
events at run-time and collecting them along several executions, we can identify
changes that require to be accounted for by a new iteration of the model-based
analysis.

5.1. Updater
As shown in Figure 2, Updater is the module of the DEPER architecture in

charge of interacting with the Monitor enabler to refine the accuracy of model
parameters through on-line observations. Inaccuracy of the non-functional val-
ues used in the off-line analysis at CONNECTor design time is mainly due to
two possible causes: i) limited knowledge of the NSs characteristics acquired
by DEPER/Discovery enablers; ii) evolution along time of the NSs, as naturally
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accounted for in the CONNECT context.
Updater receives inputs from both internally to DEPER (from the Evaluator mod-
ule) and externally (from the Monitor enabler).
For each CONNECTor ready to be deployed, the Updater module receives from
the Evaluator module the model parameters to convey to the Monitor enabler for
run-time observations. The parameters received from the Evaluator are obtained
through a sensitivity analysis that aims to understand which elements of the CON-
NECTed system have highest impact on the dependability and performance mea-
sure.
From the Monitor enabler, the Updater module receives a continuous flow of data
of the parameters under monitoring relative to the different executions of the CON-
NECTor. Accumulated data are processed through statistical inference techniques.
If, for a given parameter, the statistical inference indicates a discrepancy between
the on-line observed behaviour and the off-line estimated value used in the model,
a new analysis is triggered by instructing the Builder module to update the CON-
NECTed system model. To improve on efficiency, the Updater module could re-
ceive indications not only on the parameters to be monitored, but also on a range of
values for each of them, thus setting the variation interval within which the already
performed analysis is subject to negligible modifications. Then, should the new
values determined via inference techniques on on-line collected data be outside
the reference range values, the consequence is that the synthesized CONNECTor
does not meet anymore the stated requirements and re-adjustments at synthesis
level are necessary. Of course, the efficiency gained in avoiding repetitions of
the analysis triggered by Updater has to be compared with the additional effort
necessary at pre-deployment time to assess the ranges for the parameters values
via sensitivity analysis. In the current prototype implementation of DEPER, range
values have been not accounted for and left as a future extension of the enabler.

The activity diagram that describes the Updater phase is shown in Figure 5.
As reported in [24], methods of statistical inference applied to a collection of

elements under investigation (called population), allow to estimate the character-
istics of the entire population. In our case, the collection of values relative to each
parameter under monitoring constitute a subset of the population (called sample)
to which such techniques are applied.
Parameter estimation is the process by which it is possible to get information,
from the observed sample, in order to assign a value (point estimate) to the pa-
rameter or a set of values (interval estimate). The sampling process represents a
significant problem, because it is unknown which is the representative sample size
(n). It seems intuitive that the precision of the estimates increases with n. On the
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Figure 5: The Updater activity diagram

other hand increasing n could lead to excessive increase of time and costs.

The methods of parameter estimation rarely produce a point estimate of the
desired parameter which coincides with the actual value. Therefore, it is often
preferred to find an interval estimate, called confidence interval ∆, with a confi-
dence level α. In this way we are confident that the confidence interval contains
the real value of the parameter under analysis.
The size n of the random sample affects the confidence interval, therefore it is
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possible to determine the value of n based on the confidence interval:

n ≥

⌈(
zα/2S

2(n)

∆

)2
⌉

(1)

where the value of zα/2 is tabulated. When the sample size is relatively small
(n < 30), we can use the Student t distribution [24].
To evaluate the sample size n we encounter two difficulties:

1. S2 is not known in advance;
2. tn−1;α/2, which can be read from a table, depends on n.

These difficulties can be solved by the following two points:

1. using an assumed value of the variance, indicated by S∗2, from pilot inves-
tigations;

2. using an iterative algorithm, to evaluate n using from time to time the de-
grees of freedom obtained at the previous step. The stop condition of the
algorithm is reached when the result of two successive steps is the same.

The iterative algorithm proceeds as follows:

1. n0 =∞ (initialization);

2. n1 =
(

2·tn0;α/2
∆

)2

· S∗2;

3. n2 =
(

2·tn1;α/2
∆

)2

· S∗2;

4. . . .
5. until the last two results are the same.

Following this approach and considering fixed values of confidence interval
and confidence level, we are able to define the sample size that the Monitor enabler
has to send to the DEPER enabler in order to evaluate the monitored data.

5.2. Integration and interaction
The interaction between DEPER and Monitor can be analyzed through a sim-

ple sequence diagram shown in Figure 6, where we intentionally left out system
start-up operations.

In detail, DEPER and Monitor interact by using a Publish/Subscribe protocol.
The interaction starts when the DEPER enabler sends a JMS message whose pay-
load contains an XML object rule generated using ComplexEventRule classes (as
explained in Section 4).
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Figure 6: The interaction between DEPER and Monitor

Whenever Monitor receives a request message on the service channel, a new
channel dedicated to the requesting enabler (DEPER in this case) is set up to com-
municate occurrences of the requested pattern.

Once the CONNECTor is deployed, data (events) derived from real executions
are sent by the probe to the CONNECT bus. The Monitor enabler gathers those
events and using the CEP component, correctly instructed through the Complex-
EventRuleAction sent by the DEPER enabler, tries to infer one or more of the
patterns on which the DEPER enabler is subscribed.

Upon occurrence of a relevant event the notification to the DEPER enabler is
enacted by sending a JMS Message on the dedicated channel created on purpose
in the initial phase of the communication (see Figure 6) on which payload is a
ComplexEventResponse object (see Listing 2).

The DEPER enabler, in turn, performs a statistical analysis of the monitored
observations and uses such information to check the accuracy of the model anal-
ysed before deployment. If the model parameters are found to be inaccurate,
DEPER updates the model with the new values, and performs a new analysis. If
the new analysis evidences that the deployed CONNECTor needs adjustments, a
new synthesis–analysis cycle starts.
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1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <schema xmlns=”http://www.w3.org/2001/XMLSchema”
3 xmlns:tns=”http :// www.example.org/ComplexEventResponse/”
4 targetNamespace=”http :// www.example.org/ComplexEventResponse/”
5 attributeFormDefault =” qualified ”>
6 <element name=”ComplexEventResponseList” type=”tns:ComplexEventResponse” />
7 <complexType name=”ComplexEventResponse”>
8 <sequence>
9 <element name=”RuleName” type=”string” maxOccurs=”1” minOccurs=”1” />

10 <element name=”NetworkedSystemSource” type=”String” maxOccurs=”1” minOccurs=”1” />
11 <element name=”ResponseKey” type=”string” maxOccurs=”1” minOccurs=”1” />
12 <element name=”ResponseValue” type=”string” maxOccurs=”1” minOccurs=”1” />
13 </sequence>
14 </complexType>
15 </schema>

Listing 2: The Complex Event Response XSD

6. Case-study

In this section, we show how the integration between DEPER and GLIMPSE

can be exploited in the context of a demonstrative scenario.

6.1. Terrorist alert scenario
We consider the CONNECT Terrorist Alert scenario [8], depicting the critical

situation that during a show in the stadium, the control center spots one suspect
terrorist moving around. The alarm is immediately sent to the Police.

Policemen are equipped with ad hoc handheld devices which are connected to
the Police control center to receive command and documents. Precisely, the po-
licemen can share documents with the Police control center and with other police-
men through a SecuredFileSharing application, for example a picture of a suspect
terrorist.

Unfortunately, the suspect is put on alert from the police movements and tries
to escape, evading the Stadium.

Within such an emergency situation, we focus on the case that a policeman
that sees the suspect running away can dynamically seek assistance to capture
him from civilians serving as private security guards in the zone of interest. To
get help in following the moves of the escaping terrorist and capturing him, the
policeman sends to the civilian guards an alert message in which one picture of
the suspect is distributed.

The guards are equipped with smart radio transmitters which run an Emergen-
cyCall application. This transmission follows a two steps protocol. We assume
in fact that the guards that control a zone are CONNECTed in groups, and that for
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each group there is a Commander on duty. The protocol followed in the Emergen-
cyCall application is that a request message is first sent from the guards control
center to the Commander. As soon as the Commander replies with an acknowl-
edgement of receipt, a message with details of the emergency is forwarded to all
security guards. On correct receipt of the alert, each guard’s device automatically
sends an ack to the control center.

SecuredFileSharing

• The peer that initiates the communication (hereafter denominated the coor-
dinator) sends a broadcast message (selectArea) to selected peers (the
Police control center or policemen) operating in a specified area of inter-
est. In the SecuredFileSharing application, the coordinator can be either the
Police control center or a policeman.

• The selected peers reply with an areaSelected message.

• The coordinator sends an uploadData message to transmit confidential
data to the selected peers.

• Each selected peer automatically notifies the coordinator with an upload-
Success message when the data have been successfully received.

EmergencyCall

• The guards control center sends an eReq message to the commanders of
the patrolling groups operating in a given area of interest.

• The commanders reply with an eResp message.

• The guards control center sends an emergencyAlert message to all
guards of the patrolling groups; the message reports the alert details.

• Each guard’s device automatically notifies the guards control center with an
eACK message when the data has been successfully received and a timeout
is triggered after a time interval if not all guards sends back the eAck mes-
sage. The timeout represents the maximum time that the CONNECTor can
wait for the eAck message from the guards.
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Figure 7: Terrorist Alert Scenario: Sequence diagram of the messages exchange

Figure 8: Terrorist Alert Scenario: SAN Model of the CONNECTor

The two applications, SecuredFileSharing and EmergencyCall in this scenario
represent the two Networked Systems, which are not a priori compatible. Hence,
to allow a Policeman and the guards in the zone where the suspect has escaped
to communicate we need to synthesize on-the-fly a CONNECTor. The needed
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mappings are shown in Figure 7 and briefly summarised below.

CONNECTor

• The selectArea message of the policeman is translated into an eReq
message directed to the commander of the patrolling group operating in the
area of interest.

• The eRespmessage of the commander is translated into an areaSelected
message for the policeman.

• The uploadData message of the policeman is translated into a multicast
emergencyAlert message.

• The eACKmessages automatically sent by the guards’ devices that correctly
receive the emergencyAlert message are collected and then translated
into a single uploadSuccess message for the policeman.

6.2. On-line analysis
Taking as a reference the above described scenario, we focus in the follow-

ing on the basic interactions between DEPER (in particular, its Updater module)
and GLIMPSE enablers, performed to exchange requests for monitoring and to
gather monitored data. Figure 8 depicts the dependability and performance model
of the synthesized CONNECTor built by DEPER at design time, using the SAN
formalism [23]. We recall that this model is obtained through automatic trans-
formation from the LTS specification of the networked system, that is the Se-
curedFileSharing and EmergencyCall in the considered scenario. The measures
assessed in the evaluation are latency and coverage. Latency represents a perfor-
mance indicator and is measured from when the control centre sends the initial
request selectArea to when it receives uploadSuccess. Coverage repre-
sents a dependability indicator and is given by the percentage of responses the
control centre receives back within a certain time T . The sensitivity analysis on
the impact of model parameters on the assessment of these selected measures re-
vealed that critical parameters to keep under observation on-line via the Monitor
enabler are: i) transitions eReq and eResp, for the latency measure, and ii) the
transition emergencyAlert for the coverage measure. These model param-
eters represent the duration of the transitions executed by the NS requesting the
communication. Refining the pre-analysis knowledge on the values assumed for
such parameters by real observations constitutes a fundamental step in enhancing
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the accuracy of the analysis results. In fact, should the initial forecast for these
parameters deviate from what is evidenced through repeated executions, a new
analysis round needs to be triggered to understand whether the dependability and
performance requirements are still met by the CONNECTed system.

An example of request message sent by DEPER to GLIMPSE, in order to trig-
ger the monitoring of the critical transition for latency aspects, is shown in the
Listing 3.

The GLIMPSE infrastructure, more specifically its Manager component, re-
ceives the DEPER requests and sets up the ComplexEventProcessor with the pro-
vided rule.
The events flowing in from Probes are structured in a ConnectBaseEvent ob-
ject (see Figure 4), that provides all the necessary informations for an accurate
pattern recognition.

According to the scenario, the CONNECTor sends an eReq message to the
commanders of the patrolling groups operating in a given area of interest.

The event generated from the Probe instrumented into the peer software com-
ponent is shown in Figure 9 and flows in into the GLIMPSE infrastructure stream
of events.

When the commanders reply, another event is fired and sent on the CONNECT

bus, the eResp event.
The rule computation time (lines (20-28) in Listing 3) uses the times-

tamp impressed into the two different events to infer latency, and matches the
parameters: connectorID, sequenceID, ConnectorInstanceID, and
ConnectorInstanceExecutionID to check that the events are generated
from the same CONNECTor. This rule allows to calculate the latency (line 35) and
to provide it to DEPER (line 40-41).

Indeed, the rule pending request in the Listing 3, (lines (48-54)), com-
putes the number of incoming requests into the CONNECTor and provides it to
DEPER.

We first consider the steps to refine the accuracy of the failure probability
of the communication channel between the EmergencyCall application and the
CONNECTor. In order to get statistically significant estimations from the analy-
sis of the data gathered from the Monitor, we fixed the confidence level to 95%,
the confidence interval to 0.1, and the variance to 0.01. We accumulated data
generated from several executions of the CONNECTor in scenario’s configura-
tions where the number of guards was varying. In each configuration, executions
have been performed until the mean value of emergencyAlert message oc-
currences notified by Monitor stabilizes within the assumed confidence interval.
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1 <?xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”?>
2 <ComplexEven tRu leAc t ionL i s t>
3 < I n s e r t RuleType=” d r o o l s ”>
4 <RuleName>Computa t ion Time</RuleName>
5 <RuleBody>
6 d e c l a r e Connec tBaseEven t Impl
7 @role ( e v e n t )
8 @timestamp ( t imes t amp )
9 end

10 d e c l a r e S a t i s f i e d R e q u e s t
11 d u r a t i o n : f l o a t
12 incoming : S impleEven t
13 outcoming : S impleEven t
14 end
15 r u l e ” c o m p u t a t i o n t ime ”
16 no−loop
17 s a l i e n c e 999
18 d i a l e c t ” j a v a ”
19 when
20 $aEven t : Connec tBaseEven t Impl ( t h i s . d a t a ==” eReq ” ,
21 t h i s . getConsumed == f a l s e ) ;
22 $bEvent : Connec tBaseEven t Impl ( t h i s . d a t a ==” eResp ” ,
23 t h i s . getConsumed == f a l s e ,
24 t h i s . g e t C o n n e c t o r I D == $aEven t . ge tConnec to r ID ,
25 t h i s . g e t C o n n e c t o r I n s t a n c e I D == $aEvent . g e t C o n n e c t o r I n s t a n c e I D ,
26 t h i s . g e t C o n n e c t o r I n s t a n c e E x e c u t i o n I D ==
27 $aEven t . g e t C o n n e c t o r I n s t a n c e E x e c u t i o n I D ,
28 t h i s a f t e r $aEvent ) ;
29 then
30 $aEven t . setConsumed ( t r u e ) ;
31 $bEvent . setConsumed ( t r u e ) ;
32 S a t i s f i e d R e q u e s t s r = new S a t i s f i e d R e q u e s t ( ) ;
33 s r . s e t I n c o m i n g ( $aEven t ) ;
34 s r . s e tOu tcoming ( $bEvent ) ;
35 s r . s e t D u r a t i o n ( D r o o l s U t i l s . l a t e n c y ( $aEvent . ge tT imes tamp ( ) ,
36 $bEvent . ge tT imes tamp ( ) ) ) ;
37 i n s e r t ( s r ) ;
38 r e t r a c t ( $aEven t ) ;
39 r e t r a c t ( $bEvent ) ;
40 R e s p o n s e D i s p a t c h e r . NotifyMe ( d r o o l s . g e t R u l e ( ) . getName ( ) ,
41 ” DePer module ” , s r . g e t D u r a t i o n ( ) ) ;
42 end
43 r u l e ” pend ing r e q u e s t ”
44 no−loop
45 s a l i e n c e 999
46 d i a l e c t ” j a v a ”
47 when
48 $ t o t a l : Number ( )
49 from accumulate ( $nEvent : Connec tBaseEven t Impl ( d a t a ==” eReq ” )
50 from entry−p o i n t ”DEFAULT” ,
51 c o u n t ( $nEvent ) )
52 then
53 R e s p o n s e D i s p a t c h e r . NotifyMe ( d r o o l s . g e t R u l e ( ) . getName ( ) ,
54 ” DePer Module ” , ”PENDING : ” + $ t o t a l ) ;
55 end
56 </RuleBody>
57 </ I n s e r t>
58 </ ComplexEven tRu leAc t ionL i s t>

Listing 3: Sample Request from DEPER enabler to Monitor
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Figure 9: The selectArea Event Sent from Peer Probe

From such mean value, the mean failure probability we are interested in is ob-
tained as 1−(number of guards/number of emergencyAlert). Then, applying
the iterative algorithm presented in Section 5.1 to the mean failure probability for
each scenario’s configuration, the overall mean failure probability is obtained. Ta-
ble 1 summarizes the data involved in this experiment to obtain the refined value
of 0.1416 for the parameter under observation. The value assumed during pre-
deployment dependability analysis was 0.05, a clearly divergent value calling for
a new evaluation of the coverage measure.

Number of Guards Occurences of ‘‘emergencyAlert’’ Failure probability
22 18.94 0.139
33 28.84 0.126
44 37.96 0.137
55 46.54 0.154

110 93.27 0.152

Table 1: Elaboration of data from Monitor to update the failure probability parameter

Figure 10 shows the trend of the coverage (on the y axis) for different val-
ues of the failure probability (on the x axis). Also, the threshold coverage line
as specified in the requirement (set to the value 0.8) is reported. Not surprising,
at increasing the failure probability, the coverage decreases. The coverage value
obtained through the pre-deployment analysis is 0.9, fully satisfying the require-
ments that means the requirements are satisfied. But the coverage value after
updating the failure probability parameter is 0.73, no more a satisfactory value.
The CONNECTor needs to be enhanced; therefore DEPER informs the Synthesis
enabler about the analysis results and appropriate actions are taken by Synthesis
(typically, a new CONNECTor is synthesised).
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Figure 10: Trend of Coverage as a function of failure probability of the EmergencyCall channel

Now, we move to the steps to refine the accuracy of the model parameters
critical for the assessment of the latency indicator. They are the execution time
of the model transitions eReq and eResp in Figure 8. These transition execu-
tion time are represented by an exponential distribution, with rate 1. Similarly
to the previous case of coverage, executions have been performed and the time
durations of the transitions under observations collected from Monitor. Table 2
summarizes the mean values for the time duration of the two transitions (in time
units). Through the probability plotting paper method [? ], it is then possible to
estimate the actual value of the distribution rate, that results to be 0.89.

Transition Timing duration
eReq 9.650855
eResp 10.647591

Table 2: Timing values from Monitor

Figure 11 shows the trend of latency (on the y axis) at increasing values of
Timeout (on the x axis). The latency threshold specified in the requirements (30
time units) is also depicted. The figure includes three plots, corresponding to:
(i) the results of the pre-deployment analysis; (ii) the results of the analysis after
the parameters influencing latency have been updated; and (iii) the results of the
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analysis after both the parameters influencing latency and coverage have been
updated. It is worth noting that latency exceeds the required threshold only when
all model parameters under on-line observation have been updated, for values of
Timeout bigger than 21 time units.

Figure 11: Trend of Latency as a function of Timeout

Similarly, Figure 12 shows the trend of coverage (on the y axis) at increas-
ing values of Timeout (on the x axis). As in the previous figure, we show the
pre-deployment analysis results, those of the analysis performed after updating
the value of the failure probability, and those relative to the analysis where both
coverage and latency related parameters have been updated at run-time. It can
be noted that pre-deployment estimation of coverage was too optimistic: if the
coverage requirement is set higher than 0.73, the synthesised CONNECTor fails to
meet it, whichever be the assumed value for the Timeout.

7. Related work

This paper addresses the integration between stochastic model-based analysis
of dependability and performance and event-based monitoring, in order to meet
the needs of adaptive analysis in dynamic and evolving contexts.

Stochastic model-based approaches for quantitative analysis of non-functional
properties have been largely developed along the last decades and documented in
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Figure 12: Trend of Coverage as a function of Timeout

a huge literary production on this topic. The already cited papers [20, 5] provide
a survey of the most popular ones. The choice of the most appropriate type of
model to employ depends upon the complexity of the system under analysis, the
specific aspects to be studied, the attributes to be evaluated, the accuracy required,
and the resources available for the study. The prototype implementation of our
DEPER enabler is based on Stochastic Activity Networks (SANs) [23], a variant
of the Stochastic Petri Nets class.

With regard to monitoring, various approaches have been recently proposed.
Similarly to GLIMPSE, also [21] presents an extended event-based middleware
with complex event processing capabilities on distributed systems, adopting a
publish/subscribe infrastructure, but it is mainly focused on the definition of a
complex-event specification language. The aim of GLIMPSE is to give a more
general and flexible monitoring infrastructure for achieving a better interpretabil-
ity with many possible heterogeneous systems.

Another monitoring architecture for distributed systems management is pre-
sented in [14]. Differently from GLIMPSE, this architecture employs a hierarchi-
cal and layered event filtering approach. The goal of the authors is to improve
monitoring scalability and performance for large-scale distributed systems, mini-
mizing the monitoring intrusiveness.
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Many works focus on the definition of expressive complex event specifica-
tion languages. Among them, GEM [15] is a generalized and interpreted event
monitoring language. It is rule-based (similar to other event-condition-action ap-
proaches) and also provides a tree-bases detection algorithm taking into account
communication delay. Also the Snoop language [7] follows an event-condition-
action approach supporting temporal and composite events specification but it is
especially developed for active databases. A more recent formally defined speci-
fication language is TESLA [11]. It has a simple syntax and a semantics based on
a first order temporal logic. Some existing open-source event processing engines
are Drools Fusion [1] and Esper [2]. They can fully be embedded in existing Java
architectures and provide efficient rule processing mechanisms. In our prototype
we used Drools because ServiceMix offers it as business rule engine.

The focus of our approach is in the combined usage of pre-deployment model-
based analysis and run-time observations via monitoring. Preliminary studies that
attempt combining off-line with on-line analysis have already appeared in the lit-
erature. A major area on which such approaches have been based is that of au-
tonomic computing. Among such studies, in [19], an approach is proposed for
autonomic systems, which combines analytic availability models and monitoring.
The analytic model provides the behavioural abstraction of components/subsys-
tems and of their interconnections and dependencies, while statistical inference
is applied on the data from real time monitoring of those components and sub-
systems, to assess parameter values of the system availability model. Through
on-line monitoring and estimation of system availability, adaptive on-line control
of system availability can then be obtained. In [22], an approach is proposed to
carry out run-time reliability estimation, based on a preliminary modelling phase
followed by a refinement phase, where real operational data are used to overcome
potential errors due to model simplifications. The model is based on Discrete
Time Markov Chain, and a prototype version of the monitoring system has been
implemented, that is initially trained with the reference model and the prelimi-
nary reliability estimation, and then uses operational data to compute the on-line
reliability level. Our approach aims at proposing a general and powerful evalua-
tion framework, tailored to a variety of dependability and performance metrics, to
meet a wide spectrum of system requirements and adaptation needs.

Another point of strength of our approach is the ability to automate the analy-
sis process along the system lifetime, from the design phase to the operational
one, based on transformation rules. Research on definition and development
of transformation-based verification and validation environments are being pur-
sued since several years. Providing automatic/automated transformations methods
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from system specification languages to modelling languages amenable to perform
dependability analysis has been recognized as an important support for improving
the quality of systems. In addition, it favours the application of verification and
validation techniques at industry level, where these methods are not widely used
primarily due to the high level of abstractness of the mathematical modelling and
analysis techniques. To provide some examples, the Viatra tool [10] automatically
checks consistency, completeness, and dependability requirements of systems de-
signed using the Unified Modeling Language. The Genet tool [6], based on the
theory of regions [12], allows the derivation of a general Petri net from a state-
based representation of a system. Our work addresses the transformation from
the LTS formalism, as system specification language, to SAN, as dependability
modelling language. Since there are some steps in common with the Genet tool
and related theory, we partially reused available results from this previous study
in our prototype implementation.

8. Final discussion and conclusions

In this paper, we have tackled the challenge of dependability and performance
analysis in dynamic and evolving systems, whose peculiarities make traditional
methods largely inadequate. Our proposal to cope with the issues raised in the ad-
dressed context resorts to integrate pre-deployment stochastic model-based analy-
sis with run-time monitoring, to achieve adaptive dependability assessment through
re-calibration and enhancement of the dependability and performance prediction
along time. The aim of this two-phase analysis framework is twofold. On one
side, the stochastic model-based analysis performed at pre-deployment time pro-
vides a primary support to the realization of the “rightest” system, given the partial
knowledge about the involved subsystems and environment conditions. However,
the resulting unavoidable potential inaccuracy on the prediction so obtained could
lead to more or less severe consequences if awareness about it is never acquired.
This is the point were monitoring provides its contribution, by observing events
which help to enhance the previously performed analysis. In fact, through moni-
toring properly selected events during execution and collecting them along multi-
ple executions we can identify changes that require to be accounted for by a new
iteration of the model-based analysis and possible. p4

4Felicita: se ci sono i valori di range non c’e’bisogno di fare una nuova analisi, ma solo dare un feedback per una

nuova sintesi
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Although not novel in its basic principles, this pre-deployment and run-time in-
tegrated framework is proposed as a general, automated approach to fulfill the
dependability and performance assessment needs in dynamic and evolving con-
texts.Therefore, the work done so far constitutes an important step towards the
definition of an automated and adaptive process to provide dependability and per-
formance analysis accounting for modern and future application needs. Although
prototypes of DEPER, GLIMPSE and their integration are already available, ad-
ditional effort is needed to fully embed in them the many potentialities offered
by the approach. Especially, techniques would be desirable to balance between
time to produce results and their accuracy. For instance, in the automatic gener-
ation of the dependability and performance model from the specification of the
CONNECTed system, techniques could be sought able to optimise the model on
the basis of the specific metrics that needs to be assessment. Also, compositional
solution methods for the dependability and performance model would be highly
attractive, possibly reusing partly solved model, e.g., when the synthesised CON-
NECTor is derived as specialisation of an already existing CONNECTor that has
already been analysed, or when already analysed dependability mechanisms are
introduced in the dependability model.
In view of better exploiting the functionalities of the GLIMPSE monitoring in-
frastructure, able to observe more complex events as aggregation of elementary
ones, GLIMPSE could be instrumented to evaluate final properties of interest, like
coverage. Then, the comparison with pre-deployment assessment made through
DEPER would become a powerful cross-validation operation, reinforcing the con-
fidence in the design-time forecast, or revealing inadequacy of the assumed model
parameter (we exclude potential deficiencies in the set-up of the model itself since
the dependability and performance models are automatically derived from the LTS
specifications).
Finally, we would like to underline that, despite we developed the approach as-
suming the context of the EU project CONNECT to make the exposition more
concrete, the approach is general and applicable to other contexts sharing the char-
acteristics of evolution and partially known specifications.
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